Introduction

HPV infection is associated with a broad spectrum of benign and malignant neoplastic epithelial changes. The association of HPVs with neoplastic transformation has been most extensively investigated in lesions of the uterine cervix and the role of HPVs in malignant transformation of the cervical epithelium has been well established. Although several epidemiological, clinical, and pathologic studies have indicated that this virus is sexually transmitted, the association of HPVs with penile cancer is not so much understood than that with a cervical cancer. The virus can affect the squamous epithelium of the male genitalia in a similar way as the female genital tract (Gross and Pfister, 2004; Senba et al., 2006; Tornesello et al., 2008).

HPVs onco-proteins E6 and E7 are essential factors for HPVs oncogenesis. E7 and E6 react with the tumor suppressor gene products p53 and pRb proteins in host cell resulting in an induced cellular immortalization, transformation, and carcinogenesis due to their interference with cell cycle and apoptosis control (Munger et al., 2004). The p16INK4a protein is a cyclin-dependent kinase inhibitor that decelerates the cell cycle by inactivating cyclin-dependent kinase inhibitors. The p16INK4a protein prevents the phosphorylation of pRb family members. Usually, overexpression of p16INK4a protein prevents the phosphorylation of pRb family members. E6 and E7 are essential factors for HPVs oncogenesis. E7 and E6 react with the tumor suppressor gene products p53 and pRb proteins in host cell resulting in an induced cellular immortalization, transformation, and carcinogenesis due to their interference with cell cycle and apoptosis control (Munger et al., 2004). The p16INK4a protein is a cyclin-dependent kinase inhibitor that decelerates the cell cycle by inactivating cyclin-dependent kinase inhibitors. The p16INK4a protein prevents the phosphorylation of pRb family members. Usually, overexpression of p16INK4a results in the inhibition of E2F-dependent transcription that inhibits cell cycle progression from the G1 to S phase (Zhang et al., 1999). The nuclear and cytoplasmic overexpression of p16INK4a protein has been reported for some cancers (Sano et al., 2008).
al., 1998; Klaes et al., 2001; Humbey et al., 2003; Ferreux et al., 2003; Prowse et al., 2008).

The causal relationship between chronic inflammation and cancer is widely accepted. Numerous investigations have identified NF-κB as an important modulator in driving chronic inflammation to cancer. This transcription factor is indispensable for the malignant progression of transformed cells associated with various inflammatory cells and a network of signaling molecules. The expression and the function of numerous cytokines, chemokines, growth factors, and survival factors are NF-κB-dependent. NF-κB activation has been implicated in a variety of processes related to the transformation and oncogenesis (Kiriakidis, et al., 2003).

At the beginning of experiments, we tried to detect HPV genotypes, but the HPV DNA could not be extracted from paraffin embedded cancer tissues. Therefore, ISH was used to confirm HPV presence and to determine a localization of HPV within the penile cancer tissues. The purpose of this study was to determine the prevalence of HPV in penile cancer and the subsequent overexpression of p16INK4a, p53, and NF-κB.

Materials and Methods

Tissue specimens. We studied biopsy materials of 22 cases of penile cancer among specimens that were submitted for pathologic diagnosis to the Department of Histopathology, Rift Valley Provincial General Hospital from various hospitals in Kenya (Western, Nyanza, and Rift Valley provinces, years 1983–1998). This investigation was authorized by the Government of Kenya (research permit No. OP.13/001/SC224/36). The specimens were fixed in 10% formalin and embedded in paraffin for histology, immunohistochemical analyses, and ISH. Histological analysis was performed using 3.5 µm sections of tissue stained with hematoxylin and eosin. Penile cancer was classified as keratinizing squamous cell carcinoma or non-keratinizing squamous cell carcinoma. Parallel sections were prepared also for ISH.

HPV DNA detection by ISH. Paraffin-embedded tissue specimens were cut into 3.5 µm sections and collected on silane-coated glass slides. For the detection of HPV DNA, a HPV's screening detection kit (Kreatech Diagnostics) was used. Pan HPV DNA probe, ISH-positive control probe, ISH-negative control probe, and HPV-positive control slides (supplied with the kit) were examined. The detection kit used a digoxigenin-labeled pan HPV-encoded DNA probe made of a mixture of HPV 6, 11, 16, 18, 31, and 33. ISH-negative control was a digoxigenin-labeled DNA probe derived from plasmid DNA (pSP) that did not contain any sequences of human or viral origin. After hybridization with the probes, the alkaline phosphatase conjugated antibody against digoxigenin was applied to the sections. The localization of HPV DNA was detected using NBT/BCIP substrate and observed under a light microscope.

Immunohistochemical detection of p16, p53, and NF-κB. Sections of 3.5 µm in thickness were placed on silane-coated glass slides that were deparaffinized and dehydrated. Immunohistochemical analysis of p16INK4a was performed using a p16INK4a research kit containing monoclonal antibody E6H4 (MTM Laboratories) following manufacturer's instructions. For p53, the slides were then boiled in 0.01 mol/l citrate buffer pH 7.0 for 5 mins for antigen retrieval and cooled at room temperature for 30 mins. The slides were then rinsed in 0.01 mol/l PBS (pH 7.4, and the endogenous peroxidase activity was blocked with 3% H$_2$O$_2$ and absolute methanol for 10 mins. The tissue sections were covered with mouse monoclonal antibodies anti-human p53 (Dako) and anti-NF-κB (Cell Signaling Technology) diluted 1:50 or with a control serum at 37°C for 3 hrs. After washing with PBS, the sections were covered with EnVision (Dako) at 37°C for 40 mins and rinsed again with PBS. Antigenic sites on sections were demonstrated by the reaction with mixture of 0.05% 3, 3'-diaminobenzidine tetrahydrochloride in 0.05 mol/l Tris-HCl buffer and 0.01% hydrogen peroxide for 10 mins. The sections were then counterstained with methyl green for 10 mins, dehydrated in ethanol, cleared in xylene, and mounted. Results are evaluated using a light microscope.

Results

Clinicopathologic findings

The age of penile cancer patients ranged from 35 to 82 years with an average of 59.6 years. Twenty-two cases of penile cancer were evaluated and 19 cases were classified as keratinizing squamous cell carcinoma and 3 cases as non-keratinizing squamous cell carcinoma (Fig. 1a).

<table>
<thead>
<tr>
<th>Cases</th>
<th>HPV DNA</th>
<th>p16INK4a</th>
<th>p53</th>
<th>NF-κB in nucleus</th>
<th>NF-κB in cytoplasm</th>
<th>NF-κB in nucleus and/or cytoplasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV-positive cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratinizing squamous cell carcinoma</td>
<td>15</td>
<td>68.18</td>
<td>7</td>
<td>46.67</td>
<td>9</td>
<td>60.00</td>
</tr>
<tr>
<td>Non-keratinizing squamous cell carcinoma</td>
<td>14</td>
<td>63.64</td>
<td>7</td>
<td>50.00</td>
<td>8</td>
<td>57.14</td>
</tr>
<tr>
<td>HPV-negative cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratinizing squamous cell carcinoma</td>
<td>7</td>
<td>31.80</td>
<td>3</td>
<td>42.86</td>
<td>4</td>
<td>57.14</td>
</tr>
<tr>
<td>Non-keratinizing squamous cell carcinoma</td>
<td>5</td>
<td>22.73</td>
<td>2</td>
<td>33.33</td>
<td>3</td>
<td>60.00</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>10.00</td>
<td>10</td>
<td>45.45</td>
<td>13</td>
<td>59.09</td>
</tr>
</tbody>
</table>
Detection of HPV DNA, p16^{INK4a}, p53, and NF-κB

Of the 22 cases of penile cancer, 15 cases (68.2%) were HPV DNA positive as determined by ISH (Fig. 1b). In the group of keratinizing squamous cell carcinoma, 14 cases of 19 (73.7%) were HPV DNA-positive. In the group of non-keratinizing squamous cell carcinoma type, only 1 case of 3 (33.3%) was HPV DNA-positive.

Immunohistochemical analyses for p16^{INK4a}, p53, and NF-κB were performed for all specimens. The results in relation to HPVs are summarized in Table 1. Of the 22 cases, 15 cases (68.2%) were HPV-positive and 7 cases (31.2%) were...
HPV-negative. Of the 15 HPV-positive cases, 7 (46.7%) were p16INK4a-positive (Fig. 1c) and 9 (60.0%) were p53-positive (Fig. 1d). Of the 7 HPV-negative cases, 3 (42.9%) were p16INK4a-positive, and 4 (57.1%) were p53-positive. Of the 15 HPV-positive cases, 7 (46.7%) were p16INK4a-positive, and 4 (57.1%) were p53-positive. Of the 15 HPV-negative cases, 3 (42.9%) were p53-positive (Fig. 1f). NF-κB was detected in all 15 cases of HPV-positive specimens of penile cancer in the nucleus and/or cytoplasm. Of the 7 HPV-negative cases, 2 (28.6%) were NF-κB-positive in both nucleus and cytoplasm.

Discussion

HPV is a large family of DNA viruses with more than 100 different HPVs, which can infect genital mucosa after a sexual transmission. The prevalence of HPV DNA is significantly greater in cancer of the genital organs than in other organs. HPVs-related disease is well-documented in lesions of the female genital organs using a wide range of epidemiological, clinical, and molecular techniques. The prevalence of HPVs in tumor tissue has been reported to vary considerably. The frequency of HPV-positive penile cancer (68.2%) reported in this study is similar to the frequency of 71% and 66% reported by Picconi et al. (1995), respectively. Higher rates 79%, 82%, and 83% were reported by Senba et al. (2006), Sarkar et al. (1992), and Tornesello et al. (1992), respectively. Lower rates 46%, 42%, and 31% were reported by Tornesello et al. (2008), Rubin et al. (2001), and Cubilla et al. (1998), respectively.

In HPVs infection, the interaction of HPV proteins with cellular pRb and p53 proteins is significant. Remarkably, pRb and p53 proteins, which are important molecules in the cell cycle and apoptosis control, are mutated in many human cancers. Both E7 and E6 HPVs oncogenes interact with pRb and p53 proteins, which inhibit activities of these tumor suppressors. The cell cycle in S phase would normally lead to apoptosis by the action of pRb. However, in HPVs infected cells, this process is counteracted by the viral E6 protein, which targets p53 for proteolytic degradation (Munger et al., 2004). The loss of p53 function is implicated in the pathogenesis of the tumor as well as in the prognosis of many neoplasms. The mutant protein accumulates in the nuclei of tumor cells and can be identified by immunohistochemical reaction. Nuclear accumulation of p53 has been previously reported in 41–89% of penile squamous cell carcinomas (Lam and Chan 1999; Lopes et al., 2002; Humby et al., 2003).

There is a close association between p16INK4a overexpression and a high-risk of HPVs infection. Therefore, the overexpression of p16INK4a is suggested to be a useful marker for evaluating HPVs activity in cancer lesions (Sano et al., 1998; Ferreux et al., 2003). The frequency of the overexpression of p16INK4a has been reported in 55–97% cases of cervical squamous cell carcinoma (Sano et al., 1998; Klaes et al., 2001; Humby et al., 2003) and in 48–80% of cervical adenocarcinoma (Milde-Langosch et al., 2001; Zielinski et al., 2003). Previously, the frequency of overexpression of p16INK4a has been reported in 29–50% cases of penile squamous cell carcinoma (Ferreux et al., 2003; Prowse et al., 2008). Klaes and co-workers (2001) reported that p16INK4a was a specific biomarker for identification of the dysplastic cervical epithelia in cervical biopsy samples or cervical smears. Overexpression of the p16INK4a protein product was observed only in 10 cases (45.5%) of 22 specimens of penile cancer and accordingly has a much lower correlation with HPV-positive penile cancers. However, higher levels of p16INK4a were reported in cervical cancer cases (Kalof et al., 2005; Dehn et al., 2007). In our experiments, we did not find any significant association between abnormal expression of p16INK4a and p53 and the presence of HPV DNA in penile cancer.

Increased NF-κB activity is associated with many cancers including cancers associated with a viral infection. NF-κB activity is modulated for different viral infections, such as Human immunodeficiency virus 1, Human T-lymphotropic virus 1, Epstein-Barr virus, Hepatitis B virus, adenosviruses, and HPVs (Nees et al., 2001; Spikovsky et al., 2002; Havard et al., 2002, 2005; Mishra et al., 2006; James et al., 2006). NF-κB dependent proliferation of cells and protection from an apoptosis are likely to have significant effects on the oncogenesis associated with HPV infection. To the best of our knowledge, the immunohistochemical localization of NF-κB associated with HPV infection in penile cancer has not been reported yet. In the HPV-positive cases, NF-κB was detected in nucleus and/or cytoplasm in 100% of samples. On the other hand, NF-κB was detected in nuclear and/or cytoplasm only in 28.6% of the HPV-negative cases. HPVs E6- and E7-positive cells have shown IL-1b-induced NF-κB activation and exhibit elevated levels of NF-κB components (Havard et al., 2002). The expression of E7 rather than E6 was found to be associated with the nuclear location of these components. Viral E6 and E7 oncoproteins are important regulatory proteins inside the host cells, which are associated with the transcriptional activity of NF-κB. A fraction of the E7 protein is found in association with the inhibitor IκB (IκB) kinase complex and attenuates the induced activity of IκB kinase α, what results in an impaired phosphorylation and degradation of the kinase. While E7 obviates inhibitor IκB kinase activation in the cytoplasm, the E6 protein reduces NF-κB p65-dependent transcriptional activity within the nucleus. It is suggested that HPVs oncogene-mediated suppression of NF-κB activity contributes to HPVs escape from the immune system (Spitkovsky et al., 2002).

Acknowledgement. We are indebted to Dr. Richard Culleton for his critical comments and advice.
References

