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Alterations in adipocyte glucose transporter GLUT4 and circulating 
adiponectin and visfatin in rat adjuvant induced arthritis
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Abstract. Rheumatoid arthritis in humans brings about impaired insulin sensitivity and glucose 
tolerance. Since adipose tissue plays a role in glucose homeostasis, we evaluated the size of adi-
pocytes, the amount of glucose transporter type 4 (GLUT4) in adipocyte plasma membranes, and 
circulating insulin, glucose, and adipokines affecting glucose metabolism, resistin, adiponectin and
visfatin during experimental adjuvant arthritis (AA) in male Lewis rats. AA was induced by a single 
injection of complete Freund’s adjuvans. Adipocyte diameter was assessed microscopically, GLUT4 
was measured by Western blotting. Plasma insulin, adiponectin, visfatin were quantitated by RIA, 
and resistin by ELISA. Arthritic rats showed cachexia, reduced adipocyte size, and downregulated 
membrane GLUT4 (4065 ± 962 vs. 9911 ± 680 arb. units of optic density, p < 0.01), reduced plasma 
adiponectin (1.956 ± 0.10 vs. 3.16 ± 0.22 µg/ml, p < 0.001), and enhanced visfatin (1.84 ± 1.05 vs. 
1.24 ± 0.1 ng/ml, p < 0.01). Plasma glucose and insulin were unaltered, as were the resistin levels. 
Conclusion: AA induced cachexia results in reduction of adipocyte size, and paradoxically also in 
downregulation of GLUT4 in adipocyte membranes. This is supposed to be functionally related
to the reduced adiponectin levels. The upregulated visfatin in rat arthritis is a novel finding, and it
confirms its role in autoimmunity across the species.
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Introduction

Numerous clinical studies evidenced metabolic con-
sequences of rheumatoid arthritis (RA), often leading 
to insulin resistance and metabolic syndrome in these 
patients (Dessein et al. 2006; Sidiropoulos et al. 2008). It 
has been known that the systemic inflammatory process 
characteristic of RA brings about changes in a whole ar-
ray of adipokines that may further affect the severity of 
the disease.

Resistin has been first found to induce insulin resistance
and glucose intolerance in obesity (Steppan et al. 2001; 

Guzik et al. 2006). More recently a local proinflammatory
role has been ascribed to resistin, since it stimulated inter-
leukin-6 and tumor necrosis factor-α in human leukocytes, 
its enhanced local joint production in patients with RA 
was observed and its intra-articular administration to mice 
induced inflammation (Bokarewa et al. 2005). Moreover, in
severe RA higher resistin levels occurred in the circulation 
(Senolt et al. 2007).

Adiponectin is known to enhance insulin sensitivity in 
the tissue. It promotes insulin regulated glucose transport by 
its direct action on the GLUT4 transporter expression and 
translocation into plasma membrane to ameliorate insulin 
resistance (Fu et al. 2005). Adiponectin has been found in 
the synovial adipocytes and fibroblasts of RA patients. In
the joint it stimulated interleukin-6 production and matrix 
degrading enzymes suggesting its local proinflammatory
activity (Ehling et al. 2006). Adiponectin was also enhanced 
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in the circulation and synovial fluid of RA patients (Otero
et al. 2006; Senolt et al. 2006).

Visfatin (nicotinamide phosphoribosyltransferase 
– NAMPT), was originally described as pre-B-cell colony-
enhancing factor (Samal et al. 1994), and later as insulin-
mimetic adipokine secreted from visceral fat (Fukuhara et 
al. 2005). Subsequently visfatin/NAMPT was shown to act as 
extracellular NAD biosynthetic enzyme critical for glucose-
stimulated insulin secretion in pancreatic β-cells (Revollo 
et al. 2007). Recent study revealed that visfatin can improve 
insulin sensitivity by enhancing insulin receptor substrate-1 
phosphorylation, as well as by up-regulation of peroxisome 
proliferator-activated receptor-γ in fat tissue (Sun et al. 2009). 
Visfatin has been qualified as a proinflammatory agent with
matrix degrading activity in the synovial tissue. At the same 
time its levels in circulation and in synovial fluid have been
enhances in patients with RA (Otero et al. 2006; Brentano 
et al. 2007).

Rat adjuvant arthritis (AA) represents a widely used ex-
perimental model for RA. A single subcutaneous injection 
of a suspension of heat killed Mycobacterium butyricum 
in mineral oil develops polyarthritis. The disease exhibits
a dynamic progression with an initial, preclinical phase 
followed within about 10 days by acute clinical phase which 
reaches peak intensity around day 20. It is characterized 
by a number of changes occurring in human RA. In Lewis 
arthritic rats from day 12 onwards the loss of appetite 
is accompanied by reduction in plasma levels of leptin, 
adiponectin, and also by downregulation of the negative 
reactant of acute phase protein, albumin (Stofkova et al.
2009). Similarly, in the same strain of rats from day 21 
through 28 of AA, an overall oxidative stress has been ob-
served (Mihalova et al. 2007; Strosova et al. 2008). In this 
model, on day 18 of AA we evaluated the size of adipocytes, 
the amount of GLUT4 in adipocyte plasma membranes in 
male Lewis rats to ascertain possible effects of polyarthritis
on glucose transport. At the same time we assessed the 
circulating levels of glucose, insulin, as well as the adipok-
ines involved in insulin metabolism and arthritis, resistin 
adiponectin, and visfatin.

Materials and Methods

Animals

Male Lewis 8-weeks old rats (Charles River, Germany) 
were housed four per cage in an animal room in the De-
partment of Normal, Pathological and Clinical Physiology, 
Third Faculty of Medicine, Charles University, Prague. 
They were treated according to the national law of the 
Czech Republic on the use of laboratory animals, No. 
167/1993. AA was induced to rats by a single subcuta-

neous injection of 100 μl of complete Freund’s adjuvant 
(cFA) into the base tail. Rats were decapitated on day 
18 after cFA injection along with intact controls (8 rats 
per group). Trunk blood was collected into EDTA, cen-
trifuged and plasma was stored at –30°C until assayed. 
Epididymal fat was taken to measure adipocyte size and 
GLUT4 in adipocyte plasma membranes. We analyzed 
epididymal fat only, because the amount of any other fat 
is extremely limited in arthritic animals, and is not suf-
ficient for analyses.

Diameter of adipocytes and GLUT4 measurement

One part of epididymal fat was used for adipocyte size 
determination. Adipocytes were isolated by collagenase 
digestion (Pinterova et al. 2001) and the fat cell size was as-
sessed microscopically. The cells were photographed using
a camera (Canon Digital Power Shot S40) attached to the 
microscope and the cell diameter was calculated. Result-
ing diameter is an average value of at least 100 cells from 
each adipocyte suspension. The rest of the epididymal fat
was homogenized, and plasma membranes were isolated 
as detailed previously (Baculikova et al. 2008). For GLUT4 
Western blot, 20 µg solubilized fat tissue membranes were 
separated by electrophoresis on 12% TRIS-glycine polyacr-
ylamide gel and than electrotransferred to Hybond C Extra 
membrane (Amersham Bioscience, Buckinghamshire, UK). 
After blocking for 1 h in TBS with 5% milk, the membrane
was incubated overnight at 4°C with primary rabbit anti-
GLUT4 antibody (Abcam, Cambridge, UK) diluted 1 : 2500 
in 10 mmol/l Tris – 150 mmol/l NaCl buffer, pH 7.4 (TBS)
with 0.2% Igepal (Sigma, St. Louis, USA). The membrane
was washed in TBS-Igepal buffer and than incubated with
horseradish peroxidase-conjugated secondary antibody 
(goat anti-rabit IgG, 1 : 15 000, Sigma, St. Louis, USA) for 
1 h at room temperature. After washing the membrane
was exposed to chemiluminescence reagent (Amersham 
Bioscience, Buckinghamshire, UK) and exposed to X-ray 
film. The chemiluminescence signal was acquired by den-
sitometric scanning.

Analyses

Albumin was determined by spectrophotometric method 
using SYS 1 kit (BM/Hitachi, Boehringer Mannheim, Ger-
many) on Hitachi 911 automatic biochemical analyzer (Boe-
hringer Mannheim, Germany). Insulin, adiponectin and 
visfatin concentrations were determined by the respective 
RIAs (Linco Research, USA), resistin by ELISA (BioVendor, 
Czech Republic) or glucose using auto-analyzer Hitachi 
911(Hitachi, Japan). The data were analyzed by unpaired
Student’s t-test. Statistical significance is considered at p < 
0.05.



81Changes in GLUT4, adiponectin and visfatin in adjuvant arthritis

Results

The hind paw volumes were significantly enlarged in AA rats
that correlated with overall cachexia typical for the developed 
phase of AA. As expected, the epididymal fat stores were 
significantly smaller in arthritic rats (422 ± 70 mg vs. 1184 ± 
105 mg in controls, p < 0.001), and similarly body mass was 
reduced (201 ± 25.9 g vs. 325 ± 2.9 g in controls, p < 0.001). 
AA markedly inhibited the production of albumin levels in 
rat. It occurred as a result of enhanced acute phase proteins 
synthesis by the liver secondary to the activation of hepatic 
cells by inflammatory cytokines (Figure 1).

The body and fat mass loss resulted in a reduction of
adipocyte diameter. Furthermore the fat cells clearly showed 
downregulation of GLUT4 translocation into the cell 
membranes. Inflammation did not affect either glucose, or
insulin plasma levels at unrestricted food intake (Figure 2). 
In the Figure 3 are depicted values for circulating adipok-
ines. Plasma resistin levels, in spite of its described role in 
autoimmune inflammation remained unchanged under our
conditions. However, circulating adiponectin involved in 
GLUT4 regulation was reduced along with the reduction of 
fat mass. On the other hand, the levels of circulating visfatin 
were enhanced in arthritic rats that inversely correlated to 
the reduced fat mass.

Discussion

Here we described reduced adipocyte diameter, and a clearcut 
downregulation of GLUT4 in the adipocyte plasma mem-
branes in the fully developed phase of AA characterized by 
joint swelling, body and fat mass loss, and reduction of albu-
min production. At the same time we found unaffected basal
glucose and insulin levels, unchanged circulating resistin, but 
reduced adiponectin and enhanced visfatin levels.

Physiological reduction of fat mass is usually associated 
with an increase in insulin sensitivity and upregulation of 
GLUT4 in adipocytes. For example, 40% caloric restriction 
reversed insulin resistance in pinealectomized rats by en-
hancing GLUT4 content in adipocytes and its translocation 
to the plasma membranes (Zanquetta et al. 2003). Similarly 
in fatty rats caloric restriction improved glucose utilization 
by upreguletion of adipocyte GLUT4 expression (Park et 
al. 2005). Under the conditions of clinically manifested AA 
the loss of appetite occurs, that is manifested by reduced 
food consumption by about 40%, and consequently by body 
and fat mass loss (Stofkova et al. 2009). The inflammatory
reduction of GLUT4 in adipocyte plasma membranes, that 
we observed, is a specific phenomenon that can not be at-
tributed to lowered caloric intake, but mirrors the adipok-
ine imbalance during the disease. Since we confirmed this

Figure 1. Clinical signs of adjuvant arthritis represented by paw edema (A), loss of body weight (B), and epididymal fat (C). The enhanced
production of acute phase proteins is manifested by decreased albumin production (D). Each column represents mean of 7–8 animals 
fed ad libitum ± S.E.M. ** p < 0.01; *** p < 0.001; C, intact control rats; AA, arthritic rats on day 18 of the disease.
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finding also in the Long Evans arthritic rats (unpublished),
we assume that it is a general feature accompanying autoim-
mune experimental arthritis.

Our result on the reduction of circulating adiponectin 
levels during AA confirm the recent finding of Haruna et 
al. (2007), Martin et al. (2008), and our own observation 
(Stofkova et al. 2009) in the clinical phase of AA, and suggests
that this may be involved in the downregulation of GLUT4 
in adipocytes. Any interpretation of reduced adiponectin 
plasma levels related to the severity of the disease can not 
be drawn, because the decisive role plays its intraarticular 

production. Regarding the unaltered resistin levels in our 
experiment, we assume that in spite of its defined local
proinflammatory activity, circulating resistin is not an im-
portant factor in the development of AA. In this study we 
described for the first time enhanced visfatin/NAMPT levels
in arthritic rats. Visfatin/NAMPT has been shown to be 
upregulated in the activated immune cells (Rongvaux et al. 
2002), and recently Busso et al. (2008) showed its enhanced 
levels in the circulation and in the inflamed paws in colla-
gen-induced arthritis (CIA) in mice as well. These authors
clearly demonstrated its role in the pathology of the disease, 

Figure 2. Diameter of adipocytes (A), and the amount of GLUT4 (B), in adipocyte plasma membranes in normal and arthritic rats. 
The bands stand for representative Western blot of GLUT4 in 5 healthy and 5 arthritic animals. In the lower part are depicted plasma
insulin (C) and glucose (D) levels in rats. Each column represents mean of 7–8 animals fed ad libitum ± S.E.M. * p < 0.05; *** p < 0.001; 
C, intact control rats; AA, arthritic rats on day 18 of the disease; OD, optic density.

Figure 3. Plasma adiponectin (A), visfatin (B), and resistin (C) in normal and arthritic rats. Each column represents mean of 7–8 
animals fed ad libitum ± S.E.M. ***p < 0.001; C, intact control rats; AA, arthritic rats on day 18 of the disease.
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since its pharmacological blockade improved the clinical 
features of CIA. Whether enhanced visfatin levels acts also 
to compensate insulin insensivity due to lack of GLUT4, 
and maintains unaltered basal insulin and glucose during 
autoimmunity, warrants further study.

In conclusion, AA-induced cachexia results in reduction 
of adipocyte size, and paradoxically also in downregulation 
of GLUT4 in adipocytes. This is supposed to be related to
the reduced adiponectin levels. The enhanced visfatin levels
in rat AA is a novel finding demonstrating that this occurs
across the species, and rat AA provides a relevant model for 
further study of its mechanisms.
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