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Usefulness of substituted xanthines in reversal of 
multidrug resistance

Xanthine (3,7-dihydro-purine-2,6-dione) is a purine base 
found in most human body tissues and fluids and in other 
organisms. Substituted xanthines are compounds based on 
alkylated positions of the purine skeleton at N1, N3, N7 and 
C8 (Figure 1). Namely: caffeine, theophylline, theobromine, 
isobutylmethylxanthine (IBMX) and pentoxifylline (PTX), 
are favourite and often used in various experiments, moreo-
ver, they are very good tolerated by organisms.

These alkyl-xanthine derivatives were used in diverse 
applications, e.g. as: inhibitors of metabolism in sea urchin 
eggs (Nath and Rebhun 1976), suppressor of cytokine-
induced NO production via inhibition of the expression 
of inducible NO-synthase mRNA in macrophages (Traj-
kovic et al. 1997), hemorheologic agents (Porter et al. 

1982), improvers of circulatory failure in murine models 
of endotoxaemia (Wu et al. 1999), anti-inflammatory 
agents (Rao et al. 2005), nonspecific inhibitors of cyclic 
nucleotide phosphodiesterases (Nicholson et al. 1991). 
Moreover, alkyl-xanthine derivatives constitute nonspe-
cific phosphodiesterase inactivators – they increase the 
cyclic adenosine monophosphate (cAMP) level in the cells 
thus inhibiting the synthesis not only of TNF-α, but also 
of IL-1L , IL-6, and IL-8 (Han et al. 1990; Semmler et al. 
1993; Zabel et al. 1993; Neuner et al. 1994). However, other 
authors describe that xanthines have long been known for 
their effects on cellular Ca2+ homeostasis (Huddart and 
Syson 1975; Peterson et al. 1979; Deth et al. 1981; Jiang 
et al. 1984).

Xanthine derivatives have some pharmacological actions 
such as tracheal smooth muscle relaxant, positive chrono-
tropic and central nervous system-stimulating ones, which 
widely varied with the xanthine skeleton substituents (Takagi 
et al. 1988; Miyamoto et al. 1989, 1992, 1993, 1995; Sakai et 
al. 1992; Sanae et al. 1995). Sadzuka and co-workers (1993, 
1995, 1998, 1999, 2000, 2002, 2004) tested xanthine deriva-
tives based on 1,7-alkylated-3-n-propyl  xanthine skeleton as 
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biochemical modulators of DOX at P388 (leukaemic) and 
P388/DOX (resistance) cells, but the mechanism of action of 
these xanthine derivatives have not been clarified. Radiosen-
sitization of lung carcinoma cells by IBMX were compared 
with other alkyl-xanthines (Malki et al. 2006). IBMX was 
more potent than the derivatives without 3-isobutyl substitu-
ent (Figure 1) in radiosensitization of normal lung epithelial 
cells and the lung carcinoma cells stably transfected with 
wild-type p53. IBMX increased p53 protein level more than 
caffeine in lung carcinoma cells stably transfected with wild-
type p53. This suggests that 3-isobutyl-methylxanthine might 
function through a p53-dependent mechanism.

It is worth noticing that the ability of xanthine derivatives 
with long carbohydrate sidechain on N1 or/and N3 (e.g. PTX, 
PTX-UHM, Figure 1) to interfere in multidrug resistance 
(MDR) is not common for all tested xanthine derivatives 
(Dočolomanský et al. 2005) and could not be explained 
on the basis of known biological activities of substituted 
xanthines (such as inhibition of phosphodiesterase activity, 
inhibition of TNF-α synthesis, activation of calcium-induced 
calcium repase channels, etc.). MDR is a phenomenon when 
cancer cells became resistant to wide range of structurally 
and functionally various unrelated anticancer agents (Ling 
1997). The MDR phenotype is observed in rodent and human 

Figure 1. Xanthine skeleton (in the middle) and selected derivatives – substituted position R1, R3, R7 and R8. PTX-UHM, 1-undecylenyl-
3-heptyl-7-methyl xanthine – compound with aliphatic carbohydrate chains; MTT analogue, 1-ethyl-3-(2-hydroxyethyl)-7-(2-bromo-
4-methoxy-benzyl)-8-(2-hydroxy-cyclopenthylamino) xanthine – compound with non-aliphatic substituents.
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cell lines selected for resistance to a single anticancer drug 
(Litiman et al. 2001). This type of resistance is often caused 
by activity of drug efflux of ATP-dependent pump, called 
P-glycoprotein (P-gp, product of mdr1 and mdr3 genes). 
P-gp is an integral membrane protein (170 kDa) located in 
the cell plasma membrane and exports structurally diverse 
groups of substances out of cytoplasm (Kvačkajová-Kišucká 
et al. 2001; Wiese et al. 2001). However, the mechanism of 
MDR depression through partial or full suppression of P-gp 
transport activity by agents called chemosensitizers is not 
clear (Breier et al. 2005). Most chemosensitizers bind with 
transmembrane domain in P-gp, but steroids and flavonoids 

are new recently introduced chemosensitizers, which inhibit 
these transport proteins by binding with nucleotide-binding 
domain (Dayan et al. 1997; Consell et al. 1998).

Structure-activity relationship between substituted 
xanthines and target transporter

Structure-activity relationship studies attempt to iden-
tify complementary spatial features in ligand-receptor or 
xanthines-transporter interaction. The pharmacophore is 
defined as critical functional group in the ligand that is 

Figure 2. H-bond groups in substituted xanthine. Upper line: donor groups found in transmembrane amino acid sequences of P-gp in order of 
abundance. Lower line: acceptor groups in order of H-bond strength, in the middle is structure of possible H-bond in xanthine skeleton.
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responsible for creating biological response (Stouch et al. 
2002). A lot of information on substrate and P-gp interac-
tions has been gathered in the late 1970’s and they are based 
on multiple linear regression using a variable number of 
descriptors, e.g. lipophilicity (Penzotti et al. 2002), H-bond 
ability (Klopman et al. 1997; Ecker et al. 1999), molecular 
weight, size, and surface area (Eytan et al. 1999; Lentz et al. 
2000; Kupsáková et al. 2004), unsaturated rings (Zamora et 
al. 1988), etc.

Various attempts have been made to find a common set 
of structural features required for substrate to interact with 

P-gp. First, some experiments suggested the requirement 
of a basic nitrogen atom and two planar aromatic domains 
(Pearce et al. 1989). However, later observation showed 
that basic nitrogen is not essential. The nitrogen occurs 
in imines (-N=, pyroles, imidazoles and pyrimidines) and 
in substituted amines (-NR2) or amides; but, only tertiary 
and quaternary amines and N-methyl amides seem to be 
involved in an interaction with P-gp. The second, cluster of 
electron donor groups (H-bond acceptors) were observed 
in compounds, which are known to be substrates or modu-
lators of P-gp (e.g. electronegative atoms O, N, S, or F, Cl; 

Figure 3. H-bond acceptor patterns observed in P-gp substrates. In the middle: substituted xanthine skeleton with possible free electron 
pairs could satisfy type I or type II. Type I (2.5 ± 0.3Å), two electron donor units; type II (4.6 ± 0.6Å, outer groups), three electron donor 
units; R, heteroatoms or substituents.
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unshared electron pair; or unsaturated system with a π-
electron orbital) (Seelig et al. 2003) (Figure 2). The third, 
spatial distances among various electron donors (Seeleig 
1998; Pajeva et al. 2002; Penzotti et al. 2002; Globisch et al. 
2006) are resulted into two types of pattern. The type I units 
are formed by two H-bond acceptor groups with a spatial 
separation 2.5 ± 0.3Å. Type II units are formed either by 
three H-bond acceptor groups separated from each other 
by 2.5 ± 0.3Å, with a spatial separation of the outer two ac-
ceptor groups of 4.6 ± 0.6 Å; or by only two H-bond accep-
tor groups with a spatial separation 4.6 ± 0.6 Å (Figure 3). 
Calculated spatial distances among electron donor groups 
in the selected xanthine derivatives homologate them to 
the type of a pattern I unit and II unit (Dočolomanský et al. 
2009). Recently, a 2.5 nm resolution structure of P-gp was 
obtained by electron microscopy and single-particle image 
analysis (Rosenberg et al. 1997). In the P-gp molecule there 
is a large central pore, ~5 nm in diameter, which is closed at 
the inner (cytoplasmic) side of the plasma membrane (Bosch 
and Croop 1996). The aim of research is to reveal the putative 
role of the interaction of some chemosensitizers with the lipid 
phase in the mechanism of drug resistance reversal caused by 
these compounds. The interactions of MDR modulators with 
phospholipid liposomes and multilamellar lipid structures 
were studied using fluorescence spectroscopy, absorption 
spectroscopy and differential scanning microcalorimetry 
(Ford et al. 1989).

The interactions of transported drugs with the lipid 
bilayer and P-gp through a solvation exchange mechanism 
(Omote and Al-Shawi 2006) were postulated by molecular 
dynamic (MD) simulation and drug transport was illus-
trated in detail. Using MD simulation they predict impor-
tant parameters (H-bond interaction energies) that are not 
directly measurable and provide a compelling link between 
the rate of transport and the H-bonding potential of the 
substrates. However, this model goes beyond descriptive 
and provides new mechanistic insight into drug transport 
(Seelig 2006).

Substituted xanthines by long aliphatic side chain ful-
fill above constellate molecular model as modulators or 
chemosensitizers, but mechanism of multidrug resistance 
influencing is not resolved yet.
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