DIAGNOSIS, LOCALIZATION AND TREATMENT OF PHEOCHROMOCYTOMA IN MEN 2 SYNDROME

ILIAS I1, PACAK K2

1Department of Endocrinology, Elena Venizelou Hospital, Athens, Greece; 2Reproductive and Adult Endocrinology Program, Section of Medical Neuroendocrinology, NICHD, National Institutes of Health, Bethesda, MD 20892, USA

Pheochromocytomas/paragangliomas (PHEOs/PGLs) in patients with MEN 2 are usually found in the adrenals after the manifestation of medullary thyroid cancer. These PHEOs are commonly bilateral and hormonally active. Tachycardia, diaphoresis and cephalalgia are encountered in 40 %-80 % of patients with PHEOs; hypertension is very prevalent. Plasma concentrations of free metanephrines (or free metanephrines in urine) are best used for the biochemical diagnosis of PHEO/PGL. In patients with biochemically-proven PHEOs/PGLs, anatomical imaging with computed tomography (CT) and/or magnetic resonance imaging (MRI) should be used. False-positive CT/MRI studies can ensue and the specificity of CT/MRI may vary from 50 %-90 %. Functional imaging (implementing nuclear medicine modalities) should follow anatomical imaging; modalities with PHEO/PGL-specific ligands are a first choice. Among these specific modalities positron emission tomography (PET) with [18F]-fluorodopamine ([18F]DA) stands out as the best overall method. If PHEO/PGL-specific modalities turn out to be negative functional imaging should follow with nonspecific modalities (particularly if recurrent, metastatic or malignant disease is suspected). Treatment is surgical, with expanding use of laparoscopic approaches. Overall half of the patients with malignant PHEOs remain alive for 5 years.

Key words: Phaeochromocytoma – MEN 2 – CT – MRI – Diagnosis – Treatment

Up to 24 % of pheochromocytomas (PHEOs)/paragangliomas (PGLs) are associated with hereditary syndromes: von Recklinghausen’s neurofibromatosis type 1 (NF-1), von Hippel–Lindau (VHL) syndrome, familial PGLs caused by germline gene mutations encoding succinate dehydrogenase (SDH) subunits B, C and D (PACAK et al. 2007a) and multiple endocrine neoplasia type 2 (MEN 2). In the latter, activating germline mutations in the RET (REarranged during Transfection) protooncogene (usually in codons 634 or 918; 10q11.2) are found; these mutations are implicated in abnormal cellular proliferation. In MEN 2 patients the PHEOs are usually adrenal, benign and bilateral in more than 50 % of patients (MITTENDORF et al. 2007). Not all PHEOs/PGLs are benign and in children with MEN 2B-associated tumors the risk of malignancy is higher compared to those with MEN 2A or sporadic disease (ROSS 2000).

Epidemiology

Medullary thyroid cancer (MTC) usually precedes the manifestation of PHEOs in MEN 2 patients; the latter occur in about half of patients between 30-40 years of age (BRYANT et al. 2003; GIMM et al. 2004). Most primary PHEOs in patients with MEN 2 are localized...
in the adrenals with less than 5% being malignant (GIMM et al. 2004). One third of PHEOS in MEN 2 are bilateral (KALTSAS et al. 2004) and half of the patients with unilateral disease develop another PHEO in the contralateral adrenal within 10 years.

Symptoms and signs

Tachycardia, diaphoresis and cephalalgia are encountered in 40%-80% of patients with PHEOs. Newly diagnosed hypertension (most often paroxysmal) or exacerbation of known hypertension is observed in >90% of all patients with PHEO (however, this is a non-specific finding) (KAPLAN 2006).

The PHEOs in MEN 2 express phenylethanolamine N-methyltransferase (the enzyme that converts norepinephrine to epinephrine) and secrete epinephrine (E) or E and norepinephrine (NE) in paroxysmal bursts (PACAK et al. 2007b). The difference in potency of these catecholamines on alpha- and beta adrenoceptors has been proposed to account for the more symptomatic nature of PHEOs/PGLs in MEN 2 (in particular for paroxysmal attacks and higher prevalence of hypertension) compared to those seen in other familial syndromes, and in particular VHL syndrome (EISENHOFER et al. 2001; KALTSAS et al. 2004; PACAK et al. 2007a; YOUNG 2008). Palpitations, anxiety, tremor, dyspnea, hyperglycemia and paroxysmal hypertension are more common in patients with tumors that produce epinephrine than in those that do not. We have shown that these differences are associated with much higher levels of chromogranins A and B and neuropeptide Y in MEN 2 than VHL tumors (CLEARY et al. 2007; BROUWERS et al. 2007).

Biochemical diagnosis

Although PHEOs may secrete catecholamines episodically they metabolize catecholamines to metanephrines (metanephrine and normetanephrine; MN & NMN) continuously. Plasma concentrations of free MN & NMN are mostly not influenced by alterations in renal function and are most suitable for diagnosis of PHEO/PGL. The measurement of plasma MN & NMN is less cumbersome than determinations in urine and implementation of this test is expanding. Free MN & NMN in plasma and 24-hour urinary fractionated free MN & NMN are very accurate methods for establishing the diagnosis of PHEO/PGL: sensitivities are 96%-100% and 92%-99% and specificities are 87%-92% and 64%-72%, respectively (RABER et al. 2000; LENDERS et al. 2002; SAWKA et al. 2003; Vaclavik et al. 2007) urine MN & NMN should be best considered to be complementary rather than mutually exclusive methods. However, the normalization of MN & NMN levels for populations with normal blood pressure, as well as for gender and age should be sought (GROSSMAN et al. 2006). Possible interference from medications in the measurement of MN & NMN should be evaluated and avoided (EISENHOFER et al. 2004). We have shown that the measurement of plasma free MN & NMN – in the presence of tumor - can also help to predict tumor size and location (ILLIAS and PACAK 2004). In MEN 2 the PHEOs are consistently producing either E or E & NE.

PHEO localization

In patients with biochemically-proven PHEOs/PGLs, anatomical imaging with computed tomography (CT) and/or magnetic resonance imaging (MRI) should be used. For most patients the imaging is usually limited to the adrenals/abdomen; views of the thorax, neck and head are ordered when malignant/metastatic disease is suspected. The sensitivity of CT in detecting intraadrenal tumors >0.5 cm is 93%-100%, dropping slightly lower (approximately to 90%) for localizing extracranial PHEOs >1 cm (ILLIAS and PACAK 2004). The experience with MRI shows that for localizing PHEOs it is as good as or slightly better than CT; moreover, MRI can show the relationship of tumors with blood vessels in detail which is greatly appreciated when surgery is considered.

However, we should point to some caveats regarding the anatomical imaging of PHEOs/PGLs: false-positive CT/MRI studies can ensue (Go 1998) and the specificity of CT/MRI may vary from 50%-90% (MITTENDORF et al. 2007). Furthermore, in patients with previous surgery the anatomical imaging may not be informative to the clinician, particularly either for recurrent, extracranial or malignant/metastatic disease (ILLIAS and PACAK 2004). It is precisely for such patients that functional imaging (implementing nuclear medicine modalities) should follow anatomical imaging.

A particular characteristic of chromaffin tumors is that they express the human norepinephrine transporter [hNET]; this transporter enables the use of specific radiolabeled ligands that enter the catecholamines’ synthesis pathway and are used in functional (nuclear medicine) imaging. Other aspects of PHEOs/PGLs such as their enhanced glucose metabolism or expression of somatostatin receptors permit the implementation of
relevant studies are limited, nevertheless, overall
been used to localize PHEO/PGLs for over 10 years. The
that of $[123I]$MIBG (78 % vs 59 %) (Ilias et al. 2008).
was shown to be superior to $[123/131I]$MIBG (Kaji et al.
seems to be equal to other functional modalities such
as $[18F]$-fluorodeoxyglucose ($[18F]$DOPA) PET or $[123I]$MIBG
(sensitivity is lower for extra-adrenal and/or metastatic
disease) (Ilias and Pacak 2004; Shulkin et al. 2006;
Van der Horst-Schriwers et al. 2006) the specificity of
MIBG imaging is 95 %-100 % (Ilias et al. 2003; Cleary
and Phillips 2006). The suboptimal sensitivity of MIBG
may be attributed to its low affinity for hNET, the latter’s
loss by tumor cell dedifferentiation, the absence of storage
granules, altered vesicle transporters, or interference by
medications (Kaji et al. 2007).

Positron emission tomography (PET) imaging has
been used to localize PHEO/PGLs for over 10 years. The
relevant studies are limited, nevertheless, overall $[18F]$-
fluorodopamine ($[18F]$DA PET) has been found to be
the best overall imaging modality in the localization of
PHEOs (Ilias et al. 2008). This is of importance in case
of familial PHEOs (such as tumors found in patients with
VHL), where functional imaging with $[18F]$DA PET
was shown to be superior to $[123I]$MIBG (Kaji et al.
2207). More in detail, for adrenal PHEOs, this method
seems to be equal to other functional modalities such
as $[18F]$-fluorodopa ($[18F]$DOPA) PET or $[123I]$MIBG
scintigraphy. For extra-adrenal PHEOs, the data are
limited and more extensive studies are needed. In studies
of patients with metastatic PHEO, the sensitivity of
$[18F]$DA PET was shown to be higher compared to
that of $[123I]$MIBG (78 % vs 59 %) (Ilias et al. 2008).
Further studies comparing $[18F]$DA PET with $[18F]$DOPA
PET and somatostatin receptor (ST-R) scintigraphy are
going (see also below regarding the latter). In rapidly
progressive, often metastatic tumors the so called “flip-
flop” imaging effect is observed (it shows superiority of
non-specific $[18F]$-fluorodeoxyglucose PET over specific
$[18F]$DA PET). It remains to be established whether this
effect reflects PHEO cell dedifferentiation (e.g. loss of
hNET) or an increase in tumor metabolic rate.

PHEOs/PGLs express - to some extent - mostly type
2, 3 and 5 ST-Rs. The use of ST-R scintigraphy (SRS)
is more practical for localizing malignant/metastatic
PHEOs/PGLs; sensitivity approaches 69 % - 90 % (Ilias

Treatment and prognosis

For PHEO/PGL in MEN 2, surgery – whenever
possible - is the definitive treatment after preoperative
blood pressure lowering/normalization (for tumors
that are hormonally active) and should precede thyroid
surgery for MTC. Blood pressure is treated with selec-
tive alpha-1 blockers (such as prazosin or doxazosin)
or nonselective/noncompetitive alpha blockers (such
as phenoxybenzamine). Another choice is the use of
metyrosine (alpha-methyl-p-tyrosine; an inhibitor of
tyrosine hydroxylase that interrupts catecholamine
synthesis) in combination with alpha-blockers. Only if
blood pressure is treated adequately beta blockers can
then be given to treat tachycardia. Preoperative antihy-
pertensive preparation should be instituted at least for
2 weeks before the planned surgery
For most tumors laparoscopic surgery is an option
and, depending on surgical experience, cortical- and
adrenal vein-sparing adrenalectomy (Brunt et al. 2002).
Malignant tumors are better operated transabdomi-
nally for debulking. In patients with MEN 2-associated
PHEO the risk for eventual bilateral disease, is high.
Nevertheless prophylactic contralateral adrenalectomy
is not recommended for patients with unilateral tumors
(Larmore et al. 1993).

Inoperable disease is treated with long-acting agents
like phenoxybenzamine to control blood pressure or with
alpha-methyl-p-tyrosine.

Two to 6 weeks post-surgery biochemical assessment of
cure or persistence should be sought with measurement of
plasma and/or urine metanephrines. An annual biochemi-
ocal work-up for the first five years and once every two years
thereafter is the minimum required for follow-up.

For persistent/recurrent disease therapeutic $[131I]$
MIBG is an option; one third of tumors show objective
response. Chemotherapy (cyclophosphamide, vincris-
tine and dacarbazine) is an option for rapidly progressive
metastatic PHEO or for patients with negative MIBG
evaluation; in one third of these patients disease remis-
ion is observed.

Half of the patients with benign PHEO/PGL remain
with hypertension although their life expectancy is not
considered to be curtailed. Interestingly overall half of
the patients with malignant PHEOs remain alive for
5 years after being treatment with various therapeutic
modalities.
PHEOCHROMOCYTOMA IN MEN 2 SYNDROME

References

KALTSAAS GA, PAPADOYIAS D, GROSSMAN AB: The clinical presentation (symptoms and signs) of sporadic and familial chromaffin cell tumours (pheochromocytomas and paragangliomas). Front Horm Res 31, 61–75, 2004

