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Abstract. Water ordering near a charged membrane surface is important for many biological
processes such as binding of ligands to a membrane or transport of ions across it. In this work,
the mean-field Poisson-Boltzmann theory for point-like ions, describing an electrolyte solution in
contact with a planar charged surface, is modified by including the orientational ordering of water.
Water molecules are considered as Langevin dipoles, while the number density of water is assumed
to be constant everywhere in the electrolyte solution. It is shown that the dielectric permittivity of
an electrolyte close to a charged surface is decreased due to the increased orientational ordering of
water dipoles. The dielectric permittivity close to the charged surface is additionally decreased due

to the finite size of ions and dipoles.
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Introduction

The contact between a negatively charged surface and an
electrolyte solution implies a particular ion rearrangement
near the charged surface, i.e. the electrical double layer (EDL)
(Helmbholtz 1879; Gouy 1910; Chapman 1913; Stern 1924).
The distribution of ions in the EDL can be described within
the Poisson-Boltzmann (PB) theory (McLaughlin 1989; Kralj-
Igli¢ and Igli¢ 1996; Lamperski and Outhwaite 2002; Bivas
2006; Bivas and Ermakov 2007), expressing the competition
between electrostatic interactions and the entropy of ions in the
solution. Due to the electrostatic forces between the charged
surface and ions in the solution, counter-ions are accumulated
close to the charged surface, while coions are depleted from
this region. As shown in the past, the properties of EDL may be
influenced also by the ordering of water molecules in the region
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of EDL (Gruen and Maréelja 1983; Ceve 1990; Israelachvili and
Wernerstrom 1996; Butt et al. 2003; Manciu and Ruckenstein
2004; Arsov et al. 2009). This phenomenon is also subject of
the present work. Most of the PB models of EDL (McLaughlin
1989; Cevc 1990; Lamperski and Outhwaite 2002) assume that
the dielectric permittivity in the electrolyte is constant. In the
absence of an explicit consideration of orientational ordering
of water molecules, the assumption of constant permittivity is
the consequence of the constant number of water molecules
in PB theory. But actually, close to the charged surface the
orientation of water molecules may result in a spatial variation
of permittivity (Butt et al. 2003).

Outhwaite developed a modified PB theory of the elec-
trical double layer composed of a mixture of hard spheres
with point dipoles and finite sized ions (Outhwaite 1976,
1983). Later Kusalik and Patey (1988) and Torrie et al. (1989)
implemented the reference hypernetted-chain theory for
an EDL model of hard-sphere ions in a solvent composed
of hard-spheres with point dipoles plus tetrahedral point
quadrupoles. In this article, the PB mean-field theory for
point-like ions is modified by taking into account the ori-
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entational ordering of water molecules. In the presented
model, the dielectric permittivity is consistently related to
the distribution of electric field strength and distribution of
ions. The water molecules were modeled as Langevin dipoles
(Outhwaite 1976, 1983; Coalson and Duncan 1996; Igli¢ et
al. 2010), which is considered a very rough treatment of the
dielectric properties of the solvent (Booth 1951).

The finite volume of ions (Bikerman 1942; Kralj-Igli¢
and Igli¢ 1996; Lamperski and Outhwaite 2002; Igli¢ et al.
2010) in the electrolyte solution (i.e. the excluded volume
effect) is not taken into account. In accordance, the volume
density of water is constant in the whole electrolyte solution
(Kralj-Igli¢ and Igli¢ 1996).

Theoretical predictions

We consider a planar charged surface in contact with a solution
of ions and water. The planar charged surface bears a charge
characterized by a surface charge density 0. The Langevin
dipole describes the water molecule with a non-zero dipole
moment (p). Recently, using the calculus of variation, the
ion and water number density profiles corresponding to the
minimum free energy (consisting of electrostatic field energy,
translational entropy of ions and orientational entropy of
water Langevin dipoles) of the system were calculated within
a lattice-statistical model (Igli¢ et al. 2010):

m)=ne M
n(x)=n,e" % (2)

n (X) - nOw ns 80 sinh pO | \Iﬂ ‘
! H p,|¥] %

3)

where the function H, related to the finite size of ions, is
given by:

eO nOw[ sinh po |lP | (4)
po Y| =0

H(@§,E)=2n,cosh¥ +

nw(x) is the number density of water molecules, 7, (x) and
n_(x) are the number densities of counterions and coions,
respectively, and

_afx)

P(x) T (5)
is the reduced electrostatic potential, ¢(x) is the electrostatic
potential, E = kT |¥'|/eg is the magnitude of the electric
field strength, e is the elementary charge, kT is the thermal
energy, ng is the bulk number density of positively and
negatively charged ions in electrolyte solution, ng,, is the
bulk number density of water, ng being the number density

oriented
water molecules
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hydrated
ions
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Figure 1. A schematic figure of an electrical double layer near
a negatively charged planar membrane surface. The water mol-
ecules in the vicinity of charged surface are predominantly oriented
towards the surface.

of lattice sites: ng = ny(x) + n.(x) + n_(x) , in bulk ng = ng,,
+2ny , po is the magnitude of the water dipole moment and
¥' is the first derivative of ¥ with respect to x. The axis x
is perpendicular to the charged surface and points in the
direction of the bulk solution (Fig. 1).

In the approximation of small electrostatic energy and
small energy of Langevin dipoles in electric field compared
to the thermal energy (relevant for point-like ions), i.e.
|¥| <1 and py |¥'|/eg < 1 we expand the functions cosh¥
and sinh(pg |¥'|/eo) in Egs. (1-4) in Taylor series up to the
first order: cosh¥ = 1 and sinh(pg [¥'|/eg) = po |'¥'|/eg to get
the Boltzmann distribution functions for ions:

n (x)=nye", n (x)=nye* (6)

and the constant number density of water molecules every-
where in the electrolyte solution:

nw(x) =n,,, (7)

which is consistent with the classical PB theory for di-
mensionless (point-like) ions and constant permittivity
(McLaughlin 1989; Cevc 1990; Kralj-Igli¢ and Igli¢ 1996;
Lamperski and Outhwaite 2002; Bivas 2006). The charges
of counterions, coions and water molecules (Langevin di-
poles) contribute to the average microscopic volume charge
density:

p<x>=e0(n+(x)—n,(x))—% ®)
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The polarization P is given by:

P(x) =y, (p(x,@)), 9)

where {p(x,w),p is the average of the dipole moment p over
the angle distribution in thermal equilibrium. In the case of
the negative surface charge densities o, the value of P(x) is
considered negative since P points in the direction from the
bulk to the charged surface, i.e. in the opposite direction to the
direction of x-axis (see Fig. 1). The relative probability of finding
a water dipole in an element of a solid angle dQ = 2 sinw dw is
proportional to the Boltzmann factor exp(- W4/kT), where

W, =—pE=pVg=(KT/e)p, | ¥ |cos() (10)
is the energy of the water (Langevin) dipole p in the electric
field E = -V¢, w is the angle between the dipole moment
vector p and the vector V¢ Hence:

jpo cosw exp(—p, | ¥'|cosw/e,)2xsinw dw

<p(x’a))>3 =+ T
J.exp(—pO |W'|cosw/ey)2rmsinwdw

0

:_%L[P”T']
€

The function L(u) = (coth(u) - 1/u) is the Langevin function.
The Langevin function L(py | ¥ /e) describes the average
magnitude of the Langevin dipole moments at given x. In
our derivation we assumed an azimuthal symmetry. Insert-
ing the Boltzmann distribution functions of ions (Eq. 6) and
expression for polarization (Egs. 9, 11):

(11)

P(x)=n,, <p(x, w)>3 =-ny, p,L [po—qﬂ'j (12)

€

into Eq. (8), we get the expression for the average microscopic
volume charge density in an electrolyte solution:

o(x) =—-2¢,n, sinh‘{’+nOWpO%[L(p0 R /eo)] (13)

Inserting the above expression for volume charge density
p(x) (Eq. 13) into the Poisson equation:

W>£ (14)
we get:
4" =1 (26,n, sinh(e,$/KT)—
” (15)

2y L[L(pE/AT)])

where ¢" is the second derivative of the electric potential ¢
with respect to x, E = |¢| is the magnitude of electric field
strength, ¢' is the first derivative of the electric potential ¢
with respect to x and g, is the permittivity of the free space
(vacuum). The Langevin PB differential equation (Eq. 15)
is subject to two boundary conditions. The first boundary
condition is obtained by integrating the differential equa-
tion (Eq. 15):

o]

The condition, requiring electro-neutrality of the whole
system, was taken into account in the derivation of Eq. (16).
The second boundary condition is:

W@=®=—§{GﬂmpﬁimE&D (16)

0

$'(x >0)=0 (17)
Based on Eq. (12), we can express the effective permittiv-

ity of the electrolyte solution (e.g) in contact with the planar

charged membrane surface as (see also Appendix):

o1 Py LKD)
/. - /
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&E & E

(18)

Egs. (15) and (16) can be rewritten in more general and
condensed form as (see Appendix):

V()& (r)V @) =2¢,n, sinh(eyp/kT) (19)
on
V¢(l' = rsm‘f) - 8066#- (r _ l'surf ) (20)

where r is the position vector, n normal unit vector in the
direction of V¢ and seﬁ( r) is defined by Eq. (18).

For small py E/kT we can expand the Langevin function
in Eq. (18) into Taylor series up to the cubic term L(x) = x/3
- x°/45 to get:

&y=1+n,,p; 1 3kT&, —n,, po(p,E/KT)* / 45kTs, (21)

It can be seen in Eq. (21) that seﬂdecreases with increas-
ing E. Since the value of E decreases with increasing dis-
tance from the charged membrane surface (see for example
McLaughlin 1989), e.fincreases with the increasing distance
from the charged surface.

In this work Eq. (19) was solved numerically for a planar
geometry using finite element method (FEM) within the pro-
gram package Comsol Multiphysics 3.5a Software (Comsol
AB, Stockholm). The space dependency of ,5(Eq. 18) in Eq.
(19) was taken into account in an iterative procedure, where
the initial value of e, is constant equal to the permittivity
of the bulk solution. The boundary conditions (17) and (20)
are taken into account. Fig. 2 shows the calculated spatial de-
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pendency of e g for two values of the surface charge density o.
The stronger decrease of e, near the charged surface for
larger values of o is a consequence of stronger orientational
ordering of water dipoles for larger values of o.

In accordance with the results of other authors (Butt et
al. 2003; Igli¢ et al. 2010), it can be concluded that due to the
preferential orientation of water dipoles in the close vicinity
of the charged membrane surface, the effective permittivity
eegrnear the membrane surface is reduced relative to its bulk
value. The decrease of e is more pronounced for larger
values of o (Fig. 2).

Discussion

Recently, similar Langevin PB equation for point-like ions
as given in Eq. (15) was derived using a statistical thermo-
dynamics approach starting from a partition function of the
system (Abrashkin et al. 2007). The Langevin PB equation for
point-like ions, given in Abrashkin etal. (2007), can be derived
also in somewhat different way by assuming the Boltzmann
distribution function also for water (Langevin) dipoles:

n+(x) = nO eiq} (22)
o (23)
n, (x)= n()w<e’l70\‘["\ccsm/e0> o
where
0

27Z'J. d(COS a)) e*l’o\‘*"\ocsw/go

<e*Po\‘P'ICUsw/go > _ - i
® 4x (25)
= €, ' sinh Do |\I” ‘
o MM

Taking into account the Boltzmann distribution functions
(Eqgs. 22-24), a similar procedure as described above leads
to the extension of the PB equation in the form as given in
Abrashkin et al. (2007):

1 ) d
¢"=—(2¢,n, sinh(e,/ KT) = n,, py ~—| F(p,E/KT)])
& dx
(26)
where the function F is defined as:

F(u) =L(u)S“;h”.

(27)

The corresponding effective permittivity (e.q) is
(Abrashkin et al. 2007):

Py F(p,E/KT)
ow
& E

0
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Figure 2. Effective dielectric permittivity e,z as a function of the
distance from the charged planar membrane surface for two values
of the surface charge density o = —0.02 As/m? and o = -0.1 As/m?
calculated by Langevin PB model for point-like ions. Eq. (19) is
solved numerically for a planar geometry using FEM as described
in the text. The dipole moment of water is py = 4.79 D, the bulk
concentration of salt is np/N = 0.15 mol/l and the bulk concentra-
tion of water ng,,/Na = 55 mol/l.

For small pyE/kT, we can expand the right hand side of
Eq. (28) into Taylor series to get:

Ep= 1 +n0wp§ /3kTeg, +n0wpg (p,E/ kT)2 /30kTe, (29)

It can be seen in Eq. (29) that geffincreases with increas-
ing E. Since the magnitude of electric field strength in elec-
trolyte solution increases towards the charged membrane
surface, Egs. (28) and (29) predict the increase of Eqff in
the vicinity of the charged membrane surface (Abrashkin
et al. 2007). This is a consequence of the accumulation
of water dipoles near the charged surface (due to an as-
sumed Boltzmann distribution for water molecules) (see
also Bazant et al. 2009), which prevails over the decrease
of g, due to an increased orientational ordering of water
molecules in a strong electric field as predicted by Egs. (18)
and (21) (Fig. 2).

Neglecting the finite volume of ions in Egs. (28) and
(29) reflects in the predicted increase of €qff near the
charged membrane surface (Abrashkin et al. 2007; Bazant
et al. 2009, Iglic et al. 2010). The increase of &7 near the
charged membranme surface is not possible, if the excluded
volume effect is taken into account, i.e. considering the
accumulation of counterions near the charged membrane
surface (Abrashkin et al. 2007). This actually prevents the
accumulation of water molecules near a charged surface
(Igli¢ et al. 2010).
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Figure 3. Effective dielectric permittivity e,q as a function of
the distance from the charged planar membrane surface for
two values of the surface charge density ¢ = -0.2 As/m? and
0 = -0.4 As/m? calculated by Langevin PB model for point-
like ions (no excluded volume) and Langevin PB model with
excluded volume. Eqs. (19) and (33) are solved numerically
for a planar geometry using FEM as described in the text. The
dipole moment of water is py = 4.79 D, the bulk concentration
of saltis ng/Na = 0.15 mol/l and the bulk concentration of water
ngw/Na = 55 mol/l.

Considering the excluded volume effect within lattice
statistical mechanics approach Egs. (15) and (16) would
be transformed into Langevin PB equation with excluded
volume effect (Abrashkin et al. 2007; Igli¢ et al. 2010):

_ 2eynyn, sinh(e,¢/KT)

¢ﬂ
&  H(4E) (30)
_ 1 Dy i[ F(poE/kT)]
& dx- H(¢E)
and
v __l L(p,E/KT)
P'(x=0)= . [a +1y, 1, D, —H(¢,E) X:O] (31)
where
H (¢, E)=2n, cosh(e,¢/kT)+n, sinh(p, £ /KT) (32)

" (p,E/KT)

and n is the number density of lattice sites. Using the similar
procedure as in Appendix, Egs. (30) and (31) can be rewritten
in more compact form of Langevin-Bikerman eq.:

V-(goggﬁ. (rVg)=- pﬁ'ee(r) (33)

on

Vor=r,, )=——"—
! EoE o (r= Fous )

(34)

where pﬁee(r) = eg(n,(x) - n_(x)) is macroscopic (net) vol-
ume charge density in an electrolyte solution, i.e. the volume
charge density of couterion and coions (for n,(x) and n_(x)
see Igli¢ et al. 2010):

sinh(e,$/KT)

H(¢,E) (35)

P () =€) (n,(x) —n_(x)) = —2¢n,n,

and ¢.g(r) is the effective permittivity (Igli¢ et al. 2010):

£y=1+ nsnOw&M (36)
& H($.E)E

Similary as above in the case of Eq. (19) also Eq. (33)
was solved numerically for a planar geometry using the
program package Comsol Multiphysics 3.5a Software
(Fig. 3). The space dependency of eqfin Eq. (33) was again
taken into account in an iterative procedure. It can be seen
in Fig. 3 that ¢,strongly decrese near the charged surface,
the effect is being more pronounced for larger absolute
values of 0. Assuming small electrostatic energies of ions
and small energies of Langevin water dipoles, i.e. eg¢ /kT <
1 and poE/kT < 1 we can expand the general expression for
the effective permittivity e,z within Langevin PB theory
with excluded volume effect (Eq. 36) into Taylor series to
get (for ng = nyy):

&4=1+n,,p; 13kTs, —ny, p; (p,E/KT) | 45kTs, —

—n,, Do (e,@/KT)* /3kTe, (37)
It can be therefore concluded, that considering the excluded
volume effect, the depletion of water dipoles near the charged
surface due to accumulated counterions additionally de-
creases the dielectric permittivity of electrolyte solution near
the charged surface (see also Fig. 3).

By comparison of the approximative expression for the ef-
fective permittivity . calculated within Langevin PB theory
taking into account the excluded volume eftect (Eq. 37) and Eeff
within Langevin PB theory without considering the excluded
volume effect (Eq. 21), we can see that the first three terms in
expansions are equal in both models. The third term represents
the effect of orientation of water molecules in the electric field
near the charged membrane surface. The fourth term in Eq.
(37) describes the decrease of ggrnear the charged membrane
surface due to the depletion of water dipoles, because of ac-
cumulated counterions. Based on Egs. (21) and (37), it can be
concluded that the effective permittivity of the electrolyte e,z
near the charged membrane surface is reduced relative to its
bulk value due to a preferential orientation of water molecules
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and depletion of water molecules in the close vicinity of the
charged surface.

Note that unlike in Eq. (21), the third term in Eq. (29)
does not agree with the third term in the general Eq. (37).
We may, therefore, draw the conclusion that the assump-
tion of the Boltzmann-like distribution functions for both,
point-like ions and water molecules (Eqs. 22-24) is not
consistent with the predictions of the Langevin PB theory
for point-like ions presented in this work (Eqs. 18, 21;
Fig. 2), and also not with the predictions of the Langevin
PB theory with excluded volume effect (Egs. 33-36; Fig. 3).
For small |o| when the ions can be considered as point-
like, the ion distributions obey the Boltzmann functions
(Eq. 6), while the number density of water molecules,
nyw(x), is constant everywhere in the electrolyte solution
(Eq. 7) (Kralj-Igli¢ and Igli¢ 1996). For larger |o|, however,
the Langevin PB theory with exclusion volume yields
(Fig. 3) to a space variation of the water molecules density
which is consistent with Fermi-Dirac-like ion distribution
functions and not with Boltzmann distribution func-
tions for point-like ions (Bikerman 1942; Kralj-Igli¢ and
Igli¢ 1996; Igli¢ et al. 2010). Within Langevin-Bikerman
theory with excluded volume , which considers the finite
size of ions and water molecules, the water molecules are
depleted in the region near the charged surface (and not
accumulated as predicted by Eqs. (22-24)) due to the
accumulation of counterions (Kralj-Igli¢ and Igli¢ 1996;
Igli¢ et al. 2010).

To conclude: in this work, the PB theory for point-like
ions was modified by introducing the orientational ordering
of water molecules (Fig. 1). The water dipoles are described
as Langevin dipoles with a given dipole moment. It is shown
that the effective dielectric permittivity of the electrolyte so-
lution ¢, decreases with increasing magnitude of the electric
field strength (Eq. 21). Due to the increased magnitude of
electric field in the vicinity of the charged surface in contact
with an electrolyte solution, the effective permittivity e, of
the electrolyte solution in the region near the charged mem-
brane surface is decreased (Fig. 2). The predicted decrease
of the permittivity relative to its bulk value is a consequence
of the orientational ordering of water dipoles in the vicinity
of the charged surface (Fig. 1). It can be also seen from Eq.
(37) and Figs. 2 and 3 that for finite size ions, the dielectric
permittivity profile £.gin the vicinity of a charged membrane
surface is modulated by the depletion of water dipoles at
the charged surface due to accumulated counterions (Igli¢
et al. 2010). The drop in the water number density near the
charged surface results in additional decrease of permittivity
(Fig. 3 and Eq. 37).
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Appendix
Eq. (15) can be rewritten in a more general form as:
V2g(r) = i(zeono sinh(e,@(r)/kT) -
&
' (A1)

—ny,, o VML (p,E(r)/KT)])

where n = V¢/|V¢| is the unit normal vector. By rearranging
the terms we obtain from the above equation:

V&,V $)+n,, p,V[L(p,E(x)/ kT)] =

=2¢,n, sinh(e,@(r)/kT) (A2)
and further
V-[£,V¢+n,, ponL(p,E(r)/ kT)] = (A3)
=2e,n, sinh(e,@(r)/kT)
l Ny, Py M _
Ve (+ QP L(p,E(r)/kT))V]= (Ad)
=2e,n, sinh(e,d(r)/kT)
Hy, Dy | _
v{s (1 ol L PEX)/KT))V ] = (A5)

0

=2¢,n, sinh(e,d(r)/kT)

where we took into account n/V¢ = 1/|[V¢ | = 1/E and
E =|V@|. Eq. (A5) can be further rewritten as:

Ve, VT =—p,..(r) (A6)

where we defined e.g(r) as the effective permittivity of an
electrolyte solution:

Py L(p,E(r)/ kT)
£ E(r)

Ey (r)=1+n,, (A7)

and
pﬁ,ee(r) =¢,(n, (x)—n_(x)) = —2e,n, sinh(e,@d(r)/kT) (A8)

as the macroscopic (net) volume charge density in the elec-
trolyte solution, i.e. the volume charge density of couterions
and coions, where the number densities of counterions and
coions (n,(x) and n_(x)) are given in Eq. (6). Also the bound-
ary condition (16) can be transformed in more general and
condensed form as:

Vo(r = rwf) = —L[0n+
g

0

+nn,, p, L(p,E(r)/kT) (A9)

r=surf ]
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Vr=r, ) +n oL (p E(r=r, ) /KT) =
: . :

__%, (A10)

&

n My, Po
V¢(r = rsu(f) 80

Ver=r, )14

o (A11)
L(p,E(r=r,,)/KT)]=="n
&y
1 n,.p
Vér=r )14 Ow 70
¢( surf )[ E(r — rﬂ“f) &,
(A12)

L(p,E(r=r,,)/KT)]= —8211

0

where we take into account n/V¢ (r = rey) = 1/|Vo (r =
Tsurf)| = 1/E(r = Fgurf).

By including the definition of the effective permittivity
(Eq. A7), the above boundary condition (Eq. A12) takes
the following form:

v¢(r = rsu/f)geﬁ (r = rsurf) = _zn (A13)
’ &,

0

or

on

_ (A14)
gogejf (r = rsmjf)

V¢(r = rsmjf) ==
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