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Nitric oxide – the endothelium-derived relaxing factor and its role  
in endothelial functions

Viktor Bauer and Ružena Sotníková

Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia

Abstract. Vascular endothelium plays a key role in the local regulation of vascular tone and vascular 
architecture by release of vasodilator and vasoconstrictor substances, as well as factors with pro-co-
agulant, anticoagulant, fibrinolytic, antibacterial properties, growth factors, chemokines, free radicals,
etc. Release of endothelium-derived relaxing factors such as nitric oxide (NO), prostaglandins and 
endothelium-derived hyperpolarizing factor, as well as vasoconstricting factors such as endothelin, 
superoxide and thromboxanes play an influential role in the maintenance and regulation of vascular
tone and the corresponding peripheral vascular resistance. Under physiological conditions, the release 
of anticoagulant and smooth muscle relaxing factors exceeds the release of other substances. The first
part of this review presents the functions of the endothelium itself, the nature of the endothelium-de-
rived relaxing factor, its production by NO synthases, mechanisms of its action via activation of soluble 
guanylyl cyclase and production of cyclic 3’-5’-guanosine monophosphate. The resulting biological
effects include vasodilatation, regulation of vessel wall structure, increased regional blood perfusion,
lowering of systemic blood pressure, antithrombosis and antiatherosclerosis effects, which counteract
the vascular actions of endogenous vasoconstrictor substances. Impaired endothelial function, either as 
a consequence of reduced production/release or increased inactivation of endothelium-derived vasodila-
tors, as well as interactions of NO with angiotensin, reactive oxygen species and oxidized lipoproteins, 
has detrimental functional consequences and is one of the most important cardiovascular risk factors. 
Therefore the second part of this review assesses the pathophysiologic impact of the endothelium in
examples of cardiovascular pathologies, e.g. endotheliopathies caused by increased angiotensin produc-
tion, lipid peroxidation, ischemia/reperfusion or diabetes.

Key words: Endothelium — Endothelium-derived factors — Angiotensin — Lipid peroxidation 
— Ischemia/reperfusion — Diabetes — Endotheliopathies

Abreviations: A, adrenaline; AA, arachidonic acid; Aβ, amyloid β; A 23187, Ca2+ ionophore; ACi/a, 
adenylate cyclase inactive/active; ACE, angiotensin converting enzyme; Ach, acetylcholine; ADMA, 
asymmetric dimethylarginine; AGEs, advanced glycation end-products; Akt, serine/threonine protein 
kinase; AMPK, adenosine monophosphate-activated protein kinase; ATI/II, angiotensin I/II; AT1,2,4, angi-
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extracellular signal regulated kinase; ET, endothelin; ETB,2, endothelin receptors; FAD/FMN, flavinadenine
dinucleotide/flavinmononucleotide;GLUT-4,glucose transporter;GMP,guanosinemonophosphate;GPx,
glutathione peroxidase; GSNO, nitroso-L-glutathione; GTP, guanosine-5’-triphosphate; HDL, high-density 
lipoprotein; H2O2, hydrogen peroxide; Hi, histamine; H1,2, histamine receptors; HIF, hypoxia inducible 
factor; Hsp90, heat shock protein; 5-HT, serotonin; ICAM-1, intercellular adhesion molecule-1; IDE, 
insulin-degrading enzyme; IFN-γ, interferon-gamma; IL6, interleukin 6; iNOS, NOS2, inducible nitric 
oxide synthase; IP2, inositol-4,5-bisphosphate; IP3, inositol-l,4,5-trisphosphate; I/R, ischemia/reperfusion; 
IRF-1, interferon regulatory factor 1; IRS-1, insulin receptor substrate; KCa, Ca2+-dependent potassium 
channels; LPO, lipid peroxides; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattract-
ant protein-1; MPT, mitochondrial permeability transition pore; NA, noradrenaline; NADPH/NADPH+, 
reduced/oxidized nicotinamide adenine dinucleotide phosphate; NF-kB, nuclear factor kappa B; NF-κB, 
nuclear factor kappa-light-chain-enhancer of activated B cells; NO, nitric oxide; •NO, nitric oxide radical; 
NOS, NO synthase; nNOS, ncNOS, NOS1, neuronal nitric oxide synthase; O2

•–, superoxide anion radi-
cal; ONOO•–, peroxynitrite; oxLDL, oxidized low-density lipoproteins; PhE, phenylephrine; PAF, platelet 
activating factor; PDE5, phosphodiesterase E5; PDK-1, pyruvate dehydrogenase kinase isozyme 1; pGC, 
particulate guanylate cyclase; PGD2, PGE2, 6-keto PGF1, PGH2, prostaglandins; PGI2, prostacyclin; PI, 
phosphatidyl inositol; PI3-Ki/a, phosphatidylinositol 3-kinase inactive/active; PKA/C/G/I, protein kinases 
A/C/G/I; PKB, PI3-kinase/Akt (active human protein kinase); PLC, phospholipase C; PPAR-α, peroxi-
some proliferator-activated receptor α; RNS, reactive nitrogen species; RSH, glutathione; ROS, reactive 
oxygen species; ROC/VOC, receptor/voltage operated Ca2+ channels; RSNO, S-nitrosothiols; Ser, 
Serine; sGCi/a, soluble guanylate cyclase inactive/active; SNO albumin, S-nitroso-albumin; SNO Hb, 
S-nitrosohemoglobin; SP, substance P; SR, sarcoplasmic reticulum; TD2, type 2 diabetes; THB4, (6R)-
5,6,7,8-tetrahydrobiopterin; Thr, threonine; Tr, thrombin; Trx, thioredoxin; tPA, tissue plasminogen
activator; TNFα, tumor necrosis factor α; TxA2, thromboxane A2; VEGF, vascular endothelial growth 
factor; VCAM-1, vascular cell adhesion molecule-1.

Introduction

The high incidence of cardiovascular diseases has become
a worldwide problem. According to statistical data, they are the 
most frequent cause of death. Atherosclerosis and its compli-
cations commonly become seriously symptomatic only when 
interfering with coronary, cerebral or other tissue circulation. 
They are considered to be the most important causes of strokes,
heart attacks, various heart diseases, including congestive heart 
failure, and of most cardiovascular diseases accompanying 
other illnesses, such as diabetes mellitus, rheumatic disease, etc. 
Moreover, several pathological conditions including diabetes 
mellitus, chronic inflammations, and hypercholesterolemia,
promote disruption of the homeostatic mechanisms of the 
endothelial protective barrier. These result in an increased adhe-
siveness of the endothelium to leukocytes, altered permeability 
of the endothelium, and consequently in enhanced reactivity of 
the adjacent vascular smooth muscle. The discovery that nitric
oxide (NO), an air pollutant, serves as a mediator of biological 
processes has been one of the most remarkable advances in 
biomedical research at the end of the last century. Over the 
past two to three decades, a number of studies have implicated 
that this simple molecule is involved in various physiological 
and pathophysiological processes. In this article we provide 
a comprehensive review on the endothelium derived relaxing 
factor NO and its role in endothelial function.

The endothelium

Although already in 1966 Florey suggested that “vascular 
endothelium is more than a simple layer of cellophane com-
posed of cells”, its importance in physiological functions of 
the cardiovascular system was uncovered only during the 
last decades. This thin layer of cell line covers the interior
surface of blood vessels of the entire circulatory system 
(about 5 000 m2), from the heart to the smallest capillary. It 
comprises about 2% of the mass of the human body. The en-
dothelium with subendothelium form an interface between 
circulating blood in the lumen of vessels and the rest of the 
vessel wall. As a selective barrier between the blood and 
the surrounding tissues, intact endothelium mechanically 
separates platelets and their pro-coagulant products from 
intravascular, subendothelial and tissue coagulation fac-
tors, and it also inhibits pro-coagulant proteins (Eisenberg 
1991). It controls the passage of materials and the transit of 
white blood cells into and out of the bloodstream, reduces 
turbulence of the flow of blood, allows the fluid to be pumped
further and participates in fibrinolysis by the production of
tissue plasminogen activator (tPA) (Van Hinsbergh 1988). 
There are also highly differentiated endothelial cells which
perform specialized “filtering” functions. Such unique en-
dothelial structures include the renal glomerular and the 
blood-brain barriers (Cryer 1998).
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The vascular endothelium responds dynamically to different
circulating factors, consequently and significantly influences
the blood vessel contractile tone and vascular architecture. 
Endothelial cells produce factors with pro-coagulant, anti-
coagulant, fibrinolytic, antibacterial properties and generate
vasoactive molecules, like platelet-activating factor (PAF), 
blood clotting factors III, V and VIII, kininogen, tPA, en-
dothelium derived relaxing (EDRF), hyperpolarizing (EDHF) 
and contracting (EDCF) factors, endothelins (ET), vascular 
endothelial growth factor (VEGF), eicosanoids (prostaglandins, 
prostacyclines and thromboxanes; PGD2, PGE2, PGI2, TxA2, 
PGH2, 6-keto PGF1), interleukins (IL), chemokines, nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB), 
reactive oxygen species (ROS), reactive nitrogen species (RNS), 
bradykinin (BK), angiotensin II (ATII), histamine, etc. Theyplay
an influential role in maintenance and regulation of vascular
smooth muscle tone and peripheral vascular resistance. They
ensure tissue homeostasis and the delicate balances in vessel 
wall proliferation, blood clotting, adherence of blood elements 
to vessel wall and local inflammation (Lüscher 1988; Vanhoutte
1988; Yanagisawa et al. 1988; Vane et al. 1990; Rubanyi 1991a; 
Darley-Usmar and Halliwell 1996; Stocker and Keaney 2004). 
Under physiological conditions, the release of anticoagulant 
and smooth muscle relaxing factors by the endothelium exceeds 
the release of other substances (Furchgott and Vanhoutte 1989; 
Vanhoutte et al. 1991).

The endothelium is the primary target in many pathologies.
There are numerous humoral factors which induce endothelial
dysfunction. Increased concentration of factors like IL-6, mono-
cyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α 
(TNF-α), C-reactive protein (CRP) or decreased concentra-
tion of factors like plasma adiponectin facilitate consequences 
of endothelial dysfunction. Impaired endothelial function 
appears to be an important determinant in the relationship 
between chronic inflammation and cardiovascular deteriora-
tion (Cleland et al. 2000; Hingorani et al. 2000; De Jager et al. 
2006). Excessive or prolonged increase in permeability of the 
endothelial monolayer, as e.g. in cases of chronic inflammation,
may lead on the one side to tissue edema and on the other side 
to an increased contractile activity of smooth muscle of the ves-
sel wall. Moreover, it is well established that loss of endothelial 
cells from the intimal surface predisposes to vascular lesion 
formation, manifested e.g. in vessel wall stiffening, development
of atherosclerotic plaques, etc. (Ross 1993; Pasceri et al. 2000; 
Booth et al. 2004; McEniery et al. 2004; Duprez et al. 2005).

Scientific upsurge in the last several decades has revealed
that deterioration of the endothelium with subsequent dam-
age of smooth muscle reactivity results in generalized increase 
in vascular tone, platelet aggregation, thrombus formation, 
etc. (Katušic and Vanhoutte 1986; Rubanyi and Vanhoutte 
1986 a,b; Rubanyi 1988; Yanagishawa et al. 1988; Lüscher et al. 
1992). It participates and plays a substantial role in the genera-
tion of various diseases like atherosclerosis (Ross 1993, 1999; 

Heitzer et al. 1996; Besler et al. 2008; Heistad 2008), essential 
hypertension (Lüscher 1988; Vanhoutte 1992; Taddei et al. 1995; 
Besler et al. 2008), diabetes mellitus and diabetic vasculopathies 
(Makimattila et al. 1996; Bakker et al. 2009; Nathanson and Nys-
tröm 2009), chronic obstructive pulmonary disease – COPD 
(Peinado et al. 2008), rheumatoid arthritis (Hansel et al. 2003; 
Szekanecz and Koch 2008), psoriatic arthritis (Gonzalez-Jua-
natey et al. 2007), osteoarthritis (Miller et al. 2007), ankylosing 
spondylitis (Sari et al. 2006), systemic lupus erythematosus 
(Piper et al. 2007), cancer metastasis (Johansson et al. 2010; 
Takala et al. 2010), migraine and stroke (Besler et al. 2008; El-
liott 2008), anaphylactic and traumatic shock (Menardi et al. 
2006; Shi et al. 2007; Nakashidze 2009), systemic inflammatory
response syndrome (Neary and Redmond 1999; Hingorani et 
al. 2000; Menardi et al. 2006), NO-induced vasoplegia in sep-
sis (Stawicki et al. 2008; Funk et al. 2009) and cardiac surgery 
(Davies and Hagen 1993; Menardi et al. 2006) as well as in many 
other cardiovascular (Rubanyi 1988, 1991b; Mugge et al. 1989; 
Davies and Hagen 1993; Münzel 2008; Chorianopoulos et al. 
2009), nervous, gut (Vareniuk et al. 2009; Wittmeyer et al. 2010; 
Zhang et al. 2010), respiratory (Redington 2006; Peinado et al. 
2008), genitourinary (Aversa et al. 2010; Sullivan et al. 2010), 
inflammatory and immune diseases (Hingorani et al. 2000;
Harrison et al. 2006; Ghiadoni et al. 2008), etc.

Endothelium-derived relaxation and the nature of EDRF

The finding that relaxation of vessels induced by acetylcho-
line depends on the presence of intact endothelium (Fig. 1) 

Figure 1. Effects of endothelium removal on acetylcholine and
A23187-induced relaxation of potassium chloride (100 mmol/l) 
precontracted isolated rat aortic rings. Each value represents mean 
± S.E.M of at least 7 observations. Full symbols are in the presence, 
open symbols in the absence of endothelium.
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implied the release of EDRF (Furchgott and Zawadski 1980; 
Zawadski et al. 1980), which exists only for several seconds 
(Lüscher 1988). It has been found that EDRF is neither an 
eicosanoid (Lüscher 1988) nor ROS (Gryglewski et al. 1986; 
Rubanyi and Vanhoutte 1986a). 

Murad et al. (1978) found that nitroglycerin exerted 
vasorelaxation due to release of NO. In the late 1980s, 
three groups (Ignarro et al. 1987, 1988; Palmer et al. 1987; 
Furchgott 1988) independently reported that EDRF might 
be NO. NO was found to be generated by cells that produce 
EDRF (Noack and Feelisch 1989). Both NO and EDRF 
possess similar chemical properties, their production is the 
same and they evoke relaxation by increased production of 
cyclic 3’-5’-guanosine monophosphate (cGMP) (Ignarro et 
al. 1987; Furchgott 1988; Ignarro 1990b). With an unpaired 
electron, NO is called a radical molecule (•NO), which is 
highly reactive, having a half-life similar to EDRF (Kanner 
et al. 1991). After transmitting a signal, it spontaneously 
decays into nitrite within 2 to 30 seconds. Its bound forms 
(e.g. nitrosothiols, disulphides or dinitro ferrocysteine) are 
more stable than NO itself and might be its intracellular 
storage forms (Rubanyi et al. 1989; Girard and Potier 1993; 
Mülsch et al. 1993).

Neuronal and humoral mediators, e.g. acetylcholine 
(Ach), adrenaline (A), noradrenaline (NA), histamine (Hi), 
serotonin (5-HT), adenosine triphosphate (ATP), adenosine, 
substance P (SP), arginine vasopressin (AT/VP), bradykinin 
(BK), thrombin (Tr) and Ca2+- ionophore A 23187 (Furch-
gott and Zawadski 1980; Zawadski et al. 1980; Vanhoutte and 
Eber 1991), VEGF (Trouillon et al. 2010), insulin (Kim et al. 
2006), angiotensin (Toda et al. 2007), TNF-α (Nakashidze 
2009), IL-6 (Andersen and Pedersen 2008), arginase (Bratt 
et al. 2009), asymmetric dimethylarginine (ADMA) (Cooke 
2005), dimethylarginine dimethylaminohydrolase (DDAH) 
(Achan et al. 2003), etc. acting in their corresponding recep-
tors or cellular structures can affect production and release
of NO (Fig. 2).

In endothelial cells, the production or release of NO is 
preceded or accompanied by enhanced phosphatidyl inositol 
(PI) turnover and increase in concentration of the resting free 
cytosolic calcium ([Ca2+]i) (Büsse et al. 1988; Stanfield et al.
1990; Vanhoutte and Eber 1991; Adams et al. 1993). Elevation 
of free [Ca2+]i is due to transient release of Ca2+ from intrac-
ellular stores and its influx from extracellular space via Ca2+ 
channels (Johns et al. 1987; Ryan 1989; Elliot et al. 1992). An 
increase of free [Ca2+]i is a signal for increased production 
of NO by endothelium (Wong and Klassen 1992). Its release 
is oxygen-dependent (DeMey and Vanhoutte 1983; Johns et 
al. 1989). In addition, the elevated Ca2+ concentration in the 
vicinity of the endothelial cell plasma membrane activates 
the Ca2+-dependent potassium channels (KCa) and evokes 
membrane hyperpolarization (Lambert et al. 1986; Leuris 
and Hendersen 1987; Adams et al. 1993) (Fig. 2).

NO synthase

Palmer et al. (1987, 1988), Moncada et al. (1989) and Ig-
narro (1990a) reported that NO was formed by an enzyme, 
called NO synthase (NOS) that transforms L-arginine to 
L-citrulline in the presence of cofactors such as (6R)-5,6,7,8-
tetrahydrobiopterin (THB4), reduced nicotinamide adenine 
dinucleotide phosphate (NADPH), and flavin adenine dinu-
cleotide/flavin mononucleotide (FAD/FMN) (Fig. 2).

Structural domain studies of the NOS molecule have 
identified separate oxygenase and reductase domains (Al-
derton et al. 2001). The carboxyl-terminal reductase domain
is homologous to cytochrome P450 reductase. An amino-
terminal oxygenase domain contains a hem prosthetic group, 
which is linked in the middle of the protein to a calmodulin 
(CaM)-binding domain.

There are three different isoforms of NOS widely ex-
pressed in virtually all cell types, two are constitutive (cNOS) 
and the third is inducible (iNOS) (Palmer et al. 1987; 1988; 
Moncada et al. 1989). They share about 50–60% sequence
identity and are divided into two categories with different
regulation and activities. The cNOSs are always present in
endothelial (NOS3, eNOS, ecNOS) and neuronal (NOS1, 
nNOS, ncNOS) cells. The inducible NOS isoform (iNOS,
NOS2) is normally elusive and is present mainly in the im-
mune and cardiovascular system.

Until the intracellular Ca2+ level increases, eNOS remains 
inactive. Ca2+ then binds to the calcium-binding protein 
CaM and the Ca2+-CaM complex binds to and activates 
eNOS. In response to a rise in endothelial intracellular 
Ca2+ concentration, eNOS catalyzes the production of NO 
(Sanders et al. 2000). The increase in the intracellular Ca2+ 
promotes the dissociation of eNOS from the protein caveo-
lin-1, necessary to its activation (Feron et al. 1996; Gratton 
et al. 2000). This suggests that caveolae may function as a site
of integration of events linking extracellular stimuli and 
intracellular effectors. The Ca2+ dependent eNOS synthe-
sizes small amounts of NO until Ca2+-levels decrease. This
Ca2+-dependent eNOS provides basal release of NO, which 
is thought to occur as a result of the fact that the intracellular 
Ca2+ level in unstimulated endothelial cells is sufficient to
activate CaM and eNOS (Loscalzo and Vita 2000). In the 
healthy vessel, the endothelium serves as the main source of 
NO production through eNOS activity to maintain vascular 
tone and regulate platelet aggregation and leukocyte adhe-
sion (Bredt and Snyder 1990) (Fig. 2).

A requirement for catalytic activity of eNOS is dimeri-
zation, although the truly active form is a complex of two 
NOS monomers associated with two CaMs. Binding of 
Ca2+-CaM appears to act as a “molecular switch” to enable 
the flow of electrons from the reductase domain, which
contains relatively tightly-bound FAD and FMN, to iron pro-
toporphyrin IX (hem) and THB4 in the oxygenase domain. 
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Electrons are donated by NADPH to the reductase domain 
of the enzyme and proceed via FAD and FMN redox carriers 
to the oxygenase domain. They interact with the hem iron
and THB4 at the active site to catalyze the reaction of oxygen 
with L-arginine, generating citrulline and NO as products 
(Alderton et al. 2001). NO then diffuses to smooth muscle
cells, where it binds to its principal receptor, the soluble 
guanylyl cyclase (sGC), which in turn converts guanosine-
5’-triphosphate (GTP) into cGMP and consequently induces 
vascular smooth muscle relaxation and vasodilatation (Figs. 
2, 5). Both the enzyme activity of eNOS and the NO evoked 

relaxation require the presence of NADPH and CaM (Büsse 
and Mülsch 1990) and are dependent on the presence of Ca2+ 
(Singer and Peach 1982; Long and Stone 1985).

Due to its acylation, eNOS has been found to be targeted 
to plasmalemmal caveolae and Golgi membranes, where its 
activity is the highest (Oess et al. 2006). Localization to this 
microdomain is likely to optimize eNOS activation and ex-
tracellular release of NO. This targeting is a complex process
depending on co-translational N-myristoylation at glycine 2 
and post-translational cysteine palmitoylation at positions 15 
and 26 of the enzyme (Fulton et al. 2001; Govers and Rabelink 

Figure 2. Mechanism of NO synthesis in endothelial cells due to activation of eNOS (eNOSi/a – endothelial nitric oxide synthase inac-
tive/active) by various stimuli acting on receptors and ion channels coupled by different membrane and intracellular processes (sym-
bolized by ). VEGF, vascular endothelial growth factor; ACE, angiotensin converting enzyme; ATI/II, 
angiotensin I/II, IRS-1, insulin receptor substrate; Cav-1, caveolin-1; PI3-Ki/a, phosphatidylinositol 3-kinase inactive/active; PDK-1, 
pyruvate dehydrogenase kinase isozyme 1; Akt, serine/threonine protein kinase; Hsp90, heat shock protein; PKA/G, protein kinase 
A/G; PLC, phospholipase C; IP2, inositol-4,5-bisphosphate; IP3, inositol-1,4,5-trisphosphate; DAG, diacyl glycerol; AMPK, adenosine 
monophosphate-activated protein kinase; CaM, calmodulin; DDAH, dimethylarginine dimethylaminohydrolase; ADMA, asymmetric 
dimethylarginine; IL6, interleukin 6; TNFα, tumor necrosis factor α; NADPH/NADPH+, reduced/oxidized nicotinamide adenine dinu-
cleotide phosphate; THB4, (6R)-5,6,7,8-tetrahydrobiopterin; FAD/FMN, flavin adenine dinucleotide/flavin mononucleotide. (In part
adapted from Bauer and Gergeľ 1994 and Toda et al. 2007.)
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2001), as well as on protein-protein interactions with caveo-
lin-1 (Cav-1) (Feron et al. 1996), heat shock protein (Hsp90) 
(Garcia-Cardena et al. 1996; Young et al. 1997; Brouet et al. 
2001), and the survival promoting serine/threonine pro-
tein kinase B (Akt) (Fulton et al. 1999; Luo et al. 2000). On 
stimulation of cells with various agonists, CaM and Hsp90 are 
recruited, the Cav-1 inhibitory clamp is displaced and phos-
phorylation by Akt results in modulation of eNOS catalysis 
and NO release (Fontana et al. 2002). An important means 
of regulating eNOS activity appears to be its phosphorylation 
(Dimmeler et al. 1999; Fulton et al. 1999). Phosphorylation 
and dephosphorylation complement acylation and CaM 
as major post-translational regulatory influences on eNOS
activity. Serine (Ser) and threonine (Thr) are key residues in
eNOS: phosphorylations at Ser 1177, Ser 635, and Ser 617 are 
stimulatory, while phosphorylations at Thr 495 and Ser 116
are inhibitory (Moncada et al. 1989; Bauer et al. 2003). ADMA 
is described in the literature as an endogenous inhibitor of 
NO synthase. Elevated plasma ADMA levels are associated 
with cardiovascular complications, such as stroke, congestive 
heart failure and peripheral arterial disease, so that ADMA 
is considered a biochemical marker of cardiovascular risk 
(Cooke 2005). Metabolism of ADMA is facilitated by DDAH 
(Achan et al. 2003) (Fig. 2). While the dimeric form of eNOS 
catalyzes the synthesis of NO, the monomeric form catalyzes 
the synthesis of highly active oxygen species – including super-
oxide anion radical (O2

•–) (Zou et al. 2002). In the absence of 
THB4, eNOS becomes “uncoupled” and its catalysis is altered 
so that rather O2

•– than NO is produced. Various pathological 
stimuli, including ATII, diabetes and hypercholesterolemia 
have also been associated with eNOS uncoupling (Harrison 
et al. 2006).

In both the central and peripheral nervous system, nNOS 
produces NO, performs a role in cell communication and 
is associated with plasma membranes (Lamas et al. 1992). 
While only eNOS is detectable in healthy human vessels with 
standard techniques, all three isoforms are present in athero-
sclerotic lesions (Schödela et al. 2009). Loesch and Burnstock 
(1998) found nNOS protein also in endothelial cells of the 
rat basilary artery and Huang et al. (2002) detected nNOS 
in the endothelial cell layer of coronary arteries of eNOS 
knockout mice, but not in wild type mice. In eNOS knockout 
mice, nNOS was shown to be responsible for flow induced
dilatation of coronary arteries. Wilcox et al. (1997) described 
nNOS protein colocalized with smooth muscle cells in the 
media and neointima. In the human atherosclerotic plaque, 
nNOS is expressed in smooth muscle cells, macrophages 
and endothelial cells (Wilcox et al. 1997) and nNOS might 
be a novel anti-atherogenic factor (Tsutsui 2004). In rat 
vascular smooth muscle cells, nNOS expression is increased 
under conditions of high intraluminal pressure, following 
hypoxia and stimulation with platelet derived growth factor 
(Ebrahimian et al. 2003; Schödela et al. 2009). Thus under

specific conditions as shear stress, hypoxia, and presence of
growth factors, nNOS upregulation occurs also in vascular 
smooth muscles.

In a classical view, in contrast to cNOSs, evidence for 
„baseline” expression of the cytosolic iNOS isoform is 
normally elusive. Presumably due to its tight non-cova-
lent interaction with Ca2+-CaM complex, iNOS has been 
described as Ca2+-independent (Kibbe et al. 1999). For 
a longer period of time, iNOS is expressed upon activation 
by a variety of factors, including the pro-inflammatory 
cytokines, e.g. IL, TNF-α, interferon-gamma (IFN-γ) and 
lipopolysaccharide (Weinberg et al. 2007). Once iNOS 
is upregulated in phagocytes (monocytes, macrophages, 
and neutrophils) or hepatocytes, and with potent signals 
also in epithelial cells and neurons, it always synthesizes 
large amounts of NO and an inflammation mediated 
stimulation develops. NO has been demonstrated to ac-
tivate interferon regulatory factor 1 (IRF-1) and NF-κB 
in peripheral blood mononuclear cells, as an important 
transcription factor in iNOS gene expression in response 
to inflammation (Kaibori et al. 1999). These properties 
may define the roles of iNOS in host immunity, enabling 
its participation in anti-microbial and anti-tumor activi-
ties as part of the oxidative burst of macrophages (Chat-
terjee and Catravas 2008). Output of NO might serve as 
an “inflammometer”, a breath test of exhaled NO serves 
as an indicator of airway inflammation in diseases like 
asthma, COPD (Redington 2006), etc.

NO may itself regulate NOS expression and activity. 
Specifically, NO has been shown to play an important
negative feedback regulatory role on eNOS and vascular 
endothelial cell function. This process, known formally as
S-nitrozation (referred to as S-nitrosylation by many in the 
field), has been shown to reversibly inhibit eNOS activity in
vascular endothelial cells. Nitroanalogs of L-arginine (e.g. 
N-monomethyl-L-arginine, N-nitro-L-arginine, L-cana-
vanine, L-arginine oxalate, N-propyl-L-arginine) inhibit 
both basal and evoked NO synthesis. These responses are
eliminated by supplementation of L- but not D-arginine 
(Gold et al. 1989; Ress et al. 1989). Introduction of NOS 
inhibitors (Palmer et al. 1988) greatly contributed to clarify-
ing the physiological roles of NO not only in the endothe-
lium and vasculature but also in the immune system, the 
gastric mucosa (Lanas 2008), in the central (Garthwaite 
et al. 1988) and peripheral nervous system, namely in 
the nonadrenergic-noncholinergic (NANC) inhibitory 
transmission in gut, airways, lower urinary tract, corpora 
cavernosa and some blood vessels (Boeckstaens et al. 1990; 
Bauer 1993; Lefebvre 1995; Toda and Okamura 2003; Toda 
and Herman 2005).

The hypothesized beneficial effects of increased iNOS
expression may be transient, because this high-output iNOS 
usually occurs in an oxidative environment. The produced
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NO may react with O2
•– to yield peroxynitrite (ONOO•–), 

a highly reactive compound, participating not only in mam-
malian defense mechanisms against microorganisms, but 
also in the pathophysiology during overexposure of tissues 
to radicals or other reactive species (Muijsers et al. 1997). 
Such conditions may then contribute to the pathogenesis 
of vascular injury and participate in the development of 
atherosclerosis, hypertension, ischemia/reperfusion, etc. 
(Beckman and Koppenol 1996; Pacher et al. 2007; Ginnan 
et al. 2008; Pacher and Szabo 2008).

High concentrations of ROS produce further oxidation 
products, e.g. lipid peroxides (LPO), suppress generation 
of prostaglandin I2 (prostacyclin, PGI2), and attenuate the 
activity of PGG/PGH and PGI2 as well as that of eNOS in 
endothelial cells. Concurrently, prevalence of ROS-resistant 
thromboxane-A2 (TxA2) activity occurs. These processes
result then in loss of vasodilatation and development of vaso-
constriction (Beny and Brunet 1988; Katušic and Vanhoutte 
1989; Vanhoutte et al. 1991) (Fig. 3).

NO as transmitter

In contrast to most hormones, neurotransmitters and growth 
factors that transmit signals between cells and act through 

specific protein receptors associated with the plasma mem-
brane, NO diffuses out of the cell that generates it as a radical or 
bound to a carrier molecule, e.g. amino acid L-cysteine (Myers 
et al. 1990) and passes through the plasma membrane into the 
target cells, where it interacts with specific molecular targets.
The best-characterized targets/receptors of NO are either iron-
containing enzymes and proteins with a heme group, amino 
acids or iron-sulfur complexes. Binding of NO to these targets 
either activates or inactivates them (Fig. 4). As a radical, •NO 
possesses high reactivity and interaction with other reactive 
species, e.g. superoxide anion radical (O2

•–) (Figs. 3, 4).
Based on the above mentioned findings, NO is now re-

garded as an intercellular messenger or transmitter that plays 
a pivotal role in circulatory regulations, including its influence
on the cell cycle and apoptosis, as well as vasodilatation, in-

Figure 3. Sources of ROS, interaction of O2
•– with NO and the effects of produced ONOO•– in the endothelium during physiological and 

pathological conditions. O2
•–, superoxide anion radical; •NO, nitric oxide radical; ONOO•–, peroxynitrite; SOD, superoxide dismutase; 

Akt, serine/threonine protein kinase; CAT, catalase; GPx, glutathione peroxidase; Trx, thioredoxin; THB4, (6R)-5,6,7,8-tetrahydrobiopt-
erin; PGI2, prostaglandin I2 (prostacyclin); TxA2, thromboxane A2. (In part adapted from Sena and Seica 2010.)



326 Bauer and Sotníková

creased blood flow, loweredsystemicbloodpressure, inhibitions
of platelet aggregation and adhesion, leukocyte adhesion and 
transmigration, smooth muscle proliferation, and low-density 
lipoprotein oxidation (Moncada et al. 1991; Ignarro 2000).

Vascular effects of NO

Endothelial cells produce and release factors which either 
contract (e.g. EDCF, ET, ATII, Hi) or relax (e.g. NO, EDHF, 
PGI2) the vascular smooth muscle (Yanagisawa et al. 1988; 
Furchgott and Vanhoutte 1989; Vane et al. 1990; Rubanyi 
1991a; Lüscher et al. 1992; Münzel 2008). Their effects
result mainly from significant alterations in the concentra-
tion of free [Ca2+]i, thus playing an influential role in the
maintenance and regulation of vascular smooth muscle tone 
(Stankevičius et al. 2003; Félétou et al. 2010).

As shown in Fig. 5, the vascular smooth muscle relaxation 
evoked by acetylcholine, A 23187, histamine, electric stimu-
lation, and a number of other biologically active substances, 
e.g. adrenaline, noradrenaline, histamine, serotonin, ATP, 

adenosine, substance P, arginine vasopressin, bradykinin, 
thrombin, Ca2+-ionophore A 23187, etc. is associated with 
an amplified production and/or release of NO (Furchgott
and Zawadski 1980; Zawadski et al. 1980; Vanhoutte and 
Eber 1991; Buga and Ignarro 1992). In the L-arginine-eNOS-
cGMP-phosphodiesterase-5 (PDE5) pathway, NO diffuses
to and through the plasma membrane of vascular smooth 
muscle cells and binds to the iron in the heme group of 
sGC. The activated enzyme consequently produces cGMP 
from GTP (Rappoport et al. 1983; Forstermann et al. 1986; 
Buga and Ignarro 1992), which activates cyclic nucleotide-
dependent protein kinase G (PKG) or cGMP-dependent PKI 
(cGKI). The latter phosphorylates a number of proteins that
regulate Ca2+ homeostasis. The cGMP mediated relaxation
results from the reduced Ca2+

i mobilization in (Godfraind et 
al. 1985), reduced Ca2+

o influx to (Collins et al. 1988; Blat-
ter and Wier 1994) and facilitated efflux of Ca2+

i from the 
smooth muscle cells. These molecular events are culminating
in reduction of the free cytosolic Ca2+ concentration and in 
decrease of the sensitivity of the contractile system to Ca2+ 

(Carvajal et al. 2000). Moreover, the following processes may 

Figure 4. Targets of the nitric oxide radical (•NO) in effector cells. O2
•–, superoxide anion radical; ONOO•–, peroxynitrite; cyt, cyto-

chrome; sGC, soluble guanylate cyclase; cGMP, cyclic 3’-5’-guanosine monophosphate; ATP, adenosine triphosphate; RSH, glutathione; 
RSNO, S-nitrosothiols; SNO albumin, S-nitroso-albumin; GSNO, nitroso-L-glutathione; SNO Hb, S-nitrosohemoglobin; HIF, hypoxia 
inducible factor; NF-kB, nuclear factor kappa B. (In part adapted from Henry et al. 1993.)
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also participate in smooth muscle relaxation: membrane 
hyperpolarization due to activation of potassium channels, 
activation of the enzyme that dephosphorylates myosin light 
chains and the myosin light chain phosphatase, further re-
duction of sensitivity of myosin phosphorylation by cGMP 
dependent protein kinases (Rappoport et al. 1983; Rembold 

1992), and/or uncoupling of the contracting mechanisms 
from myosin phosphorylation (Rembold 1992).

The sGC inhibitor methylene blue attenuates both the
production of cGMP and muscle relaxation (Lüscher 1991). 
Endothelium removal prevents acetylcholine and A 23187 
from being effective (Fig. 1), while it does not influence

Figure 5. Production of endothelial factors that affect vascular smooth muscle tone with special attention to the actions of nitric oxide
(NO). Agonists ( ), acetylcholine, adrenaline/noradrenaline, histamine, arginine/vasopressin, substance P, bradykinin, adenosine/ad-
enosine triphosphate, serotonin and thrombin act on their corresponding membrane receptors ( , M2-muscarinic; α2-adrenergic; 
H2-histaminergic; AVPR1-arginine-vasopressin, neurokinin, B2-bradykinin, P2-purinergic, 5HT1-serotonergic, thrombin receptors, 
respectively) and on Ca2+ channels (Ca2+ ionophore-A23187), increase [Ca2+]i, and consequently, similarly to the effect of inflammation,
they increase NO synthesis via activation of eNOS (endothelial nitric oxide synthase) and produce also EDHF (endothelium derived 
hyperpolarizing factor). Other mechanical and chemical influences (e.g. blood flow, shearing forces, hypoxia, renin) result in increased
production of additional endothelial constituents, both relaxatory (e.g. PGI2, prostacyclin) and contractile (ATI/II, angiotensin I/II; ET, 
endothelin; EDCF, endothelium derived contracting factor). Further abbreviations are: AA, arachidonic acid; ROC/VOC, receptor/volt-
age operated Ca2+ channels; ATG, angiotensinogen; PKA/G/I, protein kinase A/G/I; PLC, phospholipase C; ACE, angiotensin converting 
enzyme; receptors of angiotensin – AT1,2, of endothelin – ETB,2, of histamine – H1,2; sGCi/a, soluble guanylate cyclase inactive/active; 
GTP, guanosine triphosphate; GMP, guanosine monophosphate; cGMP, cyclic 3’-5’-guanosine monophosphate; ACi/a, adenylate cyclase 
inactive/active; ATP, adenosine triphosphate; IP2, inositol-4,5-bisphosphate; IP3, inositol-1,4,5-trisphosphate; DAG, diacyl glycerol; 
cAMP, 3’,5’- cyclic adenosine monophosphate; SR, sarcoplasmic reticulum. (In part adapted from Bauer and Gergeľ 1994, Stankevičius 
et al. 2003 and Félétou et al. 2010.)
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the action of NO donors (e.g. nitroglycerine or sodium ni-
troprusside; Rappoport and Murad 1983). This fact proves
that NO released from the endothelium relaxes the vessels 
by means of cGMP.

Not only does NO modulate vasomotor tone, induce 
vasodilatation, increase regional blood perfusion and lower 
systemic blood pressure but it also inhibits expression and 
activity of matrix metalloproteinases (MMPs), leading to 
extracellular matrix remodeling and increased smooth mus-
cle cell growth, permitting cell migration and proliferation, 
altering atherosclerotic plaque stability and allowing cardiac 
and vascular smooth muscle proliferation and hypertrophy 
(Upchurch et al. 2001; Stocker and Keaney 2004; Wang et 
al. 2005). It inhibits expression of MCP-1, reduces vascular 
cell adhesion molecule-1 (VCAM-1) expression and prevents 
propagation of lipid oxidation (Cai and Harrison 2000). The
endothelium possesses also an anticoagulation property, 
decreases platelet aggregation, affects inflammation, pain
perception and neurotransmission (Bauer 1993; Lowenstein 
et al. 1994; Bauer et al. 2000; Toda and Okamura 2003; Mac-
kenzie et al. 2008). 

During aggregation and adhesion of platelets to their 
corresponding receptors on the endothelial cell surface, the 
platelets release ADP, serotonin and thrombin, which amplify 
the production of NO, with consequent increase of blood 
flow due to the removal of vasospasms, dilatation of vessels
(Vanhoutte and Hauston 1985), and suppressed platelet ag-
gregability (Radomski et al. 1987; Hogan et al. 1988). 

Contrary to ROS, NO may also attenuate the adhesion of 
leukocytes and act as an extracellular scavenger of O2

•– pro-

duced by leukocytes, preserving thus the integrity of cells as 
a chemical barrier (Rubanyi et al. 1991) also under condi-
tions such as e.g. ischemia/reperfusion.

Not only reduction in NO bioavailability but also its excess 
amounts can damage host cells, causing e.g. neurotoxicity 
during stroke and hypotension associated with sepsis. Under 
conditions of sepsis, endothelial dysfunction is probably 
an early impairment of vasodilator responses to mediators 
which depend upon an intact endothelium, as well as to 
shear stress and to vessel occlusion. If the formation of NO 
by iNOS is to ‘replace’ the loss which is a consequence of 
early endothelial dysfunction, then the situation would be 
similar to the role of catecholamines in shock (Parratt 1998, 
Funk et al. 2009).

Some examples of pathologies that involve NO

Increased production of angiotensin 

ATII, a potent vasoconstrictor is produced from ATI by an-
giotensin converting enzyme (ACE) located at the surface of 
the endothelium (Figs. 2, 5). The somatic ACE isoenzyme is
expressed in many tissues, e.g. mainly in vascular endothe-
lial cells present in the lung. It participates not only in ATII 
production but is involved also in inactivation of bradykinin, 
a potent vasodilator. ATII affects vascular smooth muscles
through AT1, AT2, and AT4 receptors, which are differently
involved in NO synthesis and alter vascular contractility 
by various mechanisms in relation to NO. Activation of 
AT1 receptors causes vascular smooth muscle contraction 
and also elicits vasoconstriction indirectly by forming ROS 
(particularly O2

•–) that scavenge NO. Activation of the 
other receptor subtypes in endothelial cells, e.g. AT2 leads to 
generation of vasodilating prostaglandins (PGI2 and PGE2) 
(Suzuki et al. 1984; Ferrario 1993; Toda et al. 2007).

Neither are interactions of ATII and endothelium-derived 
relaxing factors other than NO, such as EDHF (Fig. 5), 
negligible (Roks 2002; Fujiki et al. 2005). There are several
candidates for EDHF, including epoxyeicosatrienoic acids, 
gap junctions, K+ ions and hydrogen peroxide (H2O2) 
(Shimokava and Matoba 2004; Fujiki et al. 2005). Thus im-
balanced functioning of NO or EDHF/H2O2 and ATII in the 
vasculature is considered to be one of the main pathogenic 
factors in cardiovascular diseases. Increased availability of 
NO is one of the most important pharmacological mecha-
nisms underlying the beneficial actions of drugs that inhibit
the synthesis and action of ATII and it is essential in treating 
circulatory and metabolic dysfunctions, including hyperten-
sion and diabetes mellitus (Toda et al. 2007).

A large body of data suggests that there is crosstalk at 
multiple levels between the signal transduction pathways 
that mediate insulin and ATII actions. Early insulin signal-

Figure 6. Effects of 60-min ischemia followed by 30-min reper-
fusion (I/R) on responses of phenylephrine (PhE)-precontracted 
(1 μmol/l) rings of the superior mesenteric artery to acetylcho-
line. Data are means ± S.E.M of 8 experiments. Open squares are 
preparations from sham controls; full squares preparations from 
animals with I/R; open triangles preparations from sham controls 
after blockade of NO synthase (NOS) and prostaglandins (PGs);
full triangles preparations from animals with I/R after blockade
of NOS and PGs. 



329Endothelium, endothelium-derived relaxing factor and endotheliopathies

ing steps are impaired in essential hypertension. ATII acting 
through the AT1 receptor can inhibit insulin-induced NO 

production and enhances the activity of NADPH oxidase, 
leading to increased ROS generation. Inhibition of the 
renin-angiotensin system improves insulin sensitivity and 
decreases the incidence of type 2 diabetes (TD2) (Muscogiuri 
et al. 2008).

Increased lipid peroxidation and oxidized low-density 
lipoproteins

Increased plasma LPO were found as risk factors in various 
diseases, such as hypertension, atherosclerosis, eclampsia 
gravidarum, diabetes, etc. (Hennig and Chow; 1988; Es-
terbauer et al. 1989; Stam et al. 1989; Steinberg et al. 1989; 
Rumley et al. 2004). DiCorleto and Chisalm (1986), Palinski 
et al. (1989), Piotrowski et al. (1990), Glovind et al. (1992) 
anticipated that ROS produced by macrophages and white 
blood cells along with an increased local concentration 
of oxidized low-density lipoproteins (oxLDL) give rise to 
endothelial damage as a first step of atheromatous plaque
formation and altered vessel function. The products of lipid
peroxidation accumulated in endothelial cells (Hennig and 
Chow 1988) inhibit eNOS (Fig. 3). They inactivate NO,
PGI2, sGC, and in activated macrophages also iNOS (Yang 
et al. 1994). The above mentioned effects thus result in in-
creased adhesion of neutrophils and platelets and in their 
increased aggregability, further in smooth muscle prolifera-
tion, reduced actions of endogenous NO, and in decreased 
effectivity of exogenous nitrites and of nitroso vasodilators
(Schmidt et al. 1992). 

Oxidized LDL induces interaction of endothelial cells with 
leukocytes and macrophages. Due to stimulation of biosyn-
thesis of the intercellular adhesion molecule-1 (ICAM-1) 
and of E-selectin, this interaction participates in the genesis 
of angiopathy (Takei et al. 1998). In a larger amount, modi-
fied LDL molecules represent the main source of lipids for
monocytes participating in lipid deposit formation in the 
subendothelial space. As a consequence of cell-to-cell and 
cell-to-matrix interactions, the activated endothelial cells, 
monocytes and macrophages, along with changes in the 
interstitial tissue, participate in fibrous plaque formation.

Ischemia / reperfusion (I/R)-induced injury in the endothe-
lium

I/R is paradoxical aggravation of cellular dysfunction follow-
ing restitution of blood flow to previously ischemic tissues.
Endothelial cells appear to be particularly vulnerable to the 
deleterious effects of hypoxia/ischemia or anoxia (cNOS is
suppressed). Reperfusion-induced reoxygenation, which 
is essential for recovery of ischemic tissues, paradoxically 
causes further damage (reduced production of NO, neu-

trophil activation and infiltration, oxidative burst, increased
ROS production, lipid peroxidation, eicosanoid generation, 
complement activation, cytokine generation, etc.) to a wide 
range of organs including the heart, lung, brain, kidney, gut, 
and skeletal muscle (Rubanyi and Vanhoutte 1985; Grisham 
et al. 1998; Khanna et al. 2005; Tripathi and Misra 2009). 

I/R-induced vascular dysfunction has been found in the 
pathophysiology of various diseases and organ injuries, even 
during a variety of medical procedures, such as thrombo-
lytic therapy, organ transplantation, coronary angioplasty, 
cardiopulmonary bypass, etc. In the postischemic tissue, 
the observed changes possess molecular and biochemical 
characteristics of inflammatory reactions (Granger 1999;
Neary and Redmond 1999) accompanied by functional and 
morphological alterations in vessels. Elevated plasma choles-
terol aggravates the reaction elicited by I/R. The I/R-evoked
vascular dysfunctions include impaired endothelium-de-
pendent NO-mediated relaxation (Fig. 6), cell swelling, 
loss of pinocytotic vesicles, lifting of endothelial cells from
the underlying basement membrane, increased filtration
of fluid into the interstitium, reduced number of perfused
capillaries and attachment (adherence) of activated leuko-
cytes (primarily neutrophils) to the endothelial cell surface 
(Nosáľová et al. 2007).

Xanthine oxidase activity, which increases following I/R, 
may generate not only O2

•– but also chemotactic factors lead-
ing to sequestration and firing of inflammatory leukocytes lo-
cally as well as at distant sites, thereby facilitating neutrophil-
endothelial cell adhesion and neutrophil-mediated vascular 
and tissue injury at the site of the primary ischemia and also 
far away from it. ROS (O2

•, H2O2 and hypochlorous acid) 
overproduction (both by endothelial cells and leukocytes) 
and reduced NO bioavailability are thus important determi-

Figure 7. Effects of streptozotocine (STZ)-induced diabetes last-
ing 10 weeks on responses of phenylephrine (PhE)-precontracted 
(1 μmol/l) rings of the superior mesenteric artery to acetylcho-
line. Data are means ± S.E.M of 8 experiments. Open squares are 
preparations from controls; full squares preparations from animals 
treated with STZ.
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nants of the inflammatory responses observed in vessels after
I/R (Granger 1988; Carden and Granger 2000). 

Khanna et al. (2005) have suggested that the I/R-induced 
vascular dysfunctions result mainly from a subtle interplay 
between O2

•– and NO. Under physiologic conditions, NO is 
produced far in excess of O2

•–. This allows NO to scavenge
and clear endothelial cells of low concentrations of O2

•–, to 
prevent platelet aggregation, thrombus formation, as well as 
adhesive interactions between endothelial and inflammatory
cells. According to these authors, two modes of NO-mediated 
mechanisms contribute to tissue injury. A transient activa-
tion followed by a decrease in eNOS occurs in the early stages 
of reperfusion due to the progression of endothelial dysfunc-
tion. This contributes to vascular dysfunction, neutrophil
infiltration and activation. L-arginine and THB4 deficiency
may be responsible in part for the concurrent reductions 
in NO production and eNOS activity. The low levels of NO
can be rapidly quenched by the abundant amounts of O2

•–, 
which has implications for leukocyte/endothelial interac-
tions. Subsequently, endothelial-dependent vasodilatation 
becomes compromised. In the later stages of reperfusion, 
cytokine-induced expression of iNOS, initially in mast cells 
and later in neutrophils and macrophages, also contributes 
to ONOO•– production and development of further tissue 
injury.

Evidence that I/R elicits oxidant-mediated tissue injury 
is supported by the adaptational responses to brief peri-
ods of ischemia in different tissues. In endothelial cells,
preconditioning augments the production of NO during 
a second ischemic (anoxic) challenge, which contributes to 
the delayed preconditioning response (Korthuis et al. 1998, 
Tsai et al. 2004). Moreover, Gorbe et al. (2010) showed that 
NO is protective against I/R-induced injury of myocytes. 
They found that the cGMP-inducing agents (cGMP analog
8-bromo-cGMP, direct NO-donor S-nitroso-N-acetylpeni-
cillamine and B-type natriuretic peptide) possess protec-
tive effect in I/R, which is abolished by the selective PKG 
inhibitor KT-5823. This was the first demonstration that
elevated cGMP, produced either by the sGC or the particu-
late guanylate cyclase (pGC), exerts cytoprotective effects
via a common downstream signaling pathway involving 
PKG activation.

Maslov et al. (2009) summarizing cardioprotective effects
of NO described two components of its actions, a rapid and 
a delayed one. In the rapid component not only eNOS but 
also sGC, cGMP, PKG, protein kinase C (PKC), phosphati-
dylinositol 3-kinase (PI3-kinase), Akt-kinase, mitochondrial 
ATP-sensitive K+-channels, ROS and mitochondrial per-
meability transition (MPT) pore are involved. The delayed
cardioprotective effect of NO requires synthesis of NOS
proteins de novo and involvement of transcription factors 
NF-κB, signal transduction and transcription protein 1/3 
(STAT1/3), hypoxia-inducible factor 1 (HIF1), ONOO•–, 

cGMP, PKG, PKC, Src-kinase, p38-kinase, and extracellular 
signal regulated kinase (ERK-kinase). The authors are of the
opinion that the protective impact of NO depends on en-
hancement of the expression of NOS, PGI2, and chemokine B 
lymphocyte chemoattractant 2 (Blc2) protein, which inhibits 
the MPT pore.

Progression of diabetes mellitus and endothelial dysfunction 

Functional impairment of endothelial activity precedes the 
development of morphological alterations during long-term 
development of diabetes. Since attenuated endothelium-
dependent vasodilatation has been described in human 
diabetes and in animal models (De Vriese 2000), one of the 
major concerns in long-term management of the disease is 
the development of severe microvascular and macrovascular 
complications. Endothelial dysfunction results from reduced 
bioavailability of the vasodilator NO, mainly due to the ac-
celerated NO degradation by ROS. It is responsible for the 
excess morbidity and mortality associated with diabetes 
(Baynes 1991; Vanderjagt et al. 2001; Fowler 2008). The
vascular dysfunctions in chronic diabetes involve endothe-
lial cells, vascular smooth muscle cells (Fig. 7), and their 
interaction with circulating blood cells such as platelets, 
monocytes, and lymphocytes. In addition, the resulting 
vascular stiffening also includes adventitial cells as well as
connective tissue. Impaired insulin receptor substrate-1 and 
PI3-kinase dependent signaling pathways result in decreased 
NO production in the endothelium and in diminished 
glucose transporter (GLUT-4) translocation in peripheral 
tissues, leading to peripheral insulin resistance (Jiang et al. 
1999; Kim et al. 2006).

During vascular injury, the expression and function of 
iNOS is regulated by the production of ROS and RNS in 
smooth muscles in general and particularly by the genera-
tion of several isoforms of NADPH oxidase and of cytokines. 
Inflammation with increased ROS production plays a critical
role in promoting smooth muscle cell migration and pro-
liferation during vascular diseases, such as postangioplasty 
restenosis and atherosclerosis. Nonenzymatic glycosyla-
tion of plasma proteins may contribute to the excess risk 
of developing atherosclerosis in diabetes mellitus. In 
diabetes, high-density lipoprotein (HDL) is glycosylated 
at an increased level of glucose. Gly-ox-HDL markedly 
downregulates catalase (CAT) and Cu2+, Zn2+-superoxide 
dismutase (CuZn-SOD), suggesting H2O2 formation due 
to a disturbance involving oxidant and antioxidant enzyme 
balance. Gly-ox-HDL attenuates also the expression of eNOS, 
but not of iNOS, followed by decreased production of NO 
(Matsunaga et al. 2003). 

Pharmacological control of oxidative stress and stimula-
tion of NO release have proved to exert beneficial effects
on vascular remodeling in experimental diabetic models 
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(Spinetti et al. 2008). Although hyperglycemia, insulin re-
sistance, hyperinsulinemia and dyslipidemia independently 
contribute to endothelial dysfunction via several distinct 
mechanisms, increased oxidative stress seems to be the first
alteration triggering several others. Mechanisms proposed 
to explain glucose- and lipid-induced vascular alterations in 
diabetes include accelerated formation of advanced glyca-
tion end-products (AGEs), PKC activation, inflammatory
signaling and oxidative stress. PKC, a serine threonine kinase, 
was found to be activated in the endothelium under certain 
pathophysiological conditions and is associated with changes 
in blood flow, basement membrane thickening, extracel-
lular matrix expansion, increases in vascular permeability, 
abnormal angiogenesis, excessive apoptosis and changes in 
enzymatic activity of e.g. Na+-K+-ATPase, PI3-kinase and 
mitogen-activated protein kinase (MAPK). Inhibition of 
PKC, especially of the β1/2 isoform, has been reported to pre-
vent or normalize many vascular abnormalities in the retina, 
aorta, heart, renal glomeruli, etc. (Gutterman 2002; Evcimen 
and King 2007). Insulin resistance with impaired PI3-kinase 
decreases insulin-mediated production of NO and reduces 
vasodilatation, capillary recruitment and antioxidant prop-
erties of the endothelium. Compensatory hyperinsulinemia 
enhances activation of intact MAPK pathways and contrib-
utes to pro-atherogenic events by increasing the secretion of 
ET-1, stimulating the expression of adhesion molecules such 
as VCAM-1 and E-selectin, and by inducing production of 
ROS (Potenza et al. 2009).

Patients with TD2 diabetes have a decreased ability of in-
sulin to increase endothelial NO release and have lower levels 
of NO than patients without diabetes (Chien et al. 2005). 
Coronary artery disease and erectile dysfunction are car-
diovascular complications frequently occurring in patients 
with diabetes, obesity, and dyslipidemia. All these metabolic 
disorders are characterized by insulin resistance, defined as
decreased sensitivity and/or responsiveness to metabolic ac-
tions of insulin and thus promoting glucose disposal. Insulin 
resistance is not only a hallmark of metabolic abnormalities 
but is also a prominent feature of hemodynamic disorders. 
Indeed, insulin-stimulated release of endothelial factors takes 
part in the physiological regulation of vascular function and 
altered insulin actions may profoundly affect cardiovascular
homeostasis under the given metabolic derangement. 

The signpost of impaired vascular reactivity is endothe-
lial dysfunction, a condition in which the endothelium 
loses its physiological ability to produce the vasodila-
tor NO (Potenza and Montagnani 2008). It is likely that 
chronic low-level inflammation plays an important role
in developing endothelial dysfunction mainly through 
proinflammatory actions of TNF-α, as one of the primary
pathogenetic mechanisms responsible for the development 
of angiopathy in chronic diabetes (Andersen and Pedersen 
2008). Decreased blood flow due to vascular damage causes

diabetic patients to be more likely to develop neuropathy, 
non-healing ulcers, and to be at greater risk for vasculopa-
thies. In macroangiopathy, fat and blood clots build up in 
the large blood vessels, stick to the vessel walls, block the 
flow of blood and lead to tissue necrosis and gangrene.
Due to microangiopathy, ophthalmologic, neurologic and 
nephrologic complications may occur. Microangiopathies 
are characterized by roughed-up basal membrane, prolif-
eration, focal desquamation and alteration in endothelium 
cell shape, stack of granulocytes and adherence of platelets 
to the endothelium (Pieper and Gross 1991). The wall of
small blood vessels becomes so thick and weak that they 
bleed, leak protein, and reduce blood flow. Stenosis or clot
formation impairs the flow of oxygen and is the cause of
proliferative diabetic retinopathy, central and peripheral 
neuropathy and nephropathy. The NO-cGMP-PDE5 path-
way plays moreover a key role in diabetic gastropathy and 
in the attenuated synaptic plasticity affecting learning,
memory formation and long-term potentiation (Patil et 
al. 2006). Bulhak et al. (2009) reported that activation of 
the peroxisome proliferator-activated receptor α (PPAR-α) 
exerts cardioprotection against I/R in TD2 diabetes, in-
volving mechanisms related to NO production via the 
PI3-kinase/Akt (active human protein kinase, also called 
PKB) pathway.

Glucose acts not only as antioxidant but also as prooxi-
dant. Already under physiological conditions, and even more 
so in high concentrations, glucose generates ROS (namely 
O2

•–, H2O2 and •OH) as a result of its auto-oxidation, me-
tabolism, and formation of AGEs (Hunt et al. 1990; Leloup et 
al. 2009). Moreover, the markedly increased copper plasma 
concentrations in diabetes may also lead to oxidative stress 
(Wolf et al. 1991). 

The insulin-degrading enzyme (IDE) is responsible for
the degradation of a number of hormones and peptides, 
including insulin and amyloid β (Aβ). Protein S-nitrosylation 
is now recognized as a redox-dependent, cGMP-independ-
ent signaling component that mediates a variety of actions 
of NO. Cordes et al. (2009) have suggested the existence 
of a possible reversible mechanism of nitrosative stress by 
which inhibition of IDE contributes to pathological condi-
tions, such as Alzheimer’s disease and TD2 diabetes.

Blood vessel complications of diabetes were found to de-
velop when the glucose concentrations exceeded 20 mmol/l. 
The mechanisms of the effects of high glucose concentrations
on endothelium-dependent vascular reactivity are not clear 
yet. It has been suggested that decreased production of PGI2 
and PGE1, increased formation of vasocontractile prostag-
landins and ROS, protein glycosylation, reduced output and 
impact of NO, activation of the renin-angiotensin system, as 
well as changes in α-adrenergic receptors might be involved 
in these mechanisms (Baynes 1991; Pieper and Gross 1991; 
Getz 1993; Tesfamariam 1994; Muscogiuri et al. 2008).
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The complexity of the pathogenesis of diabetic vascu-
lopathy implies that a reversal of endothelial dysfunction 
in diabetes is unlikely to occur as the result of a single 
intervention alone.

Conclusion

The vascular endothelium, a specialized type of epithelial tis-
sue, a thin layer of cells that line the interior surface of blood 
vessels forming an interface between circulating blood and 
the vessel wall, is a complex structure that releases mediators 
with important paracrine and autocrine effects on vascular
tone, blood pressure, platelet aggregation, thrombus forma-
tion, and atheroma development. Endothelial cells line the 
entire cardiovascular system and their vital role is to reduce 
turbulence of blood flow, to prevent blood clotting, to pro-
duce and to eliminate vasoactive substances. 

Morphologic defects or loss of proper endothelial func-
tion are hallmarks for vascular diseases and often lead to
atherosclerosis, hypertension, myocardial infarction, com-
plications of diabetes mellitus, and further chronic diseases 
(Vane 1994), called also “endotheliopathies” (Mendelsohn 
and Loscalzo 1992; Walsh et al. 2009). 

There are many and heterogenous mediators released by
the endothelium, including NO, which contribute to “health 
or disease”, depending on a proper functioning vascular 
endothelium. NO, a noxious unstable gas, a byproduct of 
automobile exhaust, electric power stations, and lightning, 
has been found also in living organisms and its role as endog-
enous signal transducer molecule has been proved. Recently, 
a great deal of evidence has accumulated showing that NO 
availability is one of the main mechanisms of “endothelial 
dysfunction”. In many instances, the decreased availability of 
NO is either due to its reduced production by NOS or to an 
interaction with ROS. O2

•– with NO, at a diffusion-limited
rate, brings on the formation of ONOO•–, a strong oxidant 
which does not only lead to the loss of beneficial effects of
NO but it also promotes formation of an injurious molecule 
that can worsen the pathologic condition. 

Endothelial dysfunction is at least in part a reversible dis-
order. Appropriate diet, smoking cessation, physical exercise, 
as well as antidiabetics, lipid-lowering and antihypertensive 
drugs, estrogen replacement therapy in postmenopausal 
women, inhibition of the renin-angiotensin system induce 
among many others improved endothelial function (Ham-
ilton et al. 2007; Leung et al. 2008; Muscogiuri et al. 2008). 
Drugs, which influence some of the mechanisms involved
in endothelium dysfunction, e.g. TNF-α-blocking agents in 
rheumatoid arthritis (Fichtlscherer et al. 2001; Hurlimann 
et al. 2002), supplementation with antioxidants, such as 
glutathione (Prasad et al. 1999), N-acetylcysteine (Andrews 
et al. 2001) and vitamin C (Carr and Frei 2000) with a few 

exceptions (Raitakari et al. 2000; Duffy et al. 2001), as well
as supplementation with L-arginine in wound healing (Shi 
et al. 2007), with THB4 in cardiovascular diseases (Katušic et 
al. 2008), or cGMP-inducing agents (cGMP analog 8-bromo-
cGMP, direct NO-donor S-nitroso-N-acetylpenicillamine 
and B-type natriuretic peptide) in I/R (Gorbe et al. 2010) are 
novel and prospective approaches that might exert positive ef-
fects on diseases associated with endothelial dysfunction. 

In addition, selective inhibitors of iNOS, e.g. aminoguani-
dine, appear to attenuate endotoxin-induced multiple organ 
dysfunction. It needs however to be determined precisely at 
what point during sepsis such selective inhibitors should be 
administered and their relative ability to selectively inhibit 
iNOS rather than cNOS is to be assumed (Parratt 1998; 
Stabile et al. 2010). 
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