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Abstract. Transcutaneous functional electrical stimulation is commonly used for strengthening 
muscle. However, transient effects during stimulation are not yet well explored. The effect of an 
amplitude change of the stimulation can be described by static model, but there is no differency for
different pulse duration. The aim of this study is to present the finite element (FE) model of a tran-
sient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard 
Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square
method and trial and error analysis from experimental measurement.

This study showed that FE modeling of electrical stimulation can give the spatial-temporal
distribution of applied current in the forearm. Three different cases were modeled with the same
geometry but with different input of the current pulse, in order to fit the tissue properties by using
transient FE analysis. All three cases were compared with experimental measurements of intramus-
cular voltage on one volunteer. 
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Introduction

Neurophysiologically and anatomically based pain man-
agement methods which do not use drugs are an effective
alternative to conventional care. Intramuscular stimulation 
therapy utilizing pin penetration and electrical stimulation 
are very good technique which can help relieve acute, suba-
cute and chronic neuralgic pain (Ga et al. 2007).

Functional electrical stimulation is the most important 
application in the field of clinical treatment by currents
or magnetism. This technique artificially generates neural
activity in order to overcome lost functions of paralyzed, 
incontinent or sensory impaired persons. 

A variety of therapeutic techniques and experimental 
treatment approaches are described by the term “functional 
electrical stimulation”. The improvement of technological
aspects and control systems in functional electrical stimula-
tion field is very important. There is a need to have better
understanding of the factors that influence the force produc-
tion capabilities of stimulated muscle, the ability of muscle to 
produce the desired movement and the metabolic demands 
of contractions (Manola et al 2005; Stecker 2005). It is very 
difficult to obtain these factors through in vivo experiments, 
within vast modalities of the electrical stimulation (Popovic 
1990; Sadiku 2000). 

A deeper understanding of underlying physical meaning 
can be done by modeling of an electrical field in simulated
human tissue. We investigated the FE methodology which 
enables complex geometries and utility for wide physical 
field problems.

The purpose of this paper is to open an avenue for a future
specific patient intramuscular stimulation therapy which
could be achieved by using FE modeling. 
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Materials and Methods

Finite element modeling

The geometry of the human forearm is modeled by concen-
tric cylinders for the skin (1.5 mm), fat (8.5 mm), muscle 
(27.5 mm), cortical bone (6 mm) and bone marrow lay-
ers (6.5 mm) as it is presented in Fig. 1. A small tapering 
of cylinder is also considered. The corresponding tissue
layer is described by the conductivity σ and also the relative 
permittivity ε. A large range of values for σ and ε at each 
layer have been published in literature. 

We implemented a specific fitting methodology in order to
find best fitting values for experimental measurements. Five
different materials (skin, fat, muscle, bone and marrow) actu-
ally represent ten unknown material properties: five specific
conductivities σ1–σ5 and five relative permittivities ε1–ε5. 
A global finite element (FE) system (see Appendix I) contains
unknown potential per nodes, prescribed potential as bound-
ary conditions and ten unknown material properties inside 
the matrix system. As we have experimental measurements 
of intramuscular voltage on and under the skin vs. time we 
have chosen ten equations from global FE system where all 
ten material properties appeared in order to get standard 
least square system. All of these calculations are running in 
time for random chosen ten nodes. Trial and error method 
is applied in order to estimate these material properties for 
different time steps. The initial material properties used in
this study for different layers are shown in Table 1 (Kuhn and

Keller 2005). To simplify a problem the dielectric permittivity 
was supposed to be independent of the frequency.

Experimental measurements with electrical field 
through forearm have dynamic conditions. We therefore 
used the dynamic model of the electrical propagation 
through tissues. This is an improvement of the common 
implementation of electrical stimulation modeling by 
static models. Static models neglect the transient aspects 
of the electrical current and potentials with transient 
distributions in space. It is especially emphasized at 
higher frequencies where the transient effects could not 
be neglected. 

The mathematical model for a transient state is described
by considering the conservation of the electrical charge, as-
suming material characteristics to be linear:
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Figure 1. Basic geometrical data for the human forearm. The concentric cylinders denote different tissue layers: skin, fat, muscle, bone
and bone marrow. Dimension of stimulated electrodes are L × W = 3 × 2 cm and distance between them is D = 3 cm. The position of
intramuscular needles is indicated between stimulated electrodes. Also a little tapering of cylinder can be taken into account. Due to 
plane of symmetry (gray color) for the problem a half forearm is modeled only. (Filipovic et al. 2007 – reproduced from: Journal of the 
Serbian Society for Computational Mechanics 1, pp. 154–163, with permission).

Table 1. Tissue material constants (Kuhn 2005)

σ (S/m) ε
skin  0.00025 6 000
fat  0.03 25 000
muscle  1 120 000
bone  0.02 3 000
marrow  0.08 1 0000

σ, specific conductivity; ε, relative permeability.
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where J is the electrical current density vector, ρ represents 
the electrical charge density (volume), D stands for dielectric 
displacement vector, E represents electrical field strength
vector, V stands for electrical potential, ε is dielectric permit-
tivity, and σ is electrical conductivity (Kuhn and Keller 2005). 
The Eq. (3) is a direct consequence of Eqs. (1) and (2).

A standard Galerkin procedure is applied to Eq. (3) in order 
to derive the FE equations (Filipovic et al. 2006; Kojic et al. 
2008). The unsteady equations for FE solver were obtained

by modification of our own FE software package, which is
developed at University of Kragujevac (Filipovic et al. 2007).

The FE mesh which consists of 60 000 3D 8-node elements
is shown in Fig. 2. The unknown values per node are the 
electrical potentials. To do a mesh independent analysis we 
examined three different mesh sizes associated with 60 000,
80 000 and 100 000 FE. All of them gave similar results with 
no significant changes, so we present here the results using
60 000 3D FE (Fig. 2).

Figure 2. Finite element mesh used for the electro-stimulation 
modeling, 60 000 3D 8-node finite elements. Five different groups
of material are associated with the tissue layers.

Figure 3. Experimental setup for electrical stimulation. Two elec-
trodes of size 2 × 3 cm are connected to a current regulated electric 
stimulator. The distance between electrodes is 3 cm. The distance
between needles is L1 = 1.5 cm. The voltage between electrodes is
measured with the standard equipment (Peulic and Filipovic 2007).

Figure 4. Prescribed current pulses for three cases. The current for the
Case 1, I = 4 mA with periodic pulse duration 50 µs; for the Case 2 
the current I = 14 mA with periodic pulse duration 230 µs; and for 
Case 3 the current I = 20 mA with periodic pulse duration 670 µs.

Figure 5. Intramuscular voltage 1 cm under the skin vs. time for 
three different applied pulse amplitudes: 4, 14 and 20 mA. Pulse
duration t = 50, 230, 670 µs; two electrodes of size 3 × 2 cm with 
distance between them 3 cm were used.
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We implemented the constant shapes and sizes of the 
electrodes for stimulation into the FE model as well as same 
position of intramuscular needles, in order to better fit tissue
properties from our own experimental observations.

Boundary conditions for numerical models are deter-
mined by pulsed current density at the both electrodes 
while zero potential is prescribed at one of them as ref-

erence point. All other nodes are left with free degree
of freedom which means unknown electrical potential 
values. The current density J as an input flux is directly
calculated from the given current amplitude and surface 
of the electrodes.

Experimental Setup

An experimental setup was designated to make electrical 
stimulation on a human volunteer as it is shown in Fig. 3. A 
standard current regulated stimulator was used (Nedeljkovic 
et al. 2007; Peulic and Filipovic 2007). The pulse duration
during the experiment which we denoted as case 1 was 50 
µs and the current amplitude was 4 mA (see Fig. 4). In the 
next two cases (2 and 3) the input current pulses were 14 mA 
and 20 mA with 200 µs and 670 µs duration. The reason for
different duration was a volunteer accommodation to the
experiment setup as well as better fitting with numerical
simulation. The material of electrode is flexible carbon rub-
ber 25 × 35 mm. For intramuscular voltage measurement we 
used single fiber EMG needles of lenght 40 mm. The distance
between needles was L1 = 1.5 cm. The electrolyte between
electrode and skin was water. We neglected the voltage drop 
across impedance of the electrodes.

Results

We first present the experimental results for intramuscular volt-
age 1 cm under the skin vs. time for three different applied pulse
amplitudes: 4, 14 and 20 mA (see Fig. 5). Also pulse duration 
was different for each applied current t = 50, 230 and 670 µs.

Figure 6. Electrical potential distribution (in volts) at the end 
of pulse in the Case 3. The pulse duration tp = 670 µs. Two elec-
trodes of size 3 × 2 cm with distance between them 3 cm are 
implemented. 

Figure 7. Current density distribution (in A/cm2) inside the hu-
man forearm at the end of pulse in the Case 3. The pulse duration
tp = 670 µs.

Figure 8. Intramuscular voltage distribution 1 cm under the skin 
vs. time (all three cases, experimental and computed values). The
applied pulse amplitudes: 4, 14 and 20 mA; pulse duration: t = 
50, 230 and 670 µs; two electrodes of size 2 × 3 cm with distance 
between them 3 cm were used.
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Electrical potential distribution for maximum voltage 
between two electrodes on the skin is shown in Fig. 5. 
As it is expected, the maximum voltage occurred at the 
second half phase of input current pulse tp = 670 µs. Also, 
both calculations demonstrate the strong influence of the
transient conditions which is caused by the inertial effects of
the voltage response on the skin as well as in the muscle and 
the nerves. This directly emphasize that permittivity plays
an important role in the functional electrical stimulation. 

The voltage distribution inside muscle and other tissue layers
for the maximum pulse in the case 3 is shown in Fig. 6. These
values are smaller than the voltage on the skin due to low skin 
conductivity. Current density distribution for the same time step 
is shown in Fig. 7. As expected, the electrical field produces the
current density flow from input to output electrode, caused by
electrical potential difference at the electrodes.

Comparison for voltage distribution of numerical results 
and experimental data for all three cases is shown in Fig. 8. 
A specific trial-and-error algorithm in combination with least
square method on ten nodes from FE mesh is implemented 
in order to determine corresponding parameters for tissue 
properties. This comparison shows good agreement. The fitted
conductivities and permittivities are presented in Table 2.

Discussion and Conclusion

To fit tissue material properties of human forearm on volun-
teer who is stimulated with pulsed current density a transient 
3D FE model is developed. We analyzed three cases, with the 
same geometrical data but different input current amplitude,
pulse duration, and fitted tissue properties. The main idea
was to fit tissue properties in order to obtain the results
close to the experimental response measured on volunteer. 
All three cases have shown a strong inertial effect due to a
transient conditions and dominant relative permittivity of 
the skin. This observation is especially dominant for short
pulsed amplitude where a transient FE modeling becomes 
very important. The dielectric tissue properties (permittiv-
ity) cannot be neglected and the static approach of electrical 
stimulation should be replaced with the dynamic one. 

Kuhn and Keller also analysed transient effect on electri-
cal stimulation in three human volunteers but they did not 
implement numerical fitting procedure for material properties
(Kuhn and Keller 2005). The difference between our previous
publication (Filipovic et al. 2007) and our previous study is that 
we fitted intramuscular voltage now with specific numerical
procedure using least square method on ten random chosen 
FE nodes. The current therapeutic strategy and potential
measurement during the functional electrical stimulation 
may change in the direction of specific patient tissue material
properties which can be fitted with FE modeling.

Acknowledgement. This study is partly supported by Ministry of
Science in Serbia with projects OI144028 and TR12007.

Table 2. Tissue material constants fitted with our experimental
setup

σ (S/m)  ε
skin  0.00032 8 200
fat  0.012 22 000
muscle  0.83 90 000
bone  0.044 5 200
marrow  0.12 11 000

σ, specific conductivity; ε, relative permeability.

Appendix I

The mathematical model for a transient state of electrical
stimulation is described by the following equation (Eq. (3) 
from section Materials and Methods):
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If Eq. (A.3) uses form of potential at the end of the current 
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where SF  is surface boundary condition for potential field. 
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where SF  is surface boundary condition for potential field. 
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If Eq. (A.3) uses form of potential at the end of the current time step t + Δt t tV  the following equation is 
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 Derivation in Eq. (A.5) is on the single finite element.
After assembling all the finite elements to global system of
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where V1, V2, … Vn are global potential unknowns per finite element nodes. 

When incorporated the boundary condition for prescribed electrical potential on the boundary the system 
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where *
iV is prescribed potential as Dirichlet boundary condition at node “i”.  

As we have five different materials (skin, fat, muscle, bone and marrow) there are ten unknown material 

properties: five specific conductivity 1–5 and five relative permittivity 1–5 for total finite element 
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where iiK are coefficients of matrix which include the specific conductivity 1–5 and relative permittivity 

1–5. Obviously the vector of prescribed nodal potential in (A.8) is known and the material properties are 

not known so we can arrange the system in (A.8) into different form: 
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As we can see from (A.9) the rectangle system of equations could be written in form: 
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As we have transient calculation the system of (A.11) is solved in a some characteristics time steps in the 

pulse (for example T/4, T/2, 3T/4) by calculated matrix K̂    using transient definition in Eq. (A.5). 

Finally data for getting the vector of material properties are averaged during the time and summarized  

(see Table 2 in the section Results). 
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