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Transport of non-electrolyte solutions through membrane 
with concentration polarization
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Abstract. Mathematical model of the volume fluxes through neutral membrane with concentration 
boundary layers on both sides of this membrane is presented. This model, based on the Kedem-
Katchalsky equations, describes the volume flux generated by osmotic and hydrostatic forces for 
non-homogeneous and non-electrolyte solutions. Nonlinear equation for volume flux was used for 
numerical calculation in linear regime of hydrodynamic stability. In the steady state of non-homo-
geneous solutions the dependence of volume flux on pressure difference is shifted with regard to 
this dependence for homogeneous solution, while the volume flux as a function of osmotic pressure 
between chambers is characterized by different angle of inclination for homogeneous and non-ho-
mogeneous solutions.
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Introduction

The Kedem-Katchalsky equations (KK equations) describing 
passive membrane transport were published in 1958 (Kedem 
and Katchalsky 1958). In the case of binary homogeneous 
and diluted solutions the transport can be described by 
volume (Jv) and solute (Js) fluxes. Relationships between the 
fluxes and generating forces (ΔP and/or Δπ) in the classic 
version of KK equations (Katchalsky and Curran 1965) are 
as follows:
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where: Lp, σ and ω are the hydraulic permeability, reflection and 
solute permeability coefficients; ΔP = Ph – Pl is the mechanical 
pressure difference; Δπ = RT(Ch – Cl) is the osmotic pressure dif-
ference (RT is product of the gas constant and thermodynamic 
temperature; Ch and Cl are solute concentrations in chambers) 

C  = (Ch – Cl)[ln(ChCl
–1)]–1 ≈ 0.5 (Ch + Cl) represents the av-

erage solute concentration in membrane. As has been proved, 
KK equations are convenient exploratory tools of membrane 
transport (Katchalsky and Kedem 1962; Kedem and Katchalsky 
1963; Axel 1976; Bresler and Groome 1981; Kiyosawa and Ogata 
1987; Hempling and Katz 1989; Ślęzak 1989; Kargol and Kargol 
2003; Liao at al. 2003; Dreher et al. 2006; Sun et al. 2007).

Spontaneously occurring transport processes lead to 
creation of local non-homogeneity in solutions called 
concentration polarization and are the cause of temporal 
evolution of thermodynamic fluxes and forces (Pedley 1983; 
Barry and Diamond 1984; Ślęzak et al. 1985; Kiyosawa and 
Ogata 1987; Ślęzak et al. 2006). In the case of transport 
of nonelectrolyte solutions through a neutral membrane, 
the concentration polarization consists in formation of 
the concentration boundary layers (CBLs) at both sides of 
this membrane (Pedley 1983; Barry and Diamond 1984; 
Ślęzak et al. 1985; Kiyosawa and Ogata 1987; Pohl et al. 
1998; Dworecki et al. 2003; Ślęzak et al. 2006), which can be 
treated as a pseudomembrane (Barry and Diamond 1984; 
Ślęzak et al. 1985; Pohl et al. 1998). One of the effects of the 
temporal-spatial evolution of the concentration boundary 
layers is the evolution of the concentrations field, which 
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causes that in the stationary state solute concentrations at 
interfaces membrane/solution (Ci, Ce) are crucially differ-
ent from concentrations at the beginning (Ch, Cl). These 
concentrations fulfil conditions Cl < Ce < Ci < Ch (Ślęzak et 
al. 1985; Kargol 2000). It means that these layers, by reduc-
ing the concentration gradient across the membrane, limit 
both the volume and solute fluxes. Concentration profiles 
in CBLs may be registered with optical methods (Barry and 
Diamond 1984; Ślęzak et al. 1985; Fischbarg  et al. 1993; 
Dworecki 1995; Dworecki et al. 2003, 2005a). The modified 
form of KK equations for membrane system with CBLs 
(CBL/M/CBL) were elaborated by A. Kargol (Kargol 2000) 
on the basis of differential form of  KK equations (Spiegler-
Kedem equations). After integrating of these equations the 
complex form of equations on Jv and Js were received and 
after Taylor series expansion the direct form of Jv and Js 
as functions of membrane parameters (Lp, σ, ω) and CBL 
thickness (δ) were got.

In this paper, the mathematical model of the volume flux 
through neutral membrane under occurrence of the CBLs 
on both sides of that membrane is presented. We have de-
veloped this mathematical model by introducing a diffusion 
concentration polarization coefficient (ζsD). We introduced 
two forms of equations on osmotic flux through the mem-
brane Jv, equivalent for the sake of ζsD. Moreover, we have 
used these nonlinear equations for volume flux in order to 
calculate volume flux as a function of mechanical or osmotic 
pressure in a linear regime of hydrodynamic stability. 

The paper is organized as follows: we characterize the 
model of the membrane system and next we present the 
mathematical model of volume flux of non-homogeneous 

non-electrolyte solutions based on the KK equations. As 
a result of these considerations, the third order equation for 
volume flux is obtained and solutions of that equation are 
discused. The coefficients, that appear in these equations, 
depend on concentration polarization coefficient, membrane 
parameters, difference of the mechanical and/or osmotic 
pressures and CBLs thicknesses. 

Materials and Methods

Let us consider the single-membrane system presented 
in Fig. 1 whereby the compartments l and h, containing 
diluted and non-homogeneous (not mechanically stirred) 
binary solutions of the same non-electrolyte are separated 
by a porous, symmetrical, selective and electroneutral 
membrane M.

In this system water and dissolved substance diffusing 
through the membrane lead to formation of CBLs signed 
by ll and lh, which can be treated as pseudomembranes 
(Barry and Diamond 1984; Kiyosawa and Ogata 1987). The 
thicknesses of these layers were denoted by δl and δh. The 
transport processes are isothermal and stationary and no 
chemical reactions occur in the solutions. We denote the 
concentrations of solutions at boundaries ll/M and M/lh 
by Ce and Ci, respectively, while the solute concentrations 
outside the boundaries are denoted by Cl and Ch. We de-
note the mechanical pressure by Pl and Ph (Ph > Pl). For 
unstirred solutions

)( eim CCRT ��	�  (3)

Figure 1. The membrane system: M − membrane; ll and lh − the concentration boundary layers (CBLs); ωs, ωl, ωm and ωh − the solute per-
meability coefficients; Pl and Ph − the mechanical pressures; Cl and Ch − the concentrations of solutions outside the boundaries; Ce and Ci − 
the concentrations of solutions at boundaries ll/M and M/lh; Jvm and Jvs − the volume fluxes through the membrane M and complex ll/M/lh, 
respectively; Jsl, Jsh, Jsm and Jss − the solute fluxes through the layers ll, lh, membrane M and complex ll/M/lh, respectively.
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The membrane M is characterized by the hydraulic 
permeability (Lp), reflection (σm) and solute permeability 
(ωm) coefficients. The layers ll and lh are characterized 
by the solute permeability coefficients ωl and ωh, respec-
tively. The reflection and solute permeability coefficients 
of complex ll/M/lh are denoted by σs and ωs, respectively. 
The diffusion coefficients in layers ll and lh we denote by 
Dl and Dh, respectively. The following relation between 
coefficients ωl, ωh, ωm and ωs is fulfilled (Katchalsky and 
Curran 1965)

1111 ���� ��� hlms ����  (4)

where: ωl = Dl (RTδl)–1, ωh = Dh (RTδh)–1. The parameters 
Lp, σm, σs, ωl, ωh, ωm and ωs are defined by the expressions 
listed in previous papers (Katchalsky and Curran 1965; 
Schlichting and Gersten 2000).

Taking into consideration Eq. (3) in Eq. (1) we obtain
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The reflection coefficient of membrane is defined by the 
following equation
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The concentrations Ci and Ce can be calculated on the 
basis of Eq. (2) (Dworecki et al. 2005a; Ślęzak et al. 2005; 
Grzegorczyn and Ślęzak 2006) with assumptions that at 
steady state, the following conditions are fulfilled

vm vsJ J�   (7)
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In order to calculate these concentrations the following 
considerations will be made. For the membrane M, CBLs (l, h) 
and complex ll/M/lh (s), Eq. (2) can be written in the forms

1
sh h h h vm hJ D C J C� �� 	 �   (9)
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where:

ΔCh = Ch – Ci Ch = 0.5 (Ch + Ci)    
Ch = 0.5(Ci + Ce) ΔCl = Ce – Cl  
Cl  = 0.5(Ce + Cl) ωs = ζsD ωm (0 ≤ ζsD ≤ 1)

and

1[ ( )]sD l h l h m h l l hD D D D RT D D� � � � �� � �   (13)

Combining Eqs. (7)–(10) and (12) we obtain
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Taking into consideration Eqs. (14) and (15) in Eq. (5) 
we obtain

3 2
1 2 3 0vm vm vmJ J J� � �� � � �   (16)

where:
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Combining Eqs. (7)–(11) we obtain other forms of con-
centrations Ci and Ce
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where:
α0 = ClDlδl

–1ωmRT + ChDhδh
–1(ωmRT + Dlδl) 

α1 = 0.5 [(ωmRT + Dlδl
–1)(Ch – Cl) + σm(ChDhδh

–1 +
         + ClDlδl

–1)]
α2 = 0.25[Cl + σm(Ch – Cl)]
β0 = ωmRTDlδl

–1 + Dhδh
–1(ωmRT + Dlδl

–1)
β1 = 0.5σm(Dhδh

–1 – Dlδl
–1)

β2 = 0.25(1 – 2σm)
χ0 = ChDhδh

–1ωmRT + ClDlδl
–1(ωmRT + Dhδh

–1)
χ1 = 0.5[(ωmRT + Dhδh

–1)(Ch – Cl) – σm(ChDhδh
–1 +

         + ClDlδl
–1)]

χ2 = 0.25[Ch – σm(Ch – Cl)]

Taking into consideration Eqs. (17) and (18) in Eq. (5) 
we obtain

032
2

1
3 ���� ��� vmvmvm JJJ  (19)
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where:
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The forms of Eqs. (16) and (19) are equivalent for the 
sake of Eq. (13).

Using Eqs. (14) and (15) in Eq. (6) we get
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If we assume that for complex ll/M/lh, in steady state, 
Dl = Dh = D we can write on the basis of Eqs. (13) and (20)
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where σs = (ΔPi/Δπ)Jvm=0. Eq. (21) allows to count the re-
flection coefficient of the membrane (σm) in the case when 
the assurance of homogeneity of solutions divided by the 
membrane or determination of concentration gradient on 
the membrane (Ci – Ce) is impossible.

For the membrane system shown in Fig. 1, in which 
an artificial membrane mounted horizontally separates 
two aqueous ethanol solutions with concentrations Cl = 0 
mol·m–3 (pure water) and Ch in the range from 0 to 800 
mol·m–3, numerical solutions of Eqs. (16) and (21) are 
presented. The calculations were performed by Mathcad 
14.0 for isothermal conditions, T = 295 K. For numerical 
calculations, the following dependencies of the density and 
kinematic viscosity on the ethanol concentration were used: 
ρh = (998.2 – 0.009 Ch) kg·m–3 and νh = (1006.80 + 0.26 Ch) 
× 10–9 m2·s–1 (Dworecki et al. 2005b). Because the diffusion 
coefficient of ethanol in the aqueous ethanol solution within 
the tested concentrations does not depend on concentration, 
the constant value of Dl = Dh = D = 1.074 × 10–9 m2·s–1 
(Dworecki et al. 2005b) was assumed for calculations. The 
transport properties of flat neutral membrane (membrane 
Nephrophan) are characterised by the coefficients: ωm = 
14.3 × 10–10 mol·N–1·s–1, σm = 0.025 and Lp = 5 × 10–12 
m3·N–1·s–1 (Ślęzak 1989; Dworecki et al. 2003).

Results and Discussion

The results of calculations of the volume flux (Jvm) in the 
dependence on parameters ΔP and Δπ, respectively, were 
presented in Figs. 2 and 3. In the case of a stationary state 
of the membrane system with membrane in a horizontal 
plane, which divides two ethanol solutions with higher 

concentration (lower density) over the membrane (ζsD)stab ≈ 
0.05 and with lower concentration (higher density) over the 
membrane (ζsD)unstab ≈ 0.28 (Ślęzak 1989). For the case of 
diffusive states both δl and δh increase in time and in steady 
states CBLs thicknesses and volume fluxes reach stationary 
values (Dworecki et al. 2003). In this stationary state for 
aqueous ethanol solutions the CBLs thicknesses can be as-
sumed as: (δl)stab ≈ (δh)stab = 2.9 × 10–3 m in the case with 
higher ethanol concentration over the membrane, while in 
the case of diffusive-convective states (with lower ethanol 
concentration over the membrane) (δl)unstab ≈ (δh)unstab = 
0.4 × 10–3 m (Dworecki et al. 2005b).

In Fig. 2 the dependencies Jvm = f(ΔP) for membrane sys-
tem with higher ethanol concentrations under the membrane 
(line 1 and �) and with higher ethanol concentrations over the 
membrane (line 2 and �) are presented. These dependencies 
were counted on the basis of Eq. (16) (lines 1 and 2) and experi-
mentally measured for the membrane system without CBLs (�), 
with CBLs (� and �). Thicknesses of CBLs and ζsD in the model 
were assumed as δl = δh = 0.0004 m, ζsD = 0.28 (graph 1) and 
δl = δh = 0.0029 m, ζsD = 0.05 (graph 2), respectively. Besides the 
parameters: ωm = 14.3 × 10–10 mol·N–1·s–1, σm = 0.025, Lp = 5 × 
10–12 m3·N–1·s–1 (for membrane Nephrophan) (Ślęzak 1989; 
Dworecki et al. 2003) and the osmotic pressure in the membrane 
system Δπ = 0.153 MPa were used.

From Fig. 2 it results that volume flux through the mem-
brane linearly depends on pressure difference on the mem-

Figure 2. Graphic illustration of dependencies Jvm = f (ΔP) counted 
on the basis of Eq. (16) (lines 1 and 2) and from experiment 
(�, �, �); for membrane system without CBLs (�), for membrane 
system with CBLs and with lower ethanol concentrations over the 
membrane (line 1 and �) and with higher ethanol concentrations 
over the membrane (line 2 and �) for membrane Nephrophan (ωm = 
14.3 × 10–10 mol·N–1·s–1, σm = 0.025 and Lp = 5 × 1–12 m3·N–1·s–1) 
and fixed parameters: Δπ = 0.153 MPa, ζsD = 0.28 (line 1) and ζsD  
= 0.05 (line 2).
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brane for both homogeneous (�) and non-homogeneous 
solutions in stable (line 2 and �) and unstable (line 1 and 
�) configurations. Non-homogeneity of solutions in near 
membrane areas caused by building up of CBLs is the cause 
of shifting of the dependence Jvm = f(ΔP) (without change 
of inclination coefficient) in comparison to Jvm = f(ΔP) for 
homogeneous solutions. Greater shift is observed for stable 
configuration. This is connected with greater changes of con-
centrations at membrane surfaces (Ci, Ce) during building up 
of CBLs in stable configuration than in unstable configura-
tion. The experimental results for membrane Nephrophan 
(points 2 and 3) are in good agreement with prediction of 
the model (lines 1 and 2).

In Fig. 3 the dependencies Jvm = f(Δπ) for membrane 
system with higher ethanol concentrations under the mem-
brane (line 1 and �) and with higher ethanol concentrations 
over the membrane (line 2 and �) are presented. These 
dependencies were counted on the basis of Eq. (16) (lines 1 
and 2) and experimentally measured for membrane system 
without CBLs (�) and for membrane system with CBLs 
(� and �). In the model the values of CBLs thicknesses and 
ζsD  were assumed respectively as δl = δh = 0.0004 m, ζsD = 
0.28 (line 1) δl = δh = 0.0029 m, ζsD = 0.05 (line 2), for fixed 
parameters: ωm = 14.3 × 10–10 mol·N–1·s–1, σm = 0.025 and 
Lp = 5 × 10–12 m3·N–1·s–1 (Nephrophan membrane) (Ślęzak 
1989; Dworecki et al. 2003) and ΔP = 0 Pa.

From Fig. 3 it results linear dependence of Jvm = f(Δπ) for 
both homogeneous (experimental data �) and non-homoge-
neous solutions for stable (line 2 and �) and unstable (line 1 
and �) configuration. The greatest coefficient of inclination of 
Jvm = f(Δπ) is for homogeneous solutions while the smallest is 
for stable configuration with CBLs. Smaller influence of osmotic 
pressure (Δπ) on the volume flux in the case of stable configura-
tion with CBLs is caused by smaller difference of that pressure 
on the membrane (Δπm) in steady state of that configuration.

The thicknesses of CBLs from experiment, dependent 
on configuration of the membrane system for Nephrophan 
membrane were assumed  in the model. As results from 
earlier paper (Ślęzak et al. 2006) CBLs thicknesses can be 
counted using Raileigh number. In order to calculate δl and 
δh we use the definition of concentration Rayleigh number, 
presented by equation (Barry and Diamond 1984; Schlicht-
ing and Gersten 2000)

14 )( �� '�� DdgR CCC     (22)

Where: g is the gravitational acceleration, d is the fluid 
depth along the gravitational (z) direction, αC = (∂ρ/∂C)ρ–1 is the 
variation of density with concentration, βC = ∂C/∂z is the 
concentration gradient, D is the solute diffusion coefficient 
and υ is kinematic viscosity. If we identify the thicknesses δl 
and δh of concentration boundary layers with d (Ślęzak et 
al. 1985), then using the relations

αClβCl = (∂ρ/∂ C)(Ce – Cl)(ρlδl)–1 

and 
αChβCh = (∂ρ/∂ C)(Ch – Ci)(ρhδh)–1 

Eq. (22) can be written in the following forms:
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Taking into account Eqs. (14) and (15) in Eqs. (23) and (24), 
respectively, we obtain the following system of equations:

4
1 2 1l l*� * �� �   (25)

4
1 2 1h h+ � + �� �  (26)

where:
θ1 = g[ζsDΔπ(ωm – 0.5Lpσmμ1) + 0.5Lpμ1ΔP](RClρlνlDl

2)–1
                (∂ρ/∂C)

θ2 = 0.5LpDl
–1(ΔP – ζsDσmΔπ)

κ1 = g[ζsDΔπ (ωm + 0.5Lpσmμ2) + 0.5Lpμ2ΔP](RChρhνh
          Dh

2)–1(∂ρ/∂ C)

Figure 3. Graphic illustration of dependencies Jvm = f (Δπ) 
counted on the basis of Eq. (16) (lines 1 and 2) and from experi-
ment (�, �, �), for membrane system without CBLs (�), for 
membrane system with lower ethanol concentrations over the 
membrane (line 1 and �) and with higher ethanol concentrations 
over the membrane (line 2 and �) for membrane Nephrophan 
(ωm = 14.3 × 10–10 mol·N–1· s–1, σm = 0.025 and  Lp = 5 × 10–12 
m3·N–1·s–1) and fixed parameters: ΔP = 0 Pa, ζsD = 0.05 (line 2) 
and ζsD = 0.28 (line 1).
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κ2 = 0.5LpDh
–1(ΔP – ζsDσmΔπ)

μ1 = (Ch – Cl) – 2ζsDσmC  
μ2 = (Ch – Cl) + 2ζsDσmC

For steady states of volume and solute fluxes, the concentra-
tion Rayleigh number depends on the concentration of etha-
nol in chambers (Dworecki et al. 2005). Experimental study 
shows that the thickness of CBL in steady state for membrane 
Nephrophan and ethanol solutions does not depend on the 
initial ethanol concentrations in chambers (Dworecki et al. 
2005). Using in Eqs. (25) and (26) transport parameters of 
the membrane and foreseen values of concentration Rayleigh 
number in steady states, thicknesses of CBLs in steady states 
can be counted. Assuming for calculation: transport coeffi-
cients for membrane Nephrophan, ΔP = 0, Ch = 600 mol·m–3, 
Cl = 0 mol·m–3 and suitably for stable configuration (RC)stab = 
5 × 105, ζsD = 0.05 and unstable configuration (RC)crit = 1708, 
ζsD = 0.28 (Ślęzak 1989), we get CBLs thicknesses suitably 
for stable configuration (δ)stab = 2.8 × 10–3 m and unstable 
configuration (δ)crit = 0.44 × 10–3 m.

Building up of CBLs is the spontaneous process with dif-
fusive character, revealing itself particularly in microgravity 
conditions (Cogoli and Gmünder 1991). In terrestrial condi-
tions thicknesses of CBLs can be limited by processes caused 
hydrodynamic instability, for example gravitational convection 
(Dworecki et al. 2005), so taking into consideration CBLs is very 
important during measurement of reflection (σ) and diffusion 
permeability (ω) coefficients (Ye et al. 2006). The results of 
experimental study show that value of reflection coefficient of 
complex ll/M/lh – σs is considerably lower than reflection coef-
ficient of membrane σm and depends on hydrodynamic state 
of CBLs. For the hemodialyses Nephrophan membrane (Ślęzak 
1989) and aqueous solution of ethanol with concentration Ch = 
250 mol·m–3, reflection coefficient appointed experimentally 
amounts to (σm)ex = 0.025, while the reflection coefficient σs 
determined experimentally in conditions without convection 
amounts to (σs)ex = 1.22 × 10–3. The thickness of CBL esti-
mated on the basis of interferograms in the chamber with lower 
concentration Cl (Cl < Ch) and in the state with condition Js = 
const., performed by means of Mach-Zehnder interferometer 
for ethanol concentration Ch = 250 mol·m–3, amounts to (δ)ex = 
2.91 × 10–3 m. Taking into consideration the above mentioned 
values in Eq. (18) this gives (σm)cal = (2.44 ± 0.10) × 10–2, which 
is in agreement with (σm)ex = 2.5 × 10–2. The calculations were 
performed for Nephrophan membrane and ethanol solutions 
(ωm = 1.43 × 10–9 mol·N–1·s–1, D = 1.074 × 10–9·m2·s–1) with 
concentrations Cl = 0 and Ch = 250 mol·m–3.

Conclusions

The above studies allow the following conclusions and 
statements:

1.  The mathematical model of the volume fluxes through 
artificial polymeric membrane with CBLs on both sides of 
this membrane is presented. This nonlinear model, based 
on the KK equations, describes the volume flux generated 
by osmotic and hydrostatic forces, concentrations on the 
membrane-concentrations boundary layers’ borders.

2.  As results from the model and experiment the depend-
ences of Jvm = f(ΔP) are linear for both homogeneous and 
non-homogeneous solutions in steady states. For stable 
configuration the osmotic fluxes for given pressure differ-
ence are lower than for unstable configuration.

3.  The dependencies Jvm = f(Δπ) are linear. As results from 
experiment and model the influence of Δπ on Jvm is 
greater for the case of unstable configuration than in the 
case of stable configuration. 

4.  Two ways of description of membrane system with CBLs: 
on the basis on differential form of KK equations (Kargol 
2000) and presented in this article give linear depen-den-
cies of Jvm(ΔP) and Jvm(Δπ) in steady states, in spite of 
nonlinear equations on Jv.

5.  Near-membrane CBLs can be taken into consideration 
as additional kinetics barriers in transport processes 
of rapidly permeating substances through natural and 
artificial membranes (Winne 1973, 1981; McLaughin 
and Dilger 1980; Cotton and Reuss 1989; Levitt et al. 
1992; Peppenheimer 2001). The rate and effectiveness of 
chemical transformations within the CBLs are affected 
by the availability of the reactants. Near-membrane CBLs 
are the source of an inaccurate of the Michaelis constant 
in membrane transport (Winne 1973). The size of CBL 
seems to have regulatory functions. Variations in epithe-
lial function or luminal stirring can for example readily 
influence the absorption of small molecules (McLaughin 
and Dilger 1980; Cotton and Reuss 1989). In terrestrial 
conditions, the concentration boundary layers can be de-
stroyed by natural convection and sedimentation (Cogoli 
and Gmünder 1991).
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