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Generalized phenomenological equation of plant growth
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Abstract. Enlargement is one of the most fundamental activities of plants, and there are many 
simultaneous processes involved. Several could be temperature-dependent, like metabolic proc-
esses and cell wall sensitivity. A description of plant cell elongation was elaborated by Lockhart in 
the mid-60’s of the last century in the form of time-dependent differential equation. However, the
main disadvantage of this approach was the missing environmental temperature at which growth 
takes place, as well as the lack of representation of environmental factors influencing growth, like
growth stimulators/inhibitors, external pressure or light. This absence has been merely covered in the
series of our recent papers. Consequently, this manuscript attempts to construct a fairly complete, 
all-encompassing set of mathematical relationships which describe the basic process of cell/organ 
extension and the effects of modifying environmental perturbations. The output is provided in a 
form of composite equation supported by mathematical derivations. Starting with the generalized 
time- and temperature-dependent growth equation, we involve the action of phytohormones and 
toxic compounds, and especially of light (photocontrol of plant growth) onto the growth processes. 
All these external factors (treated as perturbations) are mapped onto the proper terms of temperature 
modified equation of growth thus giving a new theoretical tool to verify, interpret and draw conclu-
sions concerning data originating from various kinds of plant-physiological experiments. It seems 
that this novel approach can provide a starting point for further experimentation especially on the 
plastic and elastic components of the growth process.
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Introduction

Plant growth is based on irreversible extension of the whole 
organism due to the increase of quantity and size of cells, 
the mass of protoplast and cell walls (Cosgrove 1986, 1993; 
Kutschera 2000). In the growth of arbitrary organ one can 
differentiate three basic phases: the initial phase of slow
growth, the intense growth phase and, eventually, the final
phase of slow growth (Fogg 1975). The dominating length
increments in the time unit are observed approximately at the 
mid time of growth (2–4 day after germination). The period
of intense growth lasts fairly short and depends on plant 
species. The plant growth is influenced by physical (abiotic)

and biotic factors of environment (Wright 1966; Cleland 
1986; Trewavas 1991; Edelmann 1995). The fundamental
modifying environmental perturbations are: temperature, 
light, water and soil factors, and atmosphere composition. 
Growth regulators are also of the fundamental importance 
in growth and development (see also: Cleland 1986, Arteca 
1996 and Pietruszka et al. 2007) in the context of the model 
presented. These substances stimulate or inhibit the processes
of growth. The natural growth regulators (plant phytohor-
mones) include auxins (Rayle and Cleland 1992; Bandurski 
et al. 1995), giberellins (Ross et al. 2003), cytokinins (Nikolić 
et al. 2006), ABA and jasmonic acid (Montague 1997; Tsai 
et al. 1997) and ethylene (Madlung et al. 1999; Cao et al. 
2007). The main purpose of the series of our recent papers
was to introduce the influence of temperature (Lewicka and
Pietruszka 2006), unilateral action of light (Pietruszka and 
Lewicka 2007a) and gravity (Lewicka and Pietruszka 2007), 
external pressure (Pietruszka and Lewicka 2007b) and action 
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of plant stimulators/inhibitors (Pietruszka et al. 2006; 2007) 
onto Lockhart’s equations of growth. In the utilized models 
temperature entered the modified equation of growth in two
ways: by a state equation, which causes modification of the
Lockhart term, and by the Lorentz-like dependence of elon-
gation. We recall that the equation of state is a constitutive 
equation describing the state of the system under a given set 
of physical conditions. Especially, it provides a mathematical 
relationship between two or more state functions associated 
with the matter, such as its temperature, pressure, volume, 
or internal energy. The problem of anisotropic growth due
to unilateral action of external stimuli (gravity and light) 
has been undertaken in Lewicka and Pietruszka (2007) and 
Pietruszka and Lewicka (2007a), respectively; however, the 
role of temperature was omitted there. In both papers, we 
proposed a generalization of the scalar Lockhart model to 
the three-dimensional tensor equation. Also, the proposed 
methods are consistent with the recent investigations con-
cerning specific auxin-influx and -efflux carriers (LAX and 
PIN proteins) for phototropism (Friml 2003; Reinhardt et 
al. 2003) and Cholodny-Went theory for gravitropism (Went 
and Thimann 1937; Scott et al. 1992). The effect of tem-
perature on plant elongation and cell wall extensibility was 
also studied in Pietruszka and Lewicka (2007b), where the 
action of external mechanical pressure was involved. There,
we combined experimental and theoretical results based on 
the separation of elastic effects from growth and summarized
our results in the form of phase diagram.

One external signal whose perception and transduction 
have been particularly well studied is light (De Greef 1996). 
Light is an exciting factor for many living beings. In the very 
essence of light there exists another dualistic difference – an
energy/information one – for the whole realm of the living 
world. In particular, in the plant kingdom light powers 
photosynthesis and means information transfer through 
signal transduction. The information provided by the light
environment can be perceived by different plant photorecep-
tors: phytochromes, cryptochromes and UV-photoreceptors. 
It is now commonly accepted that the phytochrome family of 
photoreceptors is primarily responsible for sensing the red 
and far-red regions of the spectrum. These pigments translate
light cues into biochemical signals subsequently transduced 
through (largely unknown) pathways into molecular and 
physiological changes that modulate growth and develop-
ment (Casal et al. 1998; Deng and Quail 1999; Smith 2000). 
Also plants respond to light through a variety of forms of 
phototropism (Friml 2003; Reinhardt et al. 2003; Pietruszka 
and Lewicka 2007a) and photonasty (Koller 1990). Addition-
ally, visible radiation drastically influences the appearance of
a plant. In higher plants, red/far red and blue/UV(A,B)-light 
direct the life cycle. Light also controls development (growth, 
differentiation, maturation) of higher plants independently
of photosynthesis by photomorphogenesis (Christie and 

Briggs 2001; Nakasako et al. 2005). It acts as elicitor that 
plays a decisive role in regulating the process of optimization 
of a developing plant. Without the light factor normal plant 
development cannot occur. The fact that the juvenile stem of
dicotyledonous seedlings rapidly elongates in darkness and 
that this process is inhibited upon irradiation with light has 
long been known (see Kutschera 2000 for a review). Early 
studies led to hypothesis that radiant energy may cause an 
inhibition in the rate of elongation. Further experiments 
revealed that light retards not only the rate of stem elonga-
tion but also causes a reduction in the plastic extensibility 
of the cell walls. Lockhart (1965b) concluded that visible 
radiation causes an inhibition of stem elongation due to 
decrease in cell wall extensibility. Thus, the challenge is to
formulate a physical model for the emerging mechanisms 
in plants exposed to the irradiation of light. In this paper we 
focus our efforts on understanding the biophysical response
to the light irradiation by considering a fully modified equa-
tion of growth.

In the last few decades, some papers have been writ-
ten concerning plant growth as only dependent on time 
variable (Lockhart 1965a,b; Cosgrove 1986, 1993; Proseus 
et al. 1999; Lewicka 2006) and the problem of external 
influencing factors, like temperature or light, has been left
open to the theoretical analysis. Therefore, the aim of this
study is to present a full model able to report not only on 
time dependencies of the growth but also responses due to 
physical and biotic factors. Such a model would presumably 
well reproduce the existing data, as well as anticipate new 
growth related features, especially, act as a basis for further 
experimentation, also on the plastic and elastic components 
of the growth process. Having all these in mind, it was our 
desire to bring this kind of approach to the attention of 
potential readers interested in development and growth. 
We stress that the presented model equations can be useful 
in the laboratory practice to determine many growth-ac-
companying quantities.

Materials and Methods

The experiments were carried out with three-day-old
maize plants (Zea mays L.) grown on Hoagland’s medium 
(Hoagland and Arnon 1950) at 27°C. Seeds of maize were 
cultivated in the darkness. Then individual seedlings were
transferred to an aerated solution containing standard micro- 
and macro-elements. We have chosen seedlings of the same 
coleoptiles’ length, i.e. about 2 cm. In both cases, the length 
of the elongation zone of each coleoptile was measured.

a) Unperturbed experiment (control, dark): The seedlings
were divided into eight groups growing at different tempera-
tures 2, 10, 20, 23, 26, 27.5, 32 and 40°C. Each group was 
represented by 10 seedlings. The experiment was carried out



97Generalized phenomenological equation of plant growth

within 4 hours, and the measurements were taken at every 
half an hour by the use of the planimetry method.

b) Light perturbed experiment. The preparation of the
plant material was the same as in the case of unperturbed 
experiment, however, the plants were exposed to the sun 
light. The “light experiment” also lasted for 4 hours. The
length of coleoptiles was measured by the standard planim-
etry method. In both cases (a and b) the absolute error has 
been estimated as not exceeding 0.05 cm.

Thermodynamics of irreversible extension of plant cell/organ

Time-dependent Lockhart equation elaborated in the 
mid-60’s of 20th century (Lockhart 1965a) describing the 
elongation of a plant cell resulting from a dynamic balance 
between the water uptake and the cell wall yielding should 
in principle, along with environmental temperature T, 
include other external factors like growth stimulators/in-
hibitors and, especially, the influence of light. Hence, as a
fundamental differential equation we propose the following
model, instead: 
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where P and Y stand for hydrostatic pressure and turgor 
threshold, respectively, see Fig. 11). The next two terms de-
scribe the action of phytohormones and light which in the 
framework of our model both act as outer perturbations. 
The latter term in Eq. (1) characterizes the presence of an
external pressure (for full discussion see Pietruszka and 
Lewicka 2007). In the above equation V = V(t) denotes the 
cell/organ volume, p1 and p2 represent inner pressures rel-
evant to the influence of growth stimulators/inhibitors, and
to the growth retardation (the minus sign in Eq. (1)) upon 
irradiation with incident light, respectively. The function θ  
stands for the Heaviside theta distribution which is coupled 
to the stimulator/inhibitor switch at a time t1 (i.e. it equals 
0 for t ≤ t1 and 1 for t > t1, see also the figure and comment
in Pietruszka et al. 2007 (p. 20) for explanation). The right-
hand side of Eq. (1) is linked to the growth rate by the cell 
wall extensibility coefficient Φ = Φ(T,t). Lockhart equation 
describes the relative growth as a product of an external 

coefficient Φ and the driving force. Obviously, stimula-
tor/inhibitor as well as phytochrome-mediated inhibition 
by light are expected to be present in this equation. Indeed, 
both are present in the "force term" as well as in the cell wall 
extensibility coefficient Φ – the deformation of Φ enters
via the Lorentz-like temperature-dependent elongation as 
it is shown further in the text and Figs. 4–5. The modified
turgor pressure P should be present in this equation in order 
to introduce possible corrections caused by the action of 
stimulators/inhibitors or light (water uptake must occur). 
Nonetheless, the cell wall extensibility also varies with time 
and temperature. The ensemble of these features reflects the
property of time-irreversibility.

In the current model temperature enters the modified
equation of growth by three paths: through a state equation 
(which causes modification of the Lockhart term), by the
Lorentz-like dependence of elongation, Planck’s distribution 
and light absorption efficiency in the case of light term, as
well. Our proposal is to use such a form of the state equation 
where the turgor pressure is proportional to the temperature 
and inversely proportional to the cell/organ volume (we 
accommodate the argumentation given by Stanley 1971). 
Such approach is fully justified in first approximation if one
begins with the virial theorem and restrict only to the first
term of expansion. However, if appropriate assumptions are 

Figure 1. Scheme of the “Gedanken experiment” set-up: Movement 
of the piston in the cylinder reflects the extensibility properties
of a cell wall. A container with pressure p1 and a valve which can 
be opened at a time t0 < t = t1 is bound with the action of growth 
stimulator or inhibitor. An additional container with pressure p2 
represents the (negative) influence of light on the elongation growth
(the incident light quanta of energy ħω are absorbed by photorecep-
tors inducing signalling pathway of events, which finally leads to
growth retardation). The (possible) external mechanical pressure
acting on the plant cell is represented by the applied force F. The
whole system (the plant cell/organ) is immersed into a thermostat 
(environment) at a temperature T.

1) The method based on making reasonable simplifying assumptions
that allows for analytical solutions which yield clear interpretations 
is always the best to start with. Such methodology which is com-
monly accepted in science we employ in this article. Moreover, a 
good theory tends to keep the number of free parameters down 
to minimum. This way, the consequences of variation of these
parameters become transparent. Here we have only two additional 
parameters (p1, p2) which, however, can be treated separately by 
putting one of them equal to zero. This obviously reduce the number
of free parameters of our model to indispensable minimum.
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made about the mathematical form of intermolecular forces 
in the water solution within the vacuole, higher coefficients
in the virial expansion should be included. For the sake of 
clarity and brevity of our model we restrict to the term linear 
in temperature. Such a choice is also advantageous since it 
delivers the solution linear in time for the cell/organ volume 
stretching observed most frequently in growth experiments 
(e.g. Lewicka and Pietruszka 2006; Pietruszka et al. 2006). 
Regarding temperature entering the Lorentz-like distribu-
tion, see the comments in Pietruszka et al. 2007, pp. 17–18 
and 19–20. The third path temperature enters the modified
growth equation is via a term bounded with absorption of 
the light quanta by photoreceptors, which we describe by the 
Planck’s distribution and the efficiency of the process.

Therefore, we use the state equation in a form P(T,V) – 
Y(T,V) = γT/V where T is the absolute temperature, and V 
is the amount of water in the cell/organ (approx. cell/organ 
volume). The coefficient γ in the first approximation may be
treated as constant – in this paper we follow the reasoning 
concerning the introduction of temperature via the equa-
tion of state as in Stanley (1971). Pressure p2 can be simply 
acquired from the energy density ∆E/V = W/V = (W/l)/S = 
F/S = p2 , which in fact is equivalent to the work W done 
at a distance l by a force F acting onto a surface S. Thus the
proposed modified Lockhart equation reads
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and η reports on the efficiency of irradiation. In order to
reduce the number of free parameters η(T) can be obtained 
by assuming η(Topt) = 1 and finding the approximate
functional form (see Fig. 3). The total assimilated energy
of irradiation ∆E we introduce by the integral over Planck’s 
distribution
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where the frequency ν = c/λ, and λ is the wave-length of the 
incident light quanta; h = 2πħ stands for the Planck’s con-
stant. Some further considerations about the coefficient η and 
calculations of ∆E we have conveyed to the Appendix.

An additional remark needs to be made: even though many 
global aspects of plant growth have been considered in Eq. 
(2), the latter is obviously confined to the thermodynamical
features. Eq. (2) does not explicitly account for many phe-
nomena taking place in a living cell, like the effect of protein
synthesis, cell respiration or concentration of osmotic effec-
tors. Nevertheless, all these effects seem to be swept under
the elongation curve (the Lorentz-like distribution). In this 
sense, and because the experiments are performed on growing 
coleoptiles of Zea mays L., in our model we are dealing with 
the phenomenology of a living plant cell growth.

Also the validity of the asymmetric Lorentz-like fit is in
fact limited to the temperature region where the Lockhart 
equation holds and this is surely well below the high tempera-
ture edge. Our observations are also in accordance with other 
literature data: Ikeda et al. (1999) measured growth rates of 
kidney beans at various temperatures together with water 
potential, osmotic potential and turgor, and they found that 
turgor was lost at 40°C due to the leaky membrane. Addition-
ally, water uptake related to cell expansion was inhibited at 
the same temperature. In the work of Nakamura et al. (2002) 
the similar behavior seemed to be happening at 50°C. If tur-
gor is lost completely at high temperature, Lockhart equation 
will not be valid at such temperature any longer. This is the
limitation (high-temperature edge limit) of our Lorentz-like 
model (see also Pietruszka and Lewicka 2007).

Unperturbed case

In order to solve Eq. (2) for plant cells and organs growing 
in the darkness and free of any external influence (action of
chemical or physical perturbations) we put p1 = 0 and ∆E = 
0. Hence we obtain its simplified form
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which, after some calculus, gives the following solution
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where V0 is the cell/organ volume at the beginning of ex-
periment and T denotes the absolute temperature. Here, by 
denoting V(T,t) we emphasized that the volume also depends 
on temperature, but to remain the mathematical expressions 
clear, we only stay at V(t) simultaneously keeping in mind 
that V also depends on other factors, such as temperature. 
Since in biological practice we measure temperature in Cel-
sius scale, we rewrite Eq. (5) in the form given beneath 
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Linear response

By assuming p1 = b1/V = const, we may rewrite Eq. (2) in 
the form 
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which after integration yields
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Simple considerations and continuity condition lead us 
to the conclusion that for t < t1 I = 0 and for t ≥ t1 I = ξt – ξt1 
(ξt = ξ(t) denotes the integral of Φ(T,t) over t) which gives 
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Hence, the final solution for Eq. (2) in the linear case reads
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This linear solution we associate with such a special kind of
experiment when the stimulator/inhibitor is added once at a 
time t = t1 (see Pietruszka et al. 2006, 2007). It is worth noticing 
that above equation includes the unperturbed case if one put 
both ∆E and b1 equal to zero. Having Eq. (10) and a functional 
dependence of the volume V on time and temperature, we are 
able to determine Φ(T,t) = Φ(τ,t) where τ is the measured tem-
perature (in Celsius scale) and T = τ + 273.15°C, in the following 
manner. For t ≥ t1 we construct an elongation function as 
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On the other hand we define (for justification, see Pietruszka
et al. 2007, pp. 19–20) 
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where ϕ0 and α stand for the height and the width of the 
Lorentz-like curve, respectively; τ* denotes the optimum 
(critical) temperature of growth. Having obtained depend-
ence of the elongation on temperature, we are able to cal-
culate the cell wall yielding Φ(τ,t) by comparing Eqs. (11) 
and (12). This may be accomplished by determining for the
fixed times all needed coefficients (ϕ0, α and τ*) by fitting
procedure from the experimental data and by finding their
time evolution. The final equation for the cell wall yielding
Φ(τ,t) (with respect to its initial value at ti for a juvenile cell) 
in the case of linear perturbation reads 
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where the prime denotes the time derivative. The above
equation represents the exact form of the analytically derived 
cell wall yielding coefficient Φ(τ,t) in the linear case, with 
respect to its initial value at ti for the juvenile cell. Wishing 
to calculate numerically this quantity we need to have ϕ0(t), 
α(t) and τ* from the fits to the experimental data and the
(constant) γ value. Calculation of the latter magnitude is 
accomplished by fulfilling the condition that the measured
difference P – Y in plant cells is of the order of 0.1 MPa. In 
numerical calculations the exact value of γ is not that im-
portant as it changes only the amplitude (the peak value) of 
the calculated cell wall yielding coefficient but the order of
magnitude still remains the same. 

Non-linear response

By assuming p1 = const. we get the final version of Eq. (2)
as follows 
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which is an inhomogeneous differential equation of the first
order. It can be solved by standard method in consequence 
giving 

� �� �

� �

1

0 0
3 22 * 2 2 * 2

( , ) ( , )
273.15

' '

( ) ( )

it t
E b

�� �
� � �

� � ��
� � � � � �

� �� � �
� � � �

 

 � �
 � � � �
 

  (13) 

� �� �1 1

( )
( , ) ( ) ( )

dV t
T t T E p V t t t

dV
� � �� � � � � �  (14) 

� �
� � � �1 1

0 1

0

( )
.t t

t

p

t

V T E t t
V t

V e T E t t
� �

� � �

� � ��

� � � �
� 

� � � �

 (15) 

� �� �

� �

01
0 2 * 2

0 0
3 22 * 2 2 * 2

1
( , ) ( , )

273.15
( )

' '
.

( ) ( )

i

t

t t
p V E

�� � � �� � � �
� � �

� � ��
� � � � � �

� �� � �
� � � � �

� �

 

 � �
 � � � �
 

  (16) 

� �

3 3

3 3
[OR ] [OR ]

33

3 3
[OR ]

8 8
( )

1 1

8 8
( )

1 1

B B

B B

h h

k T k T

h h
k T k T

E h h
d d

V c c
e e

h h
d

c c
e e

�

�� �
�

�
� � �

� �

� � � �� � � � �

�� � �� � � �

�  � �
 

 � �

� � �
� �

∑∫ ∫

∑ ∑∫

 (17) 

(18)

 (15)

The above non-linear solution we associate with the ac-
tion of stimulator/inhibitor with concentration increasing 
in time after t = t1 (see Pietruszka et al. 2006, 2007). Next 
we are able, in analogy to the linear case, to determine the 
cell wall yielding Φ(τ,t) 
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The above expression is the final form of the relative cell
wall extensibility coefficient (with respect to its initial value
at ti for the juvenile cell) Φ(τ,t) for the case of non-linear 
perturbation. 

Fitting procedure

In order to make our paper complete we need to add some 
comments about the way we have fitted the empirical data and
how we have bound them with the theoretical model. In both 
cases, control and perturbed, based on elongation data, we have 
obtained distinct sets of coefficients ϕ0, α and τ* via non-linear 
regression procedure (Levenberg-Marquardt algorithm). 
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1. In the “unperturbed case” ϕ0(t) increases linearly, while 
α(t) slightly changes in course of time (nonlinear behavior 
with wide optimum at about mid-time of growth, hence 
the polynomial interpolation of the second order), τ* 
remains constant. 

2. In the “light perturbed case” ϕ0(t) and α(t) linearly depend 
on time, however τ* decays with time exponentially to the 
value 22°C and tends asymptotically to the 22°C line. 
Such estimated coefficients have been inserted into

Eq. (13) (with ∆E = 0) in the „unperturbed case“, and Eq. (13) 
(with b1 = 0) in the „light case“, respectively, to receive the 
theoretically calculated values of Φ(τ,t). The calculated deter-
mination coefficient R2 in all cases was greater than 0.99. 

Results

In this section we consider the main empirical and theoreti-
cal results. In Fig. 2 the data from authors’ experiments are 
combined with the semi-theoretical fits. The solid and dotted
curves are obtained by the fit to the Lorentz-like distribution,
Eq. (12). Fig. 2 presents a sequence of elongation events at 
fixed times where the measurements are taken both in the
darkness and when the seedlings are exposed to the visible 
light. The empirical data, visualized as points (the error bars
are also shown) in Fig. 2, are interpolated by the Lorentz-
like curve as defined in Eq. (12). Two main observations are
made: in the case of exposure to the light, the strong damping 

Figure 2. Experimental results: Elongation of maize (Zea mays L.) coleoptiles grown in the darkness (solid line) and in the day light (dot-
ted line) versus temperature for fixed times, fitted by a Lorentz-like distribution. The fitting parameters (Eq. (12)) have been estimated by
the non-linear regression procedure (Levenberg-Marquardt algorithm) with determination coefficient R2 ≅ 0.99.
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with advancing time occurs (flattening of the peak) (a), the
displacement of the peak maximum into lower temperatures 
appears (b). Taking also into account our empirical results as 
depicted in Fig. 3 we can make an interesting observation. 
The strongest light-induced growth damping is localized in
the close vicinity of its optimum temperature. Even though 
the biochemistry is not discussed in this paper (or rather 
it is implicit in the model equations) the observed peak 
in the dark/light ratio (Fig. 3) should be accounted for the 
temperature dependencies of enzymatic activity and protein 
denaturation.

Fig. 4. presents contour plots of the cell wall extensibility 
coefficient Φ(τ,t), as calculated by our model for elongation 
of maize coleoptile segments linearly perturbed by single 
application of growth regulators (IAA, CdCl2) or non-lin-
early perturbed by multiple application of the substances in 

Figure 3. The empirical values of growth (elongation in dark ÷
elongation in light) ratio in function of temperature. The relative
error has been estimated by the logarithmic method.

Figure 4. Contour plots (theory) of the calculated cell wall extensibility coefficient Φ(τ,t) [cm3J–1h–1] for maize coleoptile segments 
growing at different environmental conditions: growth stimulation by indole-3-acetic acid or inhibition by cadmium dichloride (in the
cases of linear or non-linear response). Horizontal axis – temperature τ (°C), vertical axis – time t (h).
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increasing concentrations (see Pietruszka et al. 2007). The
upper left plot presents the response of Φ to the action of the
stimulator which causes a moderate linear increase of Φ in 
function of time. Moreover we observe a narrowing of the 
crest at the optimum temperature. Meanwhile, an addition 
of the inhibitor causes a stronger damping of Φ with regard 
to the control (see the lower left plot in Fig. 4 and compare
with Fig. 5). The right upper and lower contour plots in
Fig. 4 represent results of our model calculations for Φ(τ,t) 
(through Eq. (16)) in the non-linear case. The absolutely dif-
ferent behavior has been found. Constantly added stimulator 
give raise to the steep exponential increase of Φ and widening 
of the hill along the time axis whereas action of the inhibitor 

causes the exponential decay. Moreover, in the case of ap-
plication of the inhibitor an apparently interesting solution 
seen as "bifurcation" for times grater than approximately one 
hour appears. This means that after implementation of con-
tinuously added inhibitor the crest of optimum temperature 
in Φ(τ,t) splits into two asymmetric branches.

In experiments performed in this study we were dealing 
with three-day-old seedlings of maize, however, the length 
of elongation zone of the coleoptiles was measured. In Fig. 5 
we present the result of our model calculations for the cell 
wall extensibility coefficient of maize in the case of growth in
darkness and exposure to the sun light. In the unperturbed 
experiment, Φ(τ,t) initially increases and after reaching the
maximum starts to decrease, though the changes are slight. 
A completely different picture results from our model cal-
culations for the extensibility coefficient of maize coleoptiles
exposed to the light (the right plots in Fig. 5). Both plots show 
clearly the strong influence of the external perturbation onto
plant growth and consequently also onto the extensibility Φ. 
The crest of optimum temperatures gains a curvature into the
lower temperature ranges with increasing time. Moreover, 
a closer examination of the figure reveals a relict of a high-
temperature edge crest. All contour plots have been obtained 
with the help of fitting results (Table 1).

Based on the continuity condition [Φ(τ,t1)]dark = 
[Φ(τ,t1)]light at the time instant t = t1 we have calculated next 
3D plot (see Fig. 6) of Φ in function of time t and tempera-
ture τ where the light, treated as an external perturbation, 
has been switched on at a certain time moment – here after
1.5 h from the beginning of experiment. The simulation
reveals the slight increase of Φ(τ,t) for the period of growth 

Figure 5. Contour plots (theory) of the calculated cell wall exten-
sibility coefficient Φ(τ,t) [cm3 J–1h–1] for seedlings growing in the 
darkness and in the day light. In the case of exposure to the sun 
light, the crest of the optimum temperatures pronouncedly tends to 
the lower temperatures with increasing time, however, a remnant 
of high-temperature edge crest is also noticeable.

Figure 6. The calculated extensibility coefficient Φ(τ,t) [cm3 J–1h–1] 
in function of time t and temperature τ. A characteristic kink at 
the time t = 1.5 h at which the investigated seed has been exposed 
to the day light is clearly visible.

0 10 20 30 40
Τ �0C�

0

0.5

1

1.5

2

2.5

3

t �h�

��Τ,t�, in the light

0 10 20 30 40
Τ �0C�

0

1

2

3

4

t �h�

��Τ,t�, in the darkness

0
10

20
30

40

Τ �0C�
0

2
4t �h�

0

0.005

0.01

� �Τ,t�

0
2

4� �



103Generalized phenomenological equation of plant growth

in the darkness (which is equivalent to the control) and the 
rapid exponential decay after exposure to the light. It is a
very interesting fact that the response to the light occurs 
almost immediately (without noticeable retardation), right 
after putting the light on.

Combination of Figs. 5 and 6 give rise to the following 
interpretation. Since turning the light on causes the exponen-
tial damping of the Φ coefficient at optimum temperatures
(as it is seen in Fig. 6) the growing young maize must un-
dergo some internal (biochemical) processes leading to the 
strong inhibition of the growth rate. Indeed, we encounter 
such situation in Fig. 5. Also, due to the absorption of energy 
for directed morphogenesis, and scattering (dissipation) of 
the light quanta, the internal raise of temperature inside the 
plant cell provokes the observed lowering of the optimum 
temperature crest in the direction of ascending time. 

Discussion

In this paper, we develop a simple but efficient physical model
of temperature dependence of plant cell growth. This model,
hereafter designed as a “generalized Lockhart equation”
(GLE), goes much further compared to its original form 
proposed by Lockhart (1965a,b), since the environmental 

temperature has been included. Moreover, by constructing 
our model equation as temperature dependent, we proceed 
next to involve into GLE all possible external physical and 
(bio)chemical factors influencing plant cell growth. Among
others, it accounts for the incident light (which investiga-
tion was of our main concern in this paper) and growth 
stimulators/inhibitors. Indeed, as we have mentioned in 
the introductory part of this paper, already the early studies 
concluded that radiant energy causes an inhibition in the 
rate of elongation and that light retards not only the rate 
of stem elongation but also causes reduction in the plastic 
extensibility of the cell walls. However, this is also the central 
point of this study: the inclusion of the black body radiation 
term into GLE (representing the interaction between the 
light quanta and photoreceptors) may successfully report on 
transient changes in plant cells when exposed to the light. 
Also the above mentioned reduction in extensibility can be 
described by GLE when proper terms are considered. Having 
in mind that the last two terms in Eq. (1), responsible for the 
light and external pressure, can be treated simultaneously 
– a suitable experiment can be projected and the outcoming 
data when introduced to our model can report on the me-
chanical properties of the cell wall (by calculating Φ(τ,t)). To 
sum up, we believe that GLE, when properly applied (via the 
Lorentz-like fit) to the empirical (elongation) data obtained

Table 1: Simulation parameters ϕ0, α and τ* obtained by fitting the Lorentz curve to the experimental data

after 1/2 h after 1h after 3/2 h after 2h
Unperturbed case ϕ0 = 23 ± 1 ϕ0 = 45 ± 3 ϕ0 = 69 ± 2 ϕ0 = 96 ± 3
maize coleoptile segments α = 5.1 ± 0.1 α = 5.5 ± 0.4 α = 5.7 ± 0.3 α = 6.1 ± 0.3
elongation [µm] τ* = 28.8 ± 0.3
Linear stimulation ϕ0 = 38 ± 2 ϕ0 = 68 ± 6 ϕ0 = 100 ± 5 ϕ0 = 127 ± 5
maize coleoptile segments α = 6.2 ± 0.5 α = 6.0 ± 0.6 α = 5.8 ± 0.6 α = 5.6 ± 0.4
elongation [µm] τ* = 28.7 ± 0.4
Linear inhibition ϕ0 = 11.6 ± 0.6 ϕ0 = 21.8 ± 0.7 ϕ0 = 32.2 ± 0.4 ϕ0 = 44 ± 2
maize coleoptile segments α = 3.9 ± 0.4 α = 4.1 ± 0.2 α = 4.3 ± 0.3 α = 4.5 ± 0.4
elongation [µm] τ* = 28.8 ± 0.4
Non-linear stimulation ϕ0 = 10.2 ± 0.8 ϕ0 = 29.6 ± 1.6 ϕ0 = 56 ± 2 ϕ0 = 103 ± 7
maize coleoptile segments α = 4.9 ± 0.5 α = 5.0 ± 0.5 α = 5.3 ± 0.5 α = 5.8 ± 0.6
elongation [µm] τ* = 29.1 ± 0.3
Non-linear inhibition ϕ0 = 10.2 ± 0.7 ϕ0 = 22 ± 2 ϕ0 = 31 ± 2 ϕ0 = 33 ± 3
maize coleoptile segments α = 4.9 ± 0.4 α = 6.4 ± 0.4 α = 7.3 ± 0.4 α = 7.6 ± 0.4
elongation [µm] τ* = 29.3 ± 0.4
„Dark“ case ϕ0 = 0.038 ± 0.002 ϕ0 = 0.070 ± 0.004 ϕ0 = 0.092 ± 0.004 ϕ0 = 0.116 ± 0.006
maize whole coleoptiles α = 9.0 ± 0.6 α = 8.4 ± 0.5 α = 8.2 ± 0.5 α = 8.1 ± 0.5
elongation [mm] τ* = 27.1 ± 0.2
„Light“ case ϕ0 = 0.013 ± 0.001 ϕ0 = 0.027 ± 0.002 ϕ0 = 0.042 ± 0.002 ϕ0 = 0.058 ± 0.003
maize whole coleoptiles α = 6.6 ± 0.5 α = 7.6 ± 0.6 α = 8.3 ± 0.6 α = 8.9 ± 0.7
elongation [mm] τ* = 29.3 ± 0.3 τ* = 28.6 ± 0.4 τ* = 26.6 ± 0.4 τ* = 25.5 ± 0.4

ϕ0 and α, the height and the width of the Lorentz-like curve, respectively; τ*, the optimum (critical) temperature of growth.
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by plant physiologists, can serve as a new versatile research 
tool which, in particular, can (indirectly) yield a theoretical 
insight into the problems of plant cell growth, also in the 
context of cell wall extensibility.

We are very well aware of the limitations of the equa-
tions we develop. Surely we are confined to the ’expansion’
component of growth and we do not refer to the cell pro-
liferation, however, this is a consequence of the fact that 
we go along the path proposed by Lockhart (1965a,b) is 
his equations. Also, the validity of our equation is limited 
to the non-dissipative temperature region (no membrane 
leakage) where the Lockhart equation holds. Even though 
the biochemistry is not discussed in this paper, it is implicit 
in the phenomenological functions which account for the 
effects like enzymes activity, protein synthesis, cell respira-
tion and biomass production. At this early stage of inves-
tigation, though, it would be useful to have an analytical 
model and accordingly – a computable description of cell 
stretching that correctly accounts for the way it depends 
on external factors such as light and/or phytohormones 
in the thermodynamical environment. Moreover, it is 
known that Φ is essentially the inverse of viscosity and 
that some hormones, like auxin, influence on viscosity.
Therefore, light and plant hormones might affect only Φ 
instead of P – Y. 

Appendix

The energy of irradiation ∆E as introduced in the main 
part of the paper by the integral over Planck’s distribution 
and over the whole optical spectrum (from 400 nm to 700 
nm, hereafter denoted as [OR] (optical range)) – may be 
considered as beneath.

Taking into account red/far red spectrum of the phyto-
chrome family actively contributing to the retardation of 
the cell/organ extension the expression for ∆E in V units 
takes on the form 

Tu je rovnica (17), autor dava aj variant (17a) pre pripad, ze by symbol medti integralmi 
robil problemy 
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where α ∈{R,FR} denotes the red (R) or far red (FR) frag-
ment of spectrum for the photoreceptor. The Dirac’s delta
function δ(ν - να) cuts out a desired frequency να from the 
continuous range. Thus

 (18)
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where ∆E is the total amount of energy absorbed by the 
phytochromes in the plant cell/organ. However, the absorp-
tion efficiency η is also temperature dependent and can be 
identified with the dark / light ratio, Fig. 3. In this study the
η parameter has been obtained by the normalization of this 
ratio such that η(τopt) = 1.
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