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Mutational analysis of JAK1 gene in human hepatocellular carcinoma
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The Janus kinase 1 (JaK1) gene encodes a cytoplasmic tyrosine kinase that is noncovalently associated with a variety 
of cytokine receptors and plays a nonredundant role in cell proliferation, survival, and differentiation. The mutated forms of 
JaK1 often altered the activation of JaK1 and then changed the activation of JaK1/STaT pathways, and this may contrib-
ute to cancer development and progression. Thus, to investigate whether genetic mutations of JaK1 gene are associated in 
hepatocellular carcinoma (HCC) progression, we analyzed genetic alterations of JaK1 gene in 84 human HCCs by single-
strand conformational polymorphism (SSCP) and direct sequencing. of 24 exons of JaK1 gene, 12 exons were previously 
reported to have mutations, we searched genetic alteration of JaK1 in these exons. overall, one missense mutation (1.2%) 
was found. in addition, 12 cases (14%) were found to have single nucleotide polymorphism (14%) in exon 14. Taken together, 
we found one novel missense mutation of JaK1 gene in hepatocellular carcinomas with some polymorphisms. although the 
functional assessment of this novel mutant remains to be completed, JaK1 mutation may contribute to the tumor develop-
ment in liver cancer.
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Hepatocellular carcinoma (HCC) is the fifth most com-
mon cancer in the world and its mortality is third among all 
cancers and one of main causes of cancer death especially 
in asia and africa [1, 2] . Recent studies have found that 
genetic alterations of tumor suppressor genes or oncogenes 
such as p53, β-catenin, and aXiN1 are involved in hepato-
carcinogenesis [3–5]. but the frequency of mutation of these 
genes appears to be very low in HCC patients. Furthermore, 
it is unclear how these genetic changes precisely reflect the 
clinical characteristics of individual HCC patients. Therefore, 
the molecular events underlying HCC in most patients still 
remain unknown.

The Janus kinase (JaK)/signal transducer and activator of 
transcription (STaT) signaling pathway plays a significant role 
in various physiological processes, including immune func-
tion, cell growth, differentiation, and hematopoiesis [6–11]. 
Recently, accumulating evidence indicates that abnormalities 
in the JaK/STaT pathway are involved in the oncogenesis of 

several cancers [12–14]. JaK is a small family consisting of 
JaK1, JaK2, JaK3 and Tyk2 [15]. among them, JaK1 plays 
an essential and nonredundant role in mediating biological 
responses induced a specific subgroup of cytokines controlling 
cell differentiation and proliferation. 

The family members are widely expressed in a variety 
of different cell types, with the exception of JaK3, which 
is selectively expressed in cells of hematopoietic origin [8]. 
There are two kinase domains in the structure of JaKs, one 
is carboxyterminal kinase domain named JH1 and the other 
is a pseudokinase domain named JH2, like the twofaced god 
Janus of Roman, so the JaK were also named as Janus ki-
nases of family [10], but only the JH1 domain has functional 
kinase activity [6, 7]. The pseudokinase domain, as its name 
implies, lacks catalytic activity but has essential regulatory 
functions [16–19]. JaKs also have an SH2-like domain, but 
the ability of this region to bind phosphotyrosine has not 
been established. The amino terminus of JaKs comprises 
a band-four-point-one, ezrin, radixin, moesin (FeRm) do-
main, which is critical for binding cytokine receptors [17, 
20, 21]. 
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For the unique structure and important functions of the
JAKs family in signaling pathway, more and more research-
ers focus on JAKs with pathogenesis of tumor. For example,
overexpression of JAK is suggested that the one of the on-
cogenic events leading to the constitutive activation of the
JAK/STAT pathway [22]. The suppressor of cytokine sig-
naling-3 (SOCS-3) and interferon-alpha (IFN-α) were found
negatively regulate cell growth and cell mobility by inhibit-
ing JAK/STAT pathway in HCC cells [23, 24]. Previous
studies reported that the activation of JAK/STAT pathways
were ubiquitous in human HCC, 49.4% of human HCC pa-
tients could be seen the constitutive activation of JAK/STAT3
pathway [25, 26].

JAK2 and JAK3 mutations have recently been identified
in several hematological malignancies, and the resulting mu-
tant JAK proteins induce the constitutive activation of STAT5
and STAT3. Somatic gain-of function JAK1 mutations have
been reported in 18% of adult T-cell acute lymphoblastic leu-
kemia (T-ALL) patients [27]. Among the newly identified
JAK1 mutants, a point mutation in the pseudokinase domain
(A634D) induced the strongest level of signaling. However,
few studies have been made in solid tumors in regarding JAK1
mutation. Thus, we investigated somatic mutation of the JAK1
gene in 84 human hepatocellular carcinomas by using single
strand conformational polymorphism (SSCP) and sequenc-
ing in order to investigate whether genetic alterations of JAK1
gene are involved with tumor development or progression of
hepatocellular carcinoma.

 Materials and methods

Tissue samples. Eighty-four frozen HCCs and their corre-
sponding background liver tissue samples in 84 patients after
resection of HCC were evaluated. Approval was obtained from
the institutional review board of the Catholic University of
Korea, College of Medicine. Informed consent was provided
according to the Declaration of Helsinki. There was no evi-
dence of familial cancer in any of the patients. The average
age of the patients was 52 years (range 26–89 years); 69 were
men and 15 were women. The background liver showed cir-
rhosis in 59 (70.2%) patients, chronic active hepatitis in 10
(11.9%), chronic persistent hepatitis in four (4.8%), and non-
specific change in 11 (13.1%). HBV was detected in 76 (90.5%)
and HCV in four (4.8%). Clinically, there were 13 samples of
histological grade I, 60 of grade II and 11 of grade III. To
confirm diagnosis, one 6-μm section stained with hematoxy-
lin and eosin was independently reviewed by three
pathologists.

DNA extraction. Frozen tumor and normal tissue samples
were ground to very fine powder in liquid nitrogen, suspended
in lysis buffer and treated with proteinase K. DNA extraction
was performed by a modified single step DNA extraction
method, as described previously [28].

Mutational analysis. For screening the mutations of JAK1
gene in HCC, we designed 12 primer sets of 24 exons, cover-
ing all the reported mutational exons of JAK1. Each
polymerase chain reaction (PCR) was performed under stan-

Table 1. Primer sequences of JAK1 gene used in this study

Primer Nucleotide sequence Product size (bp)

Exon 4 Forward 5' GGT CCC CTT TGC CAC AAT 3' 216
Reverse 5' CTG GGC CCA AAC TTC CTA C 3'

Exon 5 Forward 5' GGC TCT CAT GGT TTC TCC 3' 243
Reverse 5' AAC ACC ACC ATC CTC ACA 3'

Exon 7 Forward 5' AAC CCT GTC CCT TTT ATG TAT C 3' 239
Reverse 5' TAA GAG CTT CTG GGA CAA ACT 3'

Exon 8 Forward 5' CCG TGG GAA TTT CTT CTC 3' 221
Reverse 5' CAC ACC AAA GGC AAC TGA 3'

Exon 9 Forward 5' TCT TTC TCC CTT TGC CTA CT 3' 201
Reverse 5' CAC CTC ATG GCT GTA TGG 3'

Exon 10 Forward 5' TCT GGT CAT TTC CCG AAT AGC A 3' 230
Reverse 5' TCT GGC ACA GGG AGA CGA AC 3'

Exon 13 Forward 5' CTG GCC TGA GAC ATT CCT ATG 3' 150
Reverse 5' CCC CTT TGA AAG AGA ACA CAC T 3'

Exon 14 Forward 5' CAG ACC AGG TTC CAG ACA TGG CTA T 3' 200
Reverse 5' GTG GGA CCA TTA TGG ACA TCA GGA C3'

Exon 15 Forward 5' AAT AGA ATG CGG GAA GGA 3' 211
Reverse 5' AGG GAA GAG AGG GGA GAC 3'

Exon 16 Forward 5' GAG ATC CCA GAA ACT GCT CCA TC 3' 239
Reverse 5' GAA AGC CCT CAC TTG CCT CAC 3'

Exon 17 Forward 5' TGG GGC TGA GAA GTT TG 3' 232
Reverse 5' AGC ACA TGG CAG GTC TTA 3'

Exon 18 Forward 5' CTT GGG GAG AAA CAG GAG 3' 196
Reverse 5' AGC AGC ACG GGT GTA AC 3'

Exon 21 Forward 5' ATG TGC TTG ACT TTT ACT TCT C 3' 225
Reverse 5' CCT AGT GGT TTG ATT CAG TTA C 3'
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dard conditions in a 10μl reaction mixture containing 1μl
(20ng) of template DNA, 0.5 μM of each primer 0.2 μM
deoxynucleotide triphosphate, 1.5 mM MgCl2, 0.4 unit of
Ampli Taq gold polymerase(Perkin-Elmer, Foster City, CA,
USA), 0.5 μCi of 32P-dCTP(Amersham, Buckinghamshire,
UK), and 1μl of 10×buffer. The reaction mixture was dena-
tured for 12 min at 95°C and incubated for 35 cycles
(denaturing for 30s at 95°C annealing for 30 s at 56–67°C,
and extension for 30 s at 72°C) After amplification, PCR prod-
ucts were denatured for 5 min at 95°C at 1:1 dilution of sample
buffer containing 95% formamide/20 mmol/L EDTA/0.05%
bromophenol blue/0.05% xylene cyanol and were loaded onto
a single strand conformation polymorphism (SSCP) gel (FMC
Mutation Detection Enhancement system; Intermountain Sci-
entific, Kaysville, UT, USA) with 10% glycerol. Samples were

electrophoresed at 8 W at room temperature overnight. After
electrophoresis, the gels were transferred to 3 MM Whatman
paper and dried, and autoradiography was performed with
FUJI MEDICAL X-RAY FILM(FUJIFILM Corporation, JA-
PAN ). For the detection of mutations, all the aberrant mobility
bands of the SSCP experiments were cut out from the SSCP
gel. DNA samples were extracted from the gel with 50μL
distiled water incubating at 50°C for 24h and amplified for 39
cycles using the same primer sets. The amplified samples were
loaded onto agarose gel and purified with QIAquick Gel Ex-
traction Kit. The purified PCR products were sent to cosmo4
company (Seoul of Korea) for sequencing.

Results

Mutational analysis We analyzed all the previously reported
mutational exons (Table 1.) of JAK1 by PCR-SSCP. From this,
we found 19 genetic alterations in exon 5,9,10,13,14 of JAK1
gene (Table 2). Direct sequencing of aberrant migrating bands
on SSCP gel resulted one missense mutation: (2008 G>T;
Q646V), (2009 G>T; H 647 F) and rest of them were silent or
mutation in intron (Fig.1, Table 2). We also found some SNPs
in other exons. Interestingly, the samples of No.2 and No.148
have SNPs both in exon 5 and exon 10. The SNPs are A to
G transiton at nucleotide 616 (616A>G; G182G) in exon 5 and
a C to T transition at nucleotide 1654 (1654C>T; I530I) in
exon 10. Most interestingly, there are 12 samples (14%) have
the same SNP situation at nucleotide 2225 (2225C>T; S685S)
in exon 14.

Discussion

The Janus kinase–signal transducer and activator of tran-
scription (JAK–STAT) pathway mediates signaling by
cytokines, which control survival, proliferation and differen-
tiation of several cell types. Constitutive JAK activation leads
to persistent activation of STAT transcription factors, and sev-
eral cancers exhibit constitutive STAT activation, in the
absence of JAK or STAT activating mutations.

Mutational studies have showed that the mutation in exon
4 and exon 8 of the JAK1 gene could result in complete loss
of the protein in several different prostate cancer cell lines
[29]. Analysis of the homologous mutation in JAK1 (V658F)
also showed that the homologous mutation induced autono-
mous growth of cytokine-dependent cells and constitutive

Table 2. Summary of JAK1 mutations in HCC

Exons No. of Tissues Nucleotide Amino acid

Exon 5 2T, 148T A616G G182G Silent
Exon 9 78T, 143T C(Intron)T
Exon 10 2T, 148T C1654T I530I Silent
Exon 13 33T G2008T;G2009T Q646H;V647F Missense
Exon 14 3T;9T;15T;29T;33T,40T;47T; C2225T S685S Silent

60T,68T;73T;80T;105T

Figure 1. Representative SSCP and DNA sequencing of the JAK1 gene
in human hepatocellular carcinoma tissues. SSCP (A) and DNA
sequencing analysis (B) of the JAK1 gene from tumor tissue (T) and
normal tissue (N). A Aberrant bands marked by arrow (lane T)
compared with SSCP from normal tissue. B Nucleotide changes at
2008(2008 G>T; Q646V) and 2009 (2009 G>T; H 647 F) in tumor tissue
compared to normal tissue.
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activation of StAt5, StAt3, mitogen-activated protein 
kinase, and Akt signaling in Ba/F3 cells [30]. Although this 
homologous mutation locate in the pseudokinase domain of 
JAK1 and this region lacks catalytic activity, we may speculate 
that it has essential regulatory functions that might regulate 
the activity of JAK1 and then alter the activity of JAK/StAt 
pathways. in liver cancer, it has repored that constitutive 
activation of JAK/StAt pathways was ubiquitous in human 
hcc [25, 26]. in this study, we found two missense mutations 
(Q646V; h647F) in the pseudokinase domain of JAK1 in hu-
man hepatocellular carcinoma. this implies that it may change 
the activation of JAK1 and contribute to the development of 
human hepatocellular carcinoma.

in conclusion, we report here one mutation in exon 13 
of JAK1 gene in 84 human hepatocellular carcinomas. in 
spite of low frequency of mutation, we suggest that muta-
tion of JAK1 gene may contribute to the development and 
progression of hepatocellular carcinoma through altering 
activation of JAK-StAt signaling. Further functional 
analysis of the mutation identified in this study will broaden 
our understanding of the pathogenesis of hepatocellular 
carcinoma.
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