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A mechanistic interpretation of root transport of water
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Abstract. The present paper offers a mechanistic interpretation of filtration coefficients Lpr in 
isolated maize roots, measured with the use of the root pressure probe by Steudle and others 
(Steudle 1990, 1992; Steudle and Brickmann 1989; Steudle and Frensch 1989; Steudle and Jeschke 
1983; Steudle et al. 1993) on the basis of the Kedem-Katchalsky equations. Detailed investigations 
have been based on the mechanistic equations of solute and solvent membrane transport across 
porous membranes (Kargol 2001; Kargol and Kargol 2003a,b). It must be stressed that transport 
equations of both these (thermodynamic and mechanistic) formalisms are mutually compatible, 
which has been demonstrated for instance in the works Kargol and Kargol (2003) and Suchanek 
(2005, 2006).
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Introduction

In the 1970s, it was demonstrated (Fiscus and Kramer 1975) 
that the root – even if isolated from the rest of the plant – is 
capable of water uptake and transportation through the 
xylem against gravity. This phenomenon (the so-called 
root pressure) may be described if the root is treated as an 
osmometer equipped with a selective membrane. Water is 
driven across the osmometer membrane by filtration and 
osmosis, in accordance with thermodynamic equations of 
the Kedem-Katchalsky (KK) membrane transport (Kedem 
and Katchalsky 1958, 1961; Katchalsky and Curran 1965). 
These equations define the measurable coefficients (Lpr, 
σr, ωr) which characterise the root membrane (the index r 
refers to the root), with the assumption that the membrane 
is homogenous in terms of transport properties. In the 
1980s and 1990s, the parameters Lpr, σr, ωr were determined 
experimentally for isolated roots of various plants with the 
use of several measurement techniques (Steudle and Jeschke 
1983; Steudle et al. 1987, 1993; Steudle and Brickmann 1989; 
Steudle and Frensch 1989; Steudle 1990, 1992).

In the present article, only the filtration coefficients Lpr 
of isolated maize roots are considered, as determined by 
Steudle and others with the use of the so-called root pres-
sure probe (Steudle and Frensch 1989; Steudle et al. 1993, 
1987). These coefficients determine hydraulic conductivity 
of the roots, thus characterising root water transport. The 
data published in Steudle and Frensch (1989) and Steudle et 
al. (1987) represent outstanding quality. They are also very 
interesting due to the fact that they cannot be unambiguously 
interpreted basing on the above-mentioned one-membrane 
root model.

From the KK formalism (which has provided the basis 
for the experiment) it follows that the values of independ-
ent parameters (Lpr, σr, ωr) of the root membrane are not 
dependent on measurement methods. Yet the measurements 
taken with the use of the root pressure probe showed that 
the values of the root filtration coefficients Lpr are clearly 
dependent on the type of stimulus (hydrostatic or osmotic) 
which induced the radial flow of water through the root. 
According to Steudle, these results demonstrate the struc-
tural complexity of the root which is not formulated by the 
single-membrane model (Steudle and Jeschke 1983; Steudle 
et al. 1987, 1993; Steudle 1990, 1992).

The present author believes that an additional reason for 
the said discrepancy between the model and the experiment 
may be high generality of the formalism applied to data de-
scription (in this case, the thermodynamic KK equations). 
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That is why an alternative description of root transport 
should be provide using mechanistic equations which make 
allowances for the microscopic structure of the root mem-
brane and are more detailed than the KK equations. Both 
these approaches (the thermodynamic and the mechanistic), 
applied jointly, offer a more thorough investigation tool than 
the KK equations alone, on condition of mutual compatibility 
of both descriptions (Kedem and Katchalsky 1961; Katchal-
sky and Curran 1965; Suchanek 2005, 2006).

In the present article, the author attempts to approach 
the root as an osmometer equipped with a membrane of 
a certain (porous) structure, heterogeneous in terms of its 
transport properties. In this model, water and the solute 
move from the root’s environment into its interior across 
the pores with varied cross-section radiuses. The dimen-
sions of some of these pores are too small to contain solute 
particles (hence they are semi-permeable). The remaining 
pores (with larger dimensions) are permeable to solute 
particles. The membrane transport is also subject to the 
Kargols mechanistic equations (Kargol 2001; Kargol and 
Kargol 2003a,b) which – as has been demonstrated (Kargol 
and Kargol 2003a,b; Suchanek 2005, 2006) – are mutually 
compatible with the KK equations. Basing on the model of 
a root as a porous membrane, an explanation shall be offered 
for the above-mentioned relationship of the root filtration 
coefficients and the method of their measurement.

Results

Root filtration coefficients determined by the root pressure 
probe

According to the literature (Fiscus and Kramer 1975; Steudle 
1990, 1992; Steudle and Brickmann 1989; Steudle and Fren-
sch 1989; Steudle and Jeschke 1983; Steudle et al. 1987, 1993), 
the root is permeable (to a certain extent) for some mineral 
salts, apart from water. Thus, the single model membrane is 
a selective membrane, and the root transport is formulated 
by the KK equations (Kedem and Katchalsky 1958, 1961; 
Katchalsky and Curran 1965):

xgrprxgprvr LLJ 
��
�	 �    (1)

xgrvrsrsr Jc)(j 
���	 ��1  (2)

where Jvr, jsr are water and solute flows, respectively, moving 
across the root; ΔPxg, ΔΠxg are pressure differences between 
the xylem (x) and the medium (g); Lpr, σr, ωr are practical 
root coefficients.

From Eq. (1) it follows that the root filtration coefficient 
Lpr, which characterises root permeability to water, can be 
measured in two ways:
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mined separately.
As the coefficients Lpr, σr, ωr in Eqs. (1) and (2) are mutu-

ally independent, the value of the coefficient Lpr should not 
depend on the measurement method (3).

More precisely, the filtration coefficients Lpr of isolated 
roots of various plants have been measured with the use 
of the root pressure probe connected to the tip of the root 
excised from the rest of the plant (Steudle and Jeschke 1983; 
Steudle et al. 1987, 1993; Steudle and Brickmann 1989; 
Steudle and Frensch 1989; Steudle 1990, 1992). In these 
experiments, the volume flow Jvr (t) and pressure differ-
ences ΔPxg(t), ΔΠxg(t) change in time, and Eqs. (1) and (2) 
take the differential form, while the coefficients Lpr, σr, ωr 
remain constant.

In the experiments conducted by Steudle and others 
(under precisely specified conditions), the value of root 
pressure (Pro) was initially determined. Subsequently, with 
the use of the probe, over a short period of time, the hy-
drostatic pressure in the xylem was increased or decreased 
(so-called hydrostatic experiments), or the medium concen-
tration was changed (osmotic experiments). In this way, the 
water volume flow Jvr(t) was induced between the medium 
and the root xylem, which consequently brought a change in 
the xylem hydrostatic pressure. This pressure exponentially 
decreased (or increased) in time (Fig. 1), and its changes 
were recorded in a constant manner by the pressure probe 
in the form of the so-called pressure relaxation curve. This 
curve illustrates the process of the root-probe system reach-
ing a state of equilibrium.

In hydrostatic experiments, from the courses of relaxa-
tion curves, conclusions were drawn as to the values of the 
filtration coefficient hydro

prL . In osmotic experiments, in turn, 
these curves reflected two phases of the experiment. The first 
(so-called “water” phase) corresponded to rapid movement 
of water as driven by the osmotic pressure difference between 
the medium (i.e. solutions of selected solutes) and the root 
xylem. The second, later “solute” phase corresponded to the 
water flow as driven by diffusion of the solute to (or from) 
the xylem. From the “water” phase, the product r

osmo
prL �  was 

determined, and from the “solute” phase – the coefficients 
σr and ωr.

Table 1 shows standard values of filtration coefficients Lpr 
as obtained with the use of the pressure probe (Steudle et al. 
1987, 1993; Steudle and Frensch 1989) It can be seen that 
the filtration coefficients hydro

prL  of various roots (determined 
in hydrostatic experiments) exceed by almost one order of 
magnitude the coefficients osmo

prL  (measured in osmotic ex-
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periments). The observed inequality hydro
pr

osmo
pr LL �  does not 

result from application of the KK formalism.
In the present article, the above data, based on a single-

membrane root model in which the membrane has a porous 
structure are analysed. To begin with, basic information on 
water and solute transport across this type of membrane 
are presented.

Transport across a porous membrane

Let us consider a porous membrane M (Fig. 2), which sepa-
rates solute (s) solutions, diluted and well-stirred. Across this 
membrane, driven by the mechanical pressure difference 
(ΔP) and the osmotic pressure difference (ΔΠ) on both sides, 
the solvent volume flow (Jv ≈ Jvw) and the solute volume flow 
js pass, both directly proportional to pressure differences. The 
flows Jv and js (defined in a manner identical to that of the KK 
formalism) move across the pores with varied cross-section 
radiuses, which are placed randomly within the membrane. 
Water permeates across all the membrane’s pores, while the 
solute (s) – only across those whose radiuses are larger than 
the radius rs of the solute particle.

The membrane M in Fig. 2 has been conventionally di-
vided into Part (a), in which the pore radiuses fulfil the rela-
tion r < rs, and Part (b), where the relation r > rs is valid. The 
pores in Part (a) of the membrane constitute an impenetrable 
barrier for solute (s) particles, hence they are semi-perme-
able and may be (locally) assigned the reflection coefficient 
σa = 1. The pores in Part (b) of the membrane, across which 
both water and the solute (s) diffuse, are to be assigned the 
local reflection coefficient σb = 0. The membrane is selective 
if it contains both types of pores. Then the global reflection 

Figure 1. Model of the root as a porous membrane. M, root membrane; Πx and Πg, osmotic pressures in the medium and in the xylem, 
respectively; Jvra and Jvrb, water volume flows across the semi-permeable (a) and permeable (b) parts of the membrane; Jvr(t), total volume 
flow across the membrane; Pro , root pressure at the outset of the experiment; ΔPxg (t), mechanical pressure in the xylem as recorded by 
the pressure probe (the top left-hand corner shows a sample relaxation curve as recorded in the osmotic experiment – the “water phase” 
(Steudle at al. 1993).

Table 1. Reflection coefficients σr of excised maize root for differ-
ent solutes, measured using the root pressure probe

Medium σr References
Etanol 0.3

Steudle and Frensch (1989)KCl 0.5
KNO3 0.5
Mannitol 0.74

Steudle et al. 1987Sacharoza 0.54
PEG 1000 0.82
NaCl 0.64 Steudle et al. 1993

Filtration coefficients osmo
prL  (osmotic) and hydro

prL  (hydrostatic) for 
different solutes are in the range 0.85–2.27 and 1.9–8.9 ms–1MPa–1, 
respectively.
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coefficient of the membrane fulfils the inequality 0 < σ < 1 
(despite the fact that local reflection coefficients of the pores 
only equal σa = 1 or σb = 0).

Transport across this membrane is described by the 
Kargols mechanistic equations (Kargol 2001; Kargol and 
Kargol 2003a,b). It has been demonstrated that these equa-
tions are fully compatible with the KK equations (Kargol 
and Kargol 2003a,b; Suchanek 2005, 2006). Because in both 
(thermodynamic and mechanistic) approaches, the stimuli 
and the flows are defined in the same way, the practical coef-
ficients Lp, σ, ω of the KK equations may be compared to 
corresponding proportion coefficients in the mechanistic 
equations. In this way, a complete description of transport 
across porous membranes is obtained. The description 
(Suchanek 2005) also includes mechanistic equations in 
the following form:


��
�	 �ppv LLJ  (4)


��
��	 dps )(Lj ��1  (5)

as well as the mechanistic notation of the coefficients Lp, σ, 
ωd of the porous membrane written as follows:

pbpap LLL �	 ,
p

pa

L

L
	�   (6a)

Dsd Lc	�  and )(Lc psd �� �� 1   (6b)

where Lpa, Lpb are filtration coefficients of Parts (a) and (b) 
of the root membrane, respectively; ωd is the practical coef-
ficient which formulates diffusion of the solute permeating 
across the pores (b) only; LD is the phenomenological dif-
fusion coefficient.

Equations (6) demonstrate that the practical coefficients 
Lp, σ, ω of the porous membrane may be expressed through 
the filtration coefficients Lpa, Lpb of the semi-permeable 
Part (a) and permeable Part (b) of the membrane, respec-
tively. It can be seen that the total filtration coefficient Lp 
of the porous membrane equals the sum-total of filtration 
coefficients in both parts ((a) and (b)) of the membrane. The 
reflection coefficient σ, which formulates membrane selectiv-
ity with respect to the solute, depends on the relative content 
of semi-permeable pores in the membrane. The coefficient σ 
of a semi-permeable membrane (for which Lp = Lpa) equals 
one, while σ of a permeable membrane (for which Lpa = 0) 
equals zero.

Mechanistic interpretation of root filtration coefficients Lpr

Below it is demonstrated that an inequality hydro
pr

osmo
pr LL �  may 

be explained with the use of the mechanistic approach to root 
transport. To this end, a root model will be used (Fig. 1), in 

which the porous membrane emulates the entire root tissue 
between the medium and the stele xylem.

According to this model, radial root transport is for-
mulated using the mechanistic equations (1, 2, 3). Water 
transport across the root is described by the relations:

xgrprxgprvr LLJ 
��
�	 �  (4’)

prbprapr LLL �	   (6’a)

pr

pra
r L

L
	�  (6’b)

where ΔPxg and ΔΠxg are pressure differences between the 
root xylem (x) and the medium (g); r indicates the root. It 
is assumed that the volume flow in Eq. (4’) approximates 
the resultant water volume flow across the root membrane 
(Jv ≈ Jvr).

Upon insertion of expressions (6’a) and (6’b) into Eq. (4’), 
the following formula for the resultant radial water volume 
flow Jvr which flows through the root is obtained:

xgpraxgprbpravr L)LL(J 	
��
��	  
(7)

vrbvraxgprbxgxgpra JJPL)(L �	
�
��
�	

where Jvra = Lpra(ΔPxg – ΔΠxg) is the (water) volume flow 
across the semi-permeable Part (a) of the porous root 
membrane; Jvrb = LprbΔPxg is the flow across the permeable 
Part (b) of the membrane.

Figure 2. Model membrane system. M, heterogeneous membrane; 
Δx, membrane thickness; K, capillary; (1) and (2), compartments; 
Π1 and Π2, osmotic pressures; P1 and P2, mechanical pressures; 
Jva and Jvb, volume flows permeating across Parts (a) and (b) of 
the membrane; rw, rs, ri, rN

m  ax– pore radiuses; 2 rs, diameter of the 
solute particle; js, „net” solute flow.
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From Eq. (7) it follows that the flow is the sum-total of 
partial flows Jvra and Jvrb which pass across Parts (a) and (b) 
of the root membrane, respectively. The flow Jvra depends on 
mechanical and osmotic pressure differences on both sides 
of the membrane, while the flow Jvrb depends exclusively on 
the mechanical pressure difference.

Now, the expression (7) will be applied to the description 
of transport phenomena which occur during the measure-
ment of the filtration coefficients Lpr in hydrostatic and 
osmotic experiments. Let us remember that in both types of 
experiments, conducted with the use of the pressure probe, 
at the outset, the “equilibrium” value of root pressure (Pro) 
was determined in the stele xylem (Steudle and Jeschke 
1983; Steudle et al. 1987, 1993; Steudle and Brickmann 1989; 
Steudle and Frensch 1989; Steudle 1990, 1992).

In the hydrostatic experiment, at the moment to, over 
a short time, the pressure Pro was increased (or decreased) by 
the quantity ΔPxg(to). The difference then lessened exponen-
tially to zero and, after a certain time t = ts, the root returned 
to the state of equilibrium. As the change occurred rapidly 
(Steudle and Jeschke 1983; Steudle et al. 1987, 1993; Steudle 
and Brickmann 1989; Steudle and Frensch 1989; Steudle 
1990, 1992), it may be assumed that in its course the osmotic 
pressure difference between the xylem and the medium did 
not change significantly (Πxg ≈ const, i.e. ΔΠxg(t) ≈ 0, where 
t is time). The radial water flow Jvr(t) across the root and 
the mechanical pressure difference ΔPxg(t) in the xylem are 
functions of time, but the coefficient Lpr, which connects 
both these values, remains constant.

In accordance with the definition (3) and the relation (7), 
the following is obtained:
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In the hydrostatic experiment, it can be seen that both 
partial flows (Jvra and Jvrb ) move in the same direction, so 
the resultant flow (Jvr(t) = Jvra(t) + Jvrb(t)) formulates the 
entire water transport across the root membrane. Therefore, 
this expression proves that the filtration coefficient hydro

prL , as 
determined in the hydrostatic experiment, represents the 
total filtration coefficient Lpr of the root membrane.

In the osmotic experiment (in its “water” phase), the root 
pressure Pro is disturbed as a result of occurrence (at the 
moment to) of the non-equilibrium osmotic pressure differ-
ence ΔΠxg(to) . While returning to the state of equilibrium 
(to be more precise, to the stationary state), the root acts as 
an osmometer with a porous membrane.

At σr = 1 (i.e. when the membrane is semi-permeable), 
prpra

osmo
pr LLL 		 , i.e. the coefficient osmo

prL

�

 is the total root 
filtration coefficient. This situation is observed when, for 
instance, the solution of PEG 1000 is used as the medium. 
Yet, at σr ≠ 1, the coefficient osmo

prL

�

 (understood as a value 
independent of σr) has no explicit mechanistic interpretation. 
This is visible when the behaviour of the root-probe system 
is described with the following expression:
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From this formula, it follows that at the moment to there 
exists no non-equilibrium hydrostatic pressure difference 
between the medium and the root xylem ( 0	
 o

xgP

�

). Yet the 
osmotic flow Jvra (t), when entering the xylem through the 
semi-permeable pores (a) of the root membrane, generates 
the hydrostatic pressure difference ΔPxg(t) on it, recorded 
by the pressure probe. This difference drives the water flow 
Jvrb(t) across the permeable pores (b) of the membrane from 
the xylem to the root’s surroundings. It also reduces the 
flow Jvra(t), induced by the pressure difference (ΔΠxg(t) − 
ΔPxg(t)), which enters the xylem. In this way, across the root, 
there are two simultaneous partial flows in opposite direc-
tions, and the resultant water volume flow (at any moment) 
equals their difference (Jvr(t) = Jvra (t) − Jvrb (t)). As has been 
shown, in the “water” phase of the osmotic experiment, the 
course of the function ΔPxg(t) as recorded by the probe, 
depends on the relative content of semi-permeable pores in 
the root membrane, i.e. membrane selectivity. In this situa-
tion, the coefficient osmo

prL

�

 does not express the total hydraulic 
conductivity (Lpr) of the root membrane, despite the fact that 
during the experiment the water flows through all its pores. 
While comparing the expressions (8a) and (8b), it can be 
seen that – in the mechanistic approach – the coefficients 

pr
hydro
pr LL 	

�

 and osmo
prL

�

 are not equal, unless the membrane 
is semi-permeable.

In my opinion, in the osmotic experiment, it is impossible 
to isolate the parameter osmo

prL

�

 which would simultaneously 
constitute a measure of filtration properties of the root and 
be independent of the membrane’s selective qualities with 
respect to the solute. A more explicit value seems to be the 
product pra

hydro
prr LL 	�

�

, which represents (on the strength of 
the relation (6’)) the filtration coefficient Lpra of the semi-
permeable Part (a) of the root membrane. Most probably, it 
expresses the hydraulic conductivity of the pathway along 
which the water – on its way to the xylem – passes through 
the membranes of root cells.

To conclude, from the mechanistic viewpoint, in hydro-
static experiments, the global filtration coefficient of the 
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root membrane (Lpr) is determined, but the understanding 
of the reflection coefficient σr enables the calculation of the 
filtration coefficient (Lpra) for the semi-permeable part of 
the membrane.

Discussion

The present article has drawn on the measurement results 
of filtration coefficients Lpr of isolated roots, obtained in the 
1980s and 1990s by Steudle and others, with the use of the 
root pressure probe (Steudle et al. 1987, 1993; Steudle and 
Frensch 1989). The objective has been to explain the diversi-
fication of values of the maize root coefficients Lpr depending 
on whether they were determined through “hydrostatic” or 
“osmotic” experiments.

In the present paper, it has been assumed that the root – in 
the course of water uptake from the environment – acts as an 
osmometer with a porous membrane, and that root transport 
fulfils the mechanistic Eqs. (4), (5) and (6). Basing on this 
model, water root transport has been analysed in both types 
of the above-mentioned experiments conducted with the use 
of the root pressure probe.

It has been found that in the “water” phase of the hydro-
static experiment, water moves across all the pores ((a) and 
(b)) of the root membrane in the same direction (Jvr(t) = 
Jvra (t) + Jvrb(t)). Hence, the coefficient hydro

prL

�

, as measured 
in this experiment, expresses the total hydraulic capacity of 
the root membrane. Thus it is identical with the resultant 
root filtration coefficient Lpr.

In the osmotic experiment, in turn, the resultant water 
volume flow, at any moment, equals the difference of the 
partial flows (Jvr(t) = Jvra(t) − Jvrb(t)) and depends on 
the relative quantity of semi-permeable pores in the root 
membrane, i.e. membrane selectivity with respect to the 
solute. A comparison of the expressions (5a) and (5b) 
demonstrates that in the mechanistic approach the coef-
ficients 

�

pr
hydro
pr LL 	  and 

�

osmo
prL  cannot be equal, with the 

exception of the case when the coefficient σr of the mem-
brane equals 1. The membrane is then semi-permeable 
and 

�

pr
osmo
pr

hydro
pr LLL 		 . In other cases, the coefficient osmo

prL  
does not formulate the total volume of the water which 
flows through the membrane over a unit of time and is not 
equal to the coefficient Lpr. To conclude, according to the 
mechanistic approach, the total root filtration coefficient 
(Lpr) is determined in hydrostatic experiments, and not in 
osmotic ones.

An explicit mechanistic interpretation is attached to the 
product hydro

prr L� , which is equal to the filtration coefficient 
Lpra of the semi-permeable pores of the root membrane, as 
well as the reflection coefficient of the root (σr) as a ratio of 
the filtration coefficient of the membrane’s semi-permeable 
part (Lpra) to the filtration coefficient of the membrane 

(Lpr) as a whole. For most solutes (see Table 1), the ratio 
approximates 1/2.

The above findings, in the author’s opinion, enhance 
the precision of the image of root water transport, without 
excluding previous interpretations. Steudle believed that the 
inequality osmo

pr
hydro
pr LL �  proves the existence of alternative 

root transport pathways characterised by various perme-
ability for water moving across the root (Steudle and Jeschke 
1983; Steudle et al. 1987, 1993; Steudle 1990, 1992).

In the mechanistic approach, the assumption concerning 
the (porous) structure of the root is an indispensable part of 
root transport description. However, selection of appropri-
ate root structures to act as the pores (a) and (b) of the root 
membrane remains an open question. These may be both 
macroscopic structures (e.g. various water root pathways), 
and microscopic structures (e.g. plasmodesmas which join 
successive cells of the bark) of varying hydraulic capacity.

Finally, let me take a stand on the general problem, i.e. 
the role of the KK formalism in biophysical investigations. 
The KK equations were developed on the basis of phe-
nomenological thermodynamics of irreversible processes 
(Kedem and Katchalsky 1958, 1961; Katchalsky and Cur-
ran 1965), with the assumption that the model membrane 
is a thermodynamic “black box”. Due to that, they are very 
general, which is both their considerable advantage and 
disadvantage. On the one hand, the application scope of 
the KK equations is very broad (as it covers both natural 
and artificial membranes), and the quantity of experimental 
data obtained on this basis is enormous. The possibilities 
of theoretical and experimental application of these equa-
tions to biophysical issues are limited and being gradually 
exhausted. Consequently, the KK equations are used less and 
less frequently. Due to that, access to the vast experimental 
output obtained on the basis of these equations over several 
decades is becoming increasingly limited.

The present author believes that this output – not infre-
quently characterised by excellent quality – holds a much 
larger research potential than it would follow from the KK 
equations themselves. Namely, the results of these investi-
gations may be reconsidered, treating the KK formalism as 
a thermodynamic model in its own right. Mechanistic mod-
els make allowances for the structure of model membranes, 
and microscopically formulate transport mechanisms, while 
the equations which describe them are more detailed than 
the KK equations. The description of the model based on 
the general KK equations may be compared (according to 
precisely defined principles (Kedem and Katchalsky 1961; 
Katchalsky and Curran 1965; Suchanek 2005, 2006)) with 
its mechanistic description. This enables a more detailed 
interpretation of data (obtained previously on the basis of 
the KK formalism), which expands the scope of phenomena 
liable to quantitative description. In the present paper, we 
have attempted to prove this on the basis of biophysical in-
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vestigations into root water transport. Still, we are convinced 
that the scope of research to which this procedure may be 
applied is much broader.
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