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COMPARISON OF CONCRETE STRENGTH PREDICTION
TECHNIQUES WITH ARTIFICIAL NEURAL NETWORK
APPROACH

MELTEM OZTURAN!, BIRGUL KUTLU!, TURAN OZTURAN?

Prediction of concrete strength is an important issue in ready-mixed concrete
industry, especially, in proportioning new mixtures and for the quality assurance of
the concrete produced. In this paper, it is aimed to illustrate that the artificial neural
networks can be used for predicting the 28-day strength of low to medium strength
concretes. The compositional, fresh concrete and early strength data obtained from
different batching plants of a ready-mixed concrete company have been defined in
terms of ten independent variables that are grouped in five different system models
to which neural network and multiple linear regression models have been applied.
The accuracies of prediction by artificial neural network and multiple linear regression
models as well as by Abrams’ law are compared on the basis of the coefficient of
determination. It appears that the best results are obtained by the artificial neural
network models using data for fresh concrete and early strength simultaneously.

Keywords: Abrams’ law; Artificial neural networks; Compressive strength; Multiple linear
regression; Ready-mixed concrete; Strength prediction

1 Introduction

Strength, in almost all cases, is considered to be the most important property of
concrete, because it usually indicates the overall quality of the concrete. Although
the strength of concrete can be measured at different ages, codes usually specify
standard 28-day testing. Earlier testing at such as seven days, on the other hand,
may be useful for the prediction of the 28-day strength of concrete. When no specific
data are available, 28-day strength may be assumed to be 1.5 times the 7-day strength
whereas this ratio was shown to vary generally from 1.3 to 1.7 (Neville, 1986).
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Strength of a fully compacted concrete at a given age may be estimated by the
well known Abrams’ law (Abrams, 1927) which states that the strength of concrete
is inversely proportional to the water-cement ratio. Several researchers, on the other
hand, showed that the compressive strength of concrete was determined not only by
the water-cement ratio, but it was also affected by the content of other constituents
of the concrete (Popovics, 1990; Oluokun, 1994). Strength of concrete may also be
estimated through its compositional properties by empirical relationships built
through a statistical approach such as multiple linear regression (MLR). However,
considering that concrete is a highly nonlinear material, modeling its behavior would
be highly difficult. An alternative method to estimate the strength of concrete is the
artificial neural network (ANN) approach. ANNs may be trained on the available
experimental data describing the behavior of the material to predict its behavior
from the results of other experiments using that material. Most research in this
area used the backpropagation networks (Yeh, 1999; Lai and Serra 1997; Nehdi et
al., 2001a; Dias and Pooliyadda, 2001; Yeh, 1998a) to design concrete mixtures and/
or to predict its strength whereas some modifications to the standard backpropagation
network (Yeh, 1998b) and other ANN techniques (Kasperkiewicz et al., 1995) were
reported in the literature.

Yeh (1998a) showed that ANNSs could easily be adapted to predict the compres-
sive strength of high performance concrete from the mix proportions of the concrete
ingredients based on a large set of experimental data obtained from literature to be
more accurate than a model based on regression analysis. Yeh (1999) extended the
application of ANNs together with nonlinear programming to the optimization of
high performance concrete mix proportioning for a given workability and compres-
sive strength. Lai and Serra (1997) developed an ANN model for predicting the
compressive strength of concretes with varying aggregate properties based on data
from intensive experimental measurements and concluded that the ANN perfor-
mance was independent of the number of neurons in the hidden layer within the
range of 4 — 8. Kasperkiewicz et al. (1995) demonstrated that an ANN of the fuzzy-
ARTMAP type could be used for predicting strength properties of high performance
concrete and for searching for optimal concrete mixes. In their work, they obtained
significant correlations between the actual strength values and the values predicted
by the ANN based on data from various publications and concluded that the most
rational approach to applying learning and predicting techniques was using data
from a single source.

Dias and Pooliyadda (2001) used backpropagation networks to predict the
strength and slump of ready mixed concrete and high strength concrete with chemi-
cal and/or mineral admixtures. They tried various data transforms and concluded
that models based on raw data gave the best results and that the ANN models
performed better than the multiple regression models in reducing the scatter of
predictions. Yeh (1998b) proposed an augmented ANN to improve the efficiency and
accuracy in modeling highly complex and nonlinear concrete behavior using experi-
mental data from 15 different sources. Nehdi et al. (2001a) demonstrated that ANNs
could be used to accurately predict the slump flow, filling capacity, segregation and
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Figure 1. 2-hidden layer network with n inputs and k outputs

28-day compressive strength of self compacting concrete mixtures made by various
researchers with an average absolute error of 4, 5, 7 and 7 %, respectively.

2 Artificial Neural Network Approach

Machine learning approach is appealing for artificial intelligence since it is based
on the principle of learning from training and experience. Connectionist models,
such as neural networks, are well suited for machine learning where connection
weights are adjusted to improve the performance of a network. A neural network
consists basically of a number of simple processing units called neurons. Typically,
the neurons are organized logically into groupings called layers. The network is
hierarchical, consisting of three or more layers: the input layer, one or more hidden
layers, and the output layer (Fig. 1). Each neuron in a given layer is connected to all
the neurons in the next layer. The neurons in each layer interact with neurons in
other layers through weighted connections.
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Each unit in the network receives an input from the lowest-level units and
computes a weighted sum. The input data are propagated through the network by
multiplying the values of the neurons in the input layer by the connecting weights.
The weights should be randomized initially in order to avoid the system to be
locked at the starting point (Baxter, 2001). These products are summed at the
target neurons in the first hidden layer. The summed products are operated on by
a transfer function to determine the output level of each neuron. A linear sigmoid
could be used as the transfer function producing an analog output with values
ranging from 0 to 1 (Deboeck, 1994). The signals from the first hidden layer are
propagated to the following hidden layers, if they exist, and to the output layer in
a similar fashion.

Although in theory a single hidden layer is sufficient to solve any function ap-
proximation problem, some problems might be easier to solve using more than a single
hidden layer, especially two hidden layers (Partovi and Anandrajan, 2002; Carsten
and Thorstein, 1993). The number of neurons in a hidden layer was usually deter-
mined via a trial and error procedure (Nehdi et al., 2001b). There were many specified
empirical criteria for the number of neurons in the first hidden layer as a function of
the number of input (NI) and output (NO) variables as given in Table 1. The opti-
mum ratio of neurons in the first hidden layer to the second hidden layer was
recommended to be 3 : 1 (Kudrycki, 1988).

Table 1 Empiricial Criteria for the Number of Neurons in the First Hidden Layer

Number of Nuerons in the First Layer Reference(s)
2*NI [6]
NI+NO [10]
0.75*NI [13]
2*NI+1 [13]
NI [5, 9]
(NI+NO) /2 [16]

(NI: Number of Inputs, NO: Number of Outputs)

The above mentioned networks are also called layered feed forward networks
because the connections are unidirectional and they are typically trained with static
back propagation. While using back propagation, it was stated that the network
could learn by comparing its output for each input pattern with a target output for
that pattern and then by calculating the error and propagating an error function
backward through the net (Yeh, 1999). The Generalized Feed Forward (GFF) net-
work is a generalization of the layered feed forward networks such that the
connections can jump over one or more layers. These networks are usually preferred
since they solve problems much more efficiently.

Training of the network can be performed using gradient descent approach with
a constant learning rate of which the stepsize is controlled by a parameter p greater
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than zero. When p is chosen too large, the algorithm may become unstable and fail
to converge at all. Gallant (1993) stated that it was probably the best to set it to
a value not greater than 0.1. This approach minimized the sum of squared errors
and the training process was carried out until one of the following conditions was
met (Yeh, 1999; Lai and Serra, 1997; Nehdi et al., 2001a; Gallant, 1993; Baxter,
2001; Teh et al., 1997): a) a sufficiently small predetermined testing error was
reached, b) the testing error began to increase, ¢) a predetermined number of learn-
ing cycles had passed. The error is multi-dimensional and may contain many local
minima. A momentum factor is usually added to the weight adjustment in order to
avoid a local minima or slow convergence. Momentum factor varies from 0.1 to 1. In
prediction studies of concrete strength by ANNSs, 0.5 was a commonly used value for
momentum factor (Yeh, 1998a; Yeh, 1998b; Yeh, 1999).

Teh et al. (1997) affirmed that after the training process was completed, the
network with specified weight factors could be used for testing a set of inputs dif-
ferent than the inputs used for training. Testing was then carried out using
a separate set of data to validate whether the neural network could produce cor-
rect responses for patterns that only broadly resemble the data in the training set.
Neural networks should be trained on a wide enough set of input data to general-
ize from their training sets (Nagendra, 1998). The ratio of training set to test set
varied from 1: 9to 5: 5in related studies (Yeh, 1998a; Yeh, 1998b; Yeh, 1999;
Kasperkiewicz et al., 1995; Baxter, 2001; Carsten and Thorstein, 1993; Nehdi et
al., 2001b).

R? (coefficient of determination) is usually used to test the accuracy of the
trained network. The coefficient of determination is a measure of how well the
independent variables considered account for the measured dependent variable.
A higher R? value indicates a better prediction relationship. Predictive capability
of the method on the other hand was within the range of data employed for model
fitting (Yeh, 1999).

3 Research Significance

The objective of this paper is to illustrate that the ANNs can be used to predict
the 28-day compressive strength of ready-mixed concrete through a comparative
analysis by ANN, MLR and Abrams’ prediction models. Data are gathered directly
from a ready-mixed concrete company for low to moderate strength concrete mix-
tures produced over a period of six months at its different batching plants using the
same type of constituent materials. Various sets of combinations of available data
are considered for prediction modeling. Supervised learning models have been uti-
lized in which certain output nodes are trained to respond to certain input patterns
and the changes in connection weights due to learning have caused those same
nodes to respond to more general classes of patterns.
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4 Modeling of the Prediction of 28-day Compressive Strength of Concrete

4.1 System Models

Strength of concrete is mostly defined by its components with regard to their
mass contents in unit volume of concrete and individual characteristics. Additional
factors related to the batching, mixing, placing and curing procedures affect the
strength development of concrete. Although experimental data available in the lit-
erature provide a great deal of information, some important details might be lacking
in many situations, making the strength prediction a highly uncertain task.

Therefore, in this study the following input variables obtained through different
stages of the ready-mixed concrete production are considered to ultimately affect
the 28-day compressive strength of the concrete, f,,, (MPa).

Cement, C (kg/m?)

Water, W (kg/m?®)

Crushed Limestone I (5-10 mm), CLI (kg/m?)
Crushed Limestone II (10-20 mm), CLII (kg/m?®)
Natural Sand, NS (kg/m?®)

Crushed Sand, CS (kg/m?®)

Water Reducing Admixture, WRA (kg/m?)
Slump, S (cm)

Fresh Density, FD (kg/m?®)

7-day Compressive Strength, f,, (MPa)

Considering the input variables, five different system models (M1 to M5) con-
sisting of different sets of these input variables are considered for the prediction of
28-day compressive strength of concrete:

System Model 1, M1 : f.. = f,,.... (C, W, CLL, CLII, NS, CS, WRA)

System Model 2, M2 : f.. = f,,.... (C, W, CLIL, CLII, NS, CS, WRA, S, FD)
System Model 3, M3 : fC28 = fMO el (fc7)

System Model 4, M4 : f.. = f,,... (C, W, CLI, CLIIL, NS, CS, WRA, f,.))
System Model 5, M5 : f.. = f,,...s (C, W, CLIL, CLII, NS, CS, WRA, S, FD, f,.))

Thus, the effectiveness of different combinations of compositional, fresh con-
crete and early strength data has been investigated for the strength prediction.

4.2 Data Sets

Experimental data collected from five different batching plants of a ready-mixed
concrete company for a period of six months for a specified strength concrete, pro-
duced with the same type of materials, are used to train and test the strength
prediction models without normalization. Statistical analysis of the data set based
on normal distribution is given in Table 2. The data set of 111 records indicate that
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the workability range from stiff to plastic and even fluid consistencies, depending
on the casting and compacting conditions at the site. Statistical analysis of the 28-
day 150 mm cube compressive strength indicates a mean value of 26.2 MPa and
standard deviation of 3.0 MPa for 111 test results. Statistical evaluation of concrete
strength based on EN206-1 conformity criteria for the mean strength and the mini-
mum individual value reveals a characteristic strength of 21.8 MPa and 23 MPa,
respectively. This evaluation indicates a C16/20 quality for the concrete. Moreover,
a coefficient of variation of 11.5 % indicates a moderate degree of quality control.

Table 2. Statistical analysis of data set (n = 111)

Variable Minimum Maximum Mean Standard Deviation
Cement (kg/m?) 268 307 286 12
Water (kg/m?) 81 213 154 24
Crushed Limestone I (kg/m?) 391 610 494 89
Crushed Limestone II (kg/m?) 563 787 657 58
Natural Sand (kg/m?®) 398 590 474 77
Crushed Sand (kg/m?) 172 437 326 69
Water Reducing Admixture (kg/m?) 0.54 1.54 0.69 0.17
Slump (cm) 5.0 19.5 12.7 3.2
Fresh Density (kg/m?) 2 311 2 451 2 374 21
7-day Concrete Strength (MPa) 15.0 28.9 20.6 2.8
28-day Concrete Strength (MPa) 19 35 26.2 3.0

From this data set, 100 cases are taken as training and 11 as testing (9 : 1 ratio)
examples by systematic sampling where every tenth case is chosen for testing group
from the list of data sorted in the ascending order of 28-day compressive strength of
concrete. Thus, it has been possible to test the reliability of the prediction model
over the full range of strength data.

4.3 Network Parameters

For each system model described before, the Generalized Feed Forward Artifi-
cial Neural Network model is applied for two different numbers of hidden layers
(HL = 1, 2) at six different numbers of first hidden layer neurons as stated before for
the data set. Thus, 12 different ANN models have been used for each system model.
For all of those ANN models, the following network parameters are taken the same:
Learning rule: Momentum (momentum factor = 0.5)

Stopping criteria: Mean Square Error (minimum MSE = 0.005)
Learning rate: 0.1

Activation function: Linear Sigmoid

Initial weight: Randomized
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4.4 Training Results

In this study, 12 ANN models are applied to each of the five system models,
using NeuroSolutions ANN software package. Thus, a total of 60 strength predic-
tion models have been tried. ANN models’ performances are measured by the
coefficient of determination (R?). Table 3 shows the ANN models with the highest R?
values among the 12 GFF network models applied to each system model.

Table 3. Results of artificial neural network models

GFF - One Hidden Layer GFF - Two Hidden Layers
System  R? # of Neurons Learning R? # of Neurons Learning
Model in the Hidden  Cycles in the Hidden Cycles
Layer (1) Layers (1 -2)

M1 0.423 14 22 660 0.504 5-2 28 451
M2 0.120 5 29 991 0.410 7-2 19 105
M3 0.790 3 37 0.790 1-1 3 844
M4 0.884 6 44 0.903 17-6 207
M5 0.884 8 26 0.919 11-4 116

4.5 Comparison with Multiple Regression Model and Abrams’ Law

The ANN performances are compared with MLR approach and the results ob-
tained from the Abrams’ formula. The general regression expression is shown in
Eq.(1). Regression coefficients of the expression are obtained by fitting the training
set data for each system model, and the model is evaluated by comparing the pre-
dicted and measured strength values of the testing set data. Table 4 shows the
coefficients of determination for the MLR models. Experimental parameters of the
Abrams’ formula (Eq.2) are obtained by fitting it to the training set data after con-
verting to a linear form (Eq.3) by taking the logarithm of both sides.

S =g +ax, +....... +a,x, (1)
Sew = BI?% (2)
log fs =log4— (%)logB =a, +aq, (%) (3)

The Abrams’ law is evaluated by comparing the predicted and measured strengths
of the testing set data. The w/c values vary from 0.27 to 0.75 with a mean value of
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0.54 and a standard deviation of 0.09. The coefficient of determination (R?) for the
Abrams’ law is also shown in Table 4.

Table 4 Results of multiple linear regression models and Abrams’ law

System Model MLR Abrams’ Law
M1 R% = 0.550
M2 R?=0.469
M3 R?=0.786 R2=0.351
M4 R?=0.885
M5 R%?=0.903

5 Evaluation

The accuracy of the prediction for each approach has been evaluated by the
coefficient of determination. Tables 3 and 4 verify that the best solution (R* = 0.919)
for the prediction models considered in this study is achieved by the ANN model of
2 hidden layers with 11 neurons in the first layer and 4 neurons in the second layer
for M5. On the other hand, lower R? coefficients have been determined for M1 and
M2 models in all techniques which indicate that the input variables included in
these models alone have not been sufficient enough for the prediction of concrete
strength.

It has been also observed that MLR models are much more successful for pre-
dicting the strength of concrete than ANN models for M1 and M2. However, the
inclusion of early strength data as in M4 and M5 causes an improvement in the
prediction accuracy of the ANN models compared to the MLR models. Thus, ANN
models are generally better than the MLR models for M4 and M5. ANN and MLR
models, on the other hand, are equally successful in predicting the 28-day strength
of concrete for M3 which include only early strength as the input variable. Both
ANN and MLR models have much higher prediction accuracies than the Abrams’
law in all five system models.

Fig. 2 shows the predictions of the 28-day strength of the concrete based on the
validation data through the learning process for M5. The coefficients of determina-
tion are 0.919, 0.903 and 0.351 for ANN, MLR and Abrams’ models, respectively,
indicating better accuracy of prediction for the ANN model. Fig. 3, on the other
hand, shows the predictions of the 28-day strength of the concrete based on all data
for M5. It is observed that the coefficients of determination are reduced to 0.623,
0.692 and 0.113 for ANN, MLR and Abrams’ models, respectively, as the prediction
of the concrete strength has been extended to all data. It is observed that the accu-
racy prediction was slightly better for the MLR model than ANN model when all
data are considered.

Abrams’ law which predicts the concrete strength based on its w/c gives
a considerably low coefficient of determination. This may be due to the fact that
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water reducing and plasticizing admixtures may interfere with the hydration of
cement and may cause some changes in the microstructure of the cement paste
affecting the strength development of concrete. This indicates that the Abrams’ for-
mula should be augmented with terms representing the concrete composition as
mentioned by Popovics (1990).

As shown in Table 3 the accuracy of ANN models, on the other hand, varies with
the number of hidden layers and the number of neurons in the hidden layers. In all
system models, higher accuracies are obtained with two hidden layers but it has
been observed that no specified empirical criteria common to all system models is
found for determining the number of neurons in the first hidden layer and implicitly
in the second hidden layer. It is also seen in Table 3 that the compositional data
alone (M1) or together with fresh concrete data (M2) require much higher number of
training iterations with a relatively lower accuracy independent of the layer struc-
ture of the ANN. Inclusion of the early strength data, f_, on the other hand,
considerably increases the speed of learning process and the accuracy of prediction
as it can be seen in Table 3 when the results of M1 are compared with M4 and M2
with M5.

Considering the different data sets for training the ANN and regression models,
the use of fresh concrete data together with the compositional data as in M2 com-
pared to M1 causes a reduction in the prediction accuracy whereas equal or slightly
higher accuracies are obtained in M5 compared to M4 where the fresh concrete data
are included in the presence of the early strength data. As it is seen in Tables 3 and
4 the use of early strength in data set increases the accuracy of the prediction con-
siderably. Although the use of early strength alone is not sufficient to create the
best solution, the early strength seems to be the most effective among all data items
in achieving higher accuracies. However, observing that the highest prediction ac-
curacy in all ANN models and the regression model is obtained in M5, it is appropriate
to conclude that the best result for prediction by ANN models will be obtained when
all the information available will be utilized. This is also in agreement with the
findings of Yeh (1998b). Moreover, the coefficient of determination values obtained
in this study are comparable to the ones obtained in the previous studies (Lai and
Serra, 1997; Dias and Pooliyadda, 2001; Yeh, 1998a; Yeh 1998b; Kasperkiewicz et.
al., 1995).

Fig. 4 is based on the measured strength data and the predicted strength values
by the artificial neural networks for M5 to evaluate the effects of w/c ratio on the
concrete strength. It is clearly observed that the trend being modeled by the ANNs
appears to be meaningful also from a physical stand point. However the very low
correlation coefficients may be due to the rather large scatter in the compositional
data for the concretes tested.
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6 Conclusions

This study is aimed at finding the best system model for the prediction of the
28-day compressive strength of concrete through a comparative analysis by ANN,
MLR and Abrams’ prediction models. A total of 65 sets of predictions, which result
from the application of 12 ANN models and one MLR model to five system models,
are produced. Abrams’ law is also considered for predicting the strength on w/c
basis. All of those results are compared using the coefficients of determination cal-
culated for the models with highest R* values for each system model to be more
confident about the results.

Based on the findings of this study it can be concluded that:

1. MLR models are better in predicting the strength of concrete than ANN models
for M1 and M2 which include only the constituent materials and fresh concrete
data. However, the inclusion of early strength data in M4 and M5 results in
better prediction of strength by the ANN models. Both ANN and MLR models,
on the other hand, show almost the same performance for M3 which included
only the early strength data.

2. Although the inclusion of the early strength data, f,,, increases the speed of
learning process and the accuracy of prediction, best results for each of the pre-
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diction models are obtained when all of the input variables defined in this study
have been considered (M5).

3. Accuracy of the ANN models varies with the number of hidden layers and the
number of neurons in the hidden layers. For all system models better accuracies
are obtained with two hidden layers but no specified empirical criteria common
to all system models is found for determining the number of neurons in the first
hidden layer and implicitly in the second hidden layer.

4. Abrams’ law, predicting the strength based on w/c, gives considerably low coef-
ficient of determination which may be due to the effect of plasticizing admixture
on the microstructure of the concrete. Thus, it may state that an empirical equa-
tion for determining strength must include terms representing concrete
composition.

5. Plot of compressive strengths predicted by ANN models as function of w/c shows
a trend similar to the one obtained from the real data indicating that the ANN
prediction makes sense also from a physical stand point.
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