The utility of 99mTc-EDDA/HYNIC-TOC scintigraphy for assessment of lung lesions in patients with neuroendocrine tumors

S. PAVLOVIĆ1, V. ARTIKO1, D. SOBIC-SARANOVIC1, S. DAMJANOVIC1, B. POPOVIĆ1, R. JAKOVIĆ1, Z. PETRASINOVIĆ1, E. JAKSIC1, M. Todorovic-Tirnanic1, DJ. SARANOVIC5, M. MICEV6, S. NOVOSEL1, N. nikolic, V. obradovic1

1Institute for Nuclear Medicine, Belgrade, Serbia, e-mail: dsobic@EUnet.rs, 2Institute for Endocrinology, 3Institute for Lung Diseases, 4Institute for Cardiovascular Diseases, 5Institute for Radiology, 6Institute for Digestive Diseases, Clinical Center of Serbia, School of Medicine, University of Belgrade, 7Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Received March 26, 2009

Our aim was to assess clinical utility of 99mTc-EDDA/HYNIC-TOC scintigraphy for evaluation of lung lesions in patients with neuroendocrine tumors (NETs). Single photon emission computed tomography (SPECT) of the thorax and whole body scintigraphy were performed in 34 patients using 99mTc-EDDA/HYNIC-TOC. Visual assessment was complemented by semiquantitative evaluation based on tumor to non-tumor (T/NT) ratio. Clinical, laboratory, and histological findings served as the standard for comparison. Enhanced tracer uptake was observed on both SPECT and whole body scintigraphy in 29 of 34 patients (88% sensitivity). T/NT ratios were significantly higher on SPECT than whole body images (2.96±1.07 vs.1.70±0.43, p<0.01) and did not correlate with NET proliferation index Ki-67 (r= - 0.36, p=0.27). Conclusion: 99mTc-EDDA/HYNIC-TOC scintigraphy is useful for evaluation of NET tissue in the lungs. SPECT provides better visualization of lung lesions than whole body scintigraphy. The intensity of tracer uptake, however, does not relate to the proliferation rate of NETs. 99mTc-EDDA/HYNIC-TOC scintigraphy may be helpful for selecting and monitoring treatment options, particularly when radiolabeled somatostatin analogue therapy becomes available.

Key words: 99mTc-EDDA/Hynic-TOC, lung involvement of NETs, T/NT ratio

Expression of somatostatin receptors (SSTRs) has been documented in neuroendocrine tumors (NET) and in small cell (SCLC) and some non-small cell lung cancers (NSCLC) [1, 2]. These receptors constitute molecular basis for clinical application of somatostatin analogues, particularly for in-vivo localization of lung tumors.

Somatostatin analogues, such as the 123Iodine-labeled octreotide [3], have been used in attempt to improve early detection of NETs and various cancers in the lungs. Since this compound has several drawbacks (e.g., high gastrointestinal activity due to liver excretion, short half-life), recent efforts have been focused on labeling octreotide with 111Indium (111In) using the chelate dietylamine penta-acetic acid, which resulted in 111In-pentetreotide [4, 5]. 111In-pentetreotide proved sensitivity for detecting NETs and bronchogenic carcinoma, although differentiating SCLC from NSCLC was not possible [6]. The use of 111In-pentetreotide, however, has also substantial drawbacks (high cost, suboptimal physical characteristics).

More recently, somatostatin analogue depreotide has been labeled with 99mTechnetium (99mTc) and the resulting compound (NeoSpect) has been approved by the U.S. Food and Drug Administration for evaluation of solitary pulmonary nodules [7]. However, high uptake in the liver and bone marrow has been reported [2, 7]. Mecke and Behe introduced hydrazinicotinamide (HYNIC) as a bifunctional chelator for 99mTc labeling of octreotide and Tyr1-octreotide (TOC) with high efficiency [8]. Decristoforo and co-workers reported favorable clinical characteristics of HYNIC when ethylene diamine diacetic acid (EDDA) was used as a co-ligand, thereby introducing 99mTc-EDDA/HYNIC-TOC somatostatin analogue to clinical practice [9]. Recent investigations indicated a potential value of 99mTc-EDDA/HYNIC-TOC for evaluating malignant tumors that express SSTRs, especially subtype 2, but indicated the need for further investigations [10, 11].

The main purpose of this study was to assess the clinical utility of 99mTc-EDDA/HYNIC-TOC scintigraphy (single
were on laxatives and liquid diet for 2 days before the exami-
treatment was stopped one month before imaging. Patients
prior to the study.
10 of 34 patients continued with a long-acting somatostatin
with radiolabeled somatostatin analogues while the remaining
one year after surgery. 3 patients received radionuclide therapy
SPECT and whole body scintigraphy between 6 months and

findings to compare the tumor uptake of 99mTc-EDDA/HYNIC-TOC SPECT and whole body imaging (aim 1). Subsequent

99mTc-EDDA/HYNIC-TOC scintigraphy for detecting NETs
in the lungs, (true positive-TP), including 14 primary lung NETs (Fig. 1) and 15 lung metastases from NETs of different or unknown origin. Five false negative (FN) results included two cases with low-dif-
ferentiated primary lung NETs, a case with lung metastases
from a low-differentiated aggressive NET in the esophagus,
and two cases with NETs of unknown origin. The tumor size
for 5 FN cases is given in Table 2. None of 13 patients who
underwent surgery showed evidence of increased tracer uptake
in the lungs on the follow-up SPECT or whole body imaging
(true negative-TN) (Fig 2). Accordingly, the results indicate
88% sensitivity of both 99mTc-EDDA/HYNIC-TOC SPECT and whole body scintigraphy for detecting lung lesions in
patients with NETs.

T/NT ratio and correlation with Ki-67 proliferation index. The mean T/NT ratio for TP cases (n=29) was significantly
(p<0.01) higher on SPECT (2.96±1.07) than whole body im-
ages (1.70±0.43).

Sensitivity of 99mTc-EDDA/HYNIC-TOC scintigraphy. On visual examination, both SPECT and whole body scintiga-
physics were performed by the iterative method (MOSEM). Whole body and SPECT images were first evalu-
ated visually by two experienced nuclear medicine physicians. Visual appearance of an increased focal uptake of the tracer
in the suspected tumor site was considered a positive finding, which served for determining sensitivity of 99mTc-EDDA/HYN-
IC-TOC SPECT and whole body imaging (aim 1). Subsequent
semi-quantitative analysis was limited to cases with positive
findings to compare the tumor uptake of 99mTc-EDDA/HYNIC-
TOC to non tumor tissue in NETs on SPECT and whole body
imaging (aim 2). For that purpose, tumor to non-tumor (T/

Image reconstruction and analysis. Reconstruction of to-
mographic images was performed by the iterative method
(MOSEM). Whole body and SPECT images were first evalu-
ated visually by two experienced nuclear medicine physicians. Visual appearance of an increased focal uptake of the tracer
in the suspected tumor site was considered a positive finding, which served for determining sensitivity of 99mTc-EDDA/HYN-
IC-TOC SPECT and whole body imaging (aim 1). Subsequent
semi-quantitative analysis was limited to cases with positive
findings to compare the tumor uptake of 99mTc-EDDA/HYNIC-
TOC to non tumor tissue in NETs on SPECT and whole body
imaging (aim 2). For that purpose, tumor to non-tumor (T/

Imaging protocol. Long-acting cold somatostatin analogue
treatment was stopped one month before imaging. Patients
were on laxatives and liquid diet for 2 days before the exami-
nation. 99mTc-EDDA/HYNIC-TOC (740 MBq) was injected
intravenously. Imaging started 2 hours post-injection. A whole
body scan was first performed followed by SPECT of the tho-
rax. Data were acquired using dual-head Mediso or one-head
e-cam Siemens gamma camera. A general purpose collimator
and an image matrix of 512x1024 pixels were used for whole
body scans. SPECT was acquired in 64 projections (each last-
ing 30 sec) with a matrix size of 128x128 pixels.

Image reconstruction and analysis. Reconstruction of to-
mographic images was performed by the iterative method
(MOSEM). Whole body and SPECT images were first evalu-
ated visually by two experienced nuclear medicine physicians. Visual appearance of an increased focal uptake of the tracer
in the suspected tumor site was considered a positive finding, which served for determining sensitivity of 99mTc-EDDA/HYN-
IC-TOC SPECT and whole body imaging (aim 1). Subsequent
semi-quantitative analysis was limited to cases with positive
findings to compare the tumor uptake of 99mTc-EDDA/HYNIC-
TOC to non tumor tissue in NETs on SPECT and whole body
imaging (aim 2). For that purpose, tumor to non-tumor (T/

Patients and methods

Patients were recruited from a sample referred by the
Institute for Endocrinology for clinical staging or follow-up.
Thirty-four consecutive patients (18 men, 16 women, mean
age 52 years, range 23-74) with a known or suspected NET
and lung lesions on chest X-ray or computed tomography-CT
were included in the study. The diagnosis of NET was based
on clinical symptoms, increased urinary excretion of serotonin
metabolite 5-hydroxyindolacetic acid (5HIAA), chromogranin
A, and biopsy or postoperative histology.

Twenty-one patients underwent surgery after 99mTc-EDDA/
HYNIC-TOC scintigraphy (mean interval 14±6 days). For
13 of 21 patients, Ki-67 labeling index was derived after im-
munostaining tumor material with MIB-1 antibody. The same
13 patients underwent a follow-up 99mTc-EDDA/HYNIC-TOC
SPECT and whole body scintigraphy between 6 months and
one year after surgery. 3 patients received radionuclide therapy
with radiolabeled somatostatin analogues while the remaining
10 of 34 patients continued with a long-acting somatostatin
analogue treatment. All patients provided written consent
prior to the study.

Image reconstruction and analysis. Reconstruction of to-
mographic images was performed by the iterative method
(MOSEM). Whole body and SPECT images were first evalu-
ated visually by two experienced nuclear medicine physicians. Visual appearance of an increased focal uptake of the tracer
in the suspected tumor site was considered a positive finding, which served for determining sensitivity of 99mTc-EDDA/HYN-
IC-TOC SPECT and whole body imaging (aim 1). Subsequent
semi-quantitative analysis was limited to cases with positive
findings to compare the tumor uptake of 99mTc-EDDA/HYNIC-
TOC to non tumor tissue in NETs on SPECT and whole body
imaging (aim 2). For that purpose, tumor to non-tumor (T/

Sensitivity of 99mTc-EDDA/HYNIC-TOC scintigraphy. On visual examination, both SPECT and whole body scintiga-
physics were performed by the iterative method (MOSEM). Whole body and SPECT images were first evalu-
ated visually by two experienced nuclear medicine physicians. Visual appearance of an increased focal uptake of the tracer
in the suspected tumor site was considered a positive finding, which served for determining sensitivity of 99mTc-EDDA/HYN-
IC-TOC SPECT and whole body imaging (aim 1). Subsequent
semi-quantitative analysis was limited to cases with positive
findings to compare the tumor uptake of 99mTc-EDDA/HYNIC-
TOC to non tumor tissue in NETs on SPECT and whole body
imaging (aim 2). For that purpose, tumor to non-tumor (T/
Figure 1 a) Enhanced uptake of 99mTc-EDDA/HYNIC-TOC on whole body scintigraphy in a patient with NET in the right upper lobe (arrows); Ki-67 = 37% b) Solitary pulmonary nodule with soft tissue density in the right upper lobe on CT, diameter 2.8cm (dash arrow).

Figure 2 a) Enhanced uptake of 99mTc-EDDA/HYNIC-TOC on whole body scintigraphy and SPECT in a patient with NET in the right lower lobe, diameter 2.2cm (arrow). b) No uptake after surgery. Ki-67 = 0%.

Figure 3 a) Whole body scan with 99mTc-EDDA/HYNIC-TOC shows multifocal lung, bone and liver lesions in a patient with low differentiated NET of unknown origin (black arrows). b) High uptake in the same metastatic sites 96 hours after application of the therapeutical dose (3.5 GBq) of 90Y-DOTA TATE ("bremsstrahlung images") (dash arrows).
Ki-67 index was 18±7% (range 0-78%) for 13 patients who had tumor material immunostained with MIB-1 antibody after surgical removal. Ki-67 index was low (0-20%) for 10 patients who had positive findings on scintigraphy (TP). Two of the remaining 3 patients had high Ki-67 index and negative SPECT and whole body findings (FN). The correlation between T/NT ratio and Ki-67 index was negative and not statistically significant (r = -0.36, p=0.27, n=11).

Preliminary results of peptide receptor radionuclide therapy. Because of high uptake of 99mTc-EDDA/HYNIC-TOC in the tumor tissue, and after using all available treatment options (surgery, somatostatin analogues, α-interferons), three patients with metastatic NETs underwent a peptide receptor radionuclide therapy with 99mTc-Yttrium tetraazacyclododecane tetra acetic acid (metal chelator-DOTA) Tyr3-octreotate (TATE), 111In DOTA TATE (Fig. 3). At the clinical follow-up 6 to 12 months later, one patient was in a partial remission, one was in a stable condition, and one was presented with signs of disease progression.

Discussion

This study has 3 main findings. First, it demonstrates high sensitivity of 99mTc-EDDA/HYNIC-TOC scintigraphy for detecting tumor tissue within lungs in patients with NETs. Secondly, T/NT ratio of 99mTc-EDDA/HYNIC-TOC is expectedly higher on SPECT than whole body scintigraphy. Finally, the intensity of tracer uptake does not correlate with the rate of NET proliferation (Ki-67 index).

The diagnosis of lung tumors remains a challenge. Conventional radiologic imaging techniques are of limited value for detecting malignant solitary lung lesions because of 20-50% error rate [12]. That is not surprising since radiologic assessment is mainly based on a lesion size or detection of calcifications [12]. High diagnostic accuracy of contrast-enhanced CT is mainly based on a lesion size or detection of calcifications [12]. That is not surprising since radiologic assessment is mainly based on a lesion size or detection of calcifications [12].

The reported 88% sensitivity of both 99mTc-EDDA/HYNIC-TOC SPECT and whole body scintigraphy for detecting primary lung NETs or lung metastases is in agreement with previous reports [14, 15]. Several factors may be responsible for our FN findings, such as an insufficient expression of SSTR2 for in-vivo detection by 99mTc-EDDA/HYNIC-TOC or a comparably higher expression of other SSTR subtypes (SSTR3, SSTR4 or SSTR5) in our cases with low-differentiated tumors. Additional reasons may be a limited spatial resolution of SPECT imaging system along with relatively small size of lung lesions in 3 patients (1.4 cm, 1.7 cm and 1.9 cm, respectively). Finally, a non-specific uptake of radiolabeled somatostatin analogues, such as in arteries supplying tumor tissue or in epithelial cells of lung granulomatosis, also needs to be considered when interpreting the accumulation of 99mTc-EDDA/HYNIC-TOC. This factors may influence the specificity of the method [16, 17, 7].

Semi-quantitative results in our study confirm previously reported higher T/NT ratios on SPECT than whole body images [9, 15]. As expected, therefore, SPECT should be preferred over whole body scintigraphy as it can more precisely detect and localize focal lung lesions. The previous study using 99mTc-EDDA/Hynic-octreotate (99mTc-EDDA/HYNIC-TATE) revealed higher tumor/lung ratios (8.3) than reported here (2.96) and concluded that this analogue is an excellent alternative to 111In-Octreoscan for staging of carcinoids [15]. The reason for a higher uptake of 99mTc-EDDA/HYNIC-TATE is its comparably higher potential to bind and internalize in tumor cells expressing SSTR2 than 99mTc-EDDA/HYNIC-TOC [18].

The final finding of our study is that intensity of tracer uptake (T/NT ratio) in NETs is not closely associated with the rate of tumor proliferation (Ki-67 index). This result, however, has to be taken with caution considering a small sample size (n=11) available for correlation analysis. It is reassuring, however, that the relationship between 99mTc-EDDA/HYNIC-TOC uptake and tumor proliferation rate was negative. The negative correlation is expected because somatostatin receptors responsible for tracer uptake are more expressed in slowly growing, highly differentiated NETs compared to aggressive low-differentiated NETs [2, 5]. Therefore, a smaller uptake of 99mTc-EDDA/HYNIC-TOC is expected in NETs with a high proliferation rate. This is further supported by the finding that two patients with low-differentiated NETs of high proliferation rate were false negative on scintigraphy, as found in the previous report [19]. Positron emission tomography (PET) with 18F Fluor (18F) fluorothymidine (18F-FLT), which is a marker of tumor cell proliferation, similarly yields no correlation between 18F-FLT uptake and Ki-67 [20]. PET imaging with 18F-fluoro-deoxy-glucose (18F-FDG) is highly accurate in differentiating malignant from benign solitary lung lesions [13] and for detecting NETs in the lungs due to different FDG metabolism in malignant and benign cells [21]. More recently, PET using specific 68 Gallium (68Ga) labeled somatostatin analogue DOTATOC was found superior to 18F-FDG for detecting NETs [22]. However, PET is expensive and not easily accessible. On the other hand, because of its higher spatial resolution compared to SPECT, PET may be
helpful for detecting small NETs with low density of SSTRs for which the classic, conventional scintigraphy seems insufficient [23].

Three patients with NETs received radionuclide therapy with radiolabeled somatostatin analogue 99mTc-DOTA because of its high potential to bind and internalize in tumor cells expressing SSTR2 [18]. Despite our mixed results, radionuclide therapy with radiolabeled somatostatin analogues warrants further investigations in a larger sample. Such an approach may become the therapy of choice for patients with metastatic or inoperable NET [24].

This study has several limitations. 99mTc-EDDA/HYNIC-TOC is indicated for diagnosis of tumors that express mainly SSTR2, thus of limited value for tumors expressing other receptor types. Another limitation is that we did not evaluate in-vitro somatostatin receptor status, which is planned in our future investigations. In this series, however, SSTR2 was evidently expressed in lung lesions in patients with NETs, resulting in high sensitivity of 99mTc-EDDA/HYNIC-TOC scintigraphy. The limited spatial resolution of SPECT is also of concern in detection of small lesions. A newly introduced hybrid SPECT/CT system provides precise anatomical localization with overall better visualization of lung lesions and increases sensitivity and specificity of scintigraphic findings [25].

In conclusion, our results demonstrate the clinical utility of SPECT and whole body scintigraphy with 99mTc-EDDA/HYNIC-TOC for diagnosing NET tissue within the lungs. Although the two methods yield identical sensitivity, SPECT is preferred over whole body scintigraphy as it provides better visualization of lung lesions. The intensity of tracer uptake, however, does not closely relate to the proliferation rate of NETs. Overall, 99mTc-EDDA/HYNIC-TOC scintigraphy may be helpful for selecting and monitoring treatment options, particularly when radiolabeled somatostatin analogue therapy becomes widely available.

Acknowledgements: This work was supported by grant No.145033 Ministry of Science Republic of Serbia. We thank Stokic S. Dobrivoje, M.D., D.Sc., Senior Scientist at Center for Neuroscience and Neurological Recovery, Administrative director for research and Chair of Research Council of Methodist Rehabilitation Center, Jackson, Mississippi, USA for his kind assistance and suggestions and in particular for English revision.

References

[8] MAECKE HR, BEHE M. New octreotide derivatives labelled with technetium-99mt in-vitro somatostatin receptor status, which is planned in our future investigations. In this series, however, SSTR2 was evidently expressed in lung lesions in patients with NETs, resulting in high sensitivity of 99mTc-EDDA/HYNIC-TOC scintigraphy. The limited spatial resolution of SPECT is also of concern in detection of small lesions. A newly introduced hybrid SPECT/CT system provides precise anatomical localization with overall better visualization of lung lesions and increases sensitivity and specificity of scintigraphic findings [25].

In conclusion, our results demonstrate the clinical utility of SPECT and whole body scintigraphy with 99mTc-EDDA/HYNIC-TOC for diagnosing NET tissue within the lungs. Although the two methods yield identical sensitivity, SPECT is preferred over whole body scintigraphy as it provides better visualization of lung lesions. The intensity of tracer uptake, however, does not closely relate to the proliferation rate of NETs. Overall, 99mTc-EDDA/HYNIC-TOC scintigraphy may be helpful for selecting and monitoring treatment options, particularly when radiolabeled somatostatin analogue therapy becomes widely available.

Acknowledgements: This work was supported by grant No.145033 Ministry of Science Republic of Serbia. We thank Stokic S. Dobrivoje, M.D., D.Sc., Senior Scientist at Center for Neuroscience and Neurological Recovery, Administrative director for research and Chair of Research Council of Methodist Rehabilitation Center, Jackson, Mississippi, USA for his kind assistance and suggestions and in particular for English revision.

References

