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Abstract. The estimation method of the concentration boundary layers thicknesses (J) in a single-
membrane system containing non-electrolytic binary or ternary solutions was devised using the
Kedem-Katchalsky formalism. A square equation used in this method contains membrane transport
(Lp, 0, w) and solution (D, C) parameters as well as a volume osmotic flux (J,). These values can be
determined in a series of independent experiments. Calculated values § are nonlinearly dependent
on the concentrations of investigated solutions and the membrane system configuration. These
nonlinearities are the effect of a competition between spontaneously occurring diffusion and natural
convection. The mathematical model based on Kedem-Katchalsky equations and a concentration
Rayleigh number (R¢) was presented. On the basis of this model we introduce the dimensionless
parameter, called by us a Katchalsky number (Ka), modifies R¢ of membrane transport. The critical
value of this number well describes a moment of transition from the state of diffusion into convec-
tive diffusion membrane transport.
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Introduction

The creation of concentration boundary layers (CBL) is an
important process occurring in model and biological systems
(Barry and Diamond 1984; Levitt et al. 1989; Schlichting and
Gersten 2004; Missner et al. 2008). These layers serve as ad-
ditional kinetic barriers to the fast penetrating substances,
both through natural and artificial membranes (Winne
1973; Slezak 1989; Dionne et al. 1996; Pohl et al. 1998; Pep-
penheimer 2001; Baumgartner and Montrose 2004; Lofts-
son et al. 2006; Knipfer and Steudle 2008). CBL are formed
spontaneously on both sides of a membrane separating two
solutions of different concentrations. The process involved
in its creation is called diffusion. A process of CBL creation
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is called the concentration polarization (Spiegler 1971). The
basic parameter of CBL is its thickness (), which increases
following to the equation & = k-t*, where k is a constant and
tis time, for free diffusion a = 0.5. Diffusion may be accom-
panied by other processes of destructive nature, including
free and forced convection (Rubinstein and Zaltzman 2000;
Dworecki et al. 2005). The process of free convection creation
is controlled by a dimensionless parameter called the con-
centration Rayleigh number (R¢) (Normand and Pomeau
1977; Slqzak et al. 1984; Dworecki et al. 2005). This number
that expresses the ratio of buoyancy forces to the dissipative
forces of diffusion and viscosity is calculated on the basis of
boundary layer thicknesses as a characteristic dimension. It
characterizes the limit of stability, as

RC — gaCﬁC54

Dy (1)

where: g is the gravitational acceleration, & the thickness
of the CBL, ac = (dp/dC)/p the variation of density with
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the concentration, ¢ = 0C/dz the concentration gradient
through the CBL, p the mass density, D the diffusion coef-
ficient of the solute and v is the kinematic viscosity of the
fluid.

For the concentration Rayleigh number greater than
its critical value, the hydrodynamic instability occurs to
lead to natural convection which reduces the thickness of
CBL and increases the value of concentration gradient of
the membrane and consequently osmotic stimulus (Slezak
1989; Dworecki 2005). The existence of such a regulatory
mechanism at the presence of an external field enables to
explain an aim of the osmotic effects, such as the osmotic
volume flux amplification (Kargol et al. 1979; Slezak 1989;
Slezak et al. 2002). This effect occurs in the single-mem-
brane system containing ternary solutions in conditions of
concentration polarization (Slezak 1989), and occurs when
the density gradient in CBL in surroundings of horizontally
mounted membrane is anti-parallel to the vector of gravity.
In the extreme case, the extensive movements throughout the
solutions, which are caused in the model artificial systems
usually by mechanical mixing, lead to homogeneity of these
solutions. Thickness § can be determined experimentally by
the optical method (Dworecki 1995; Dworecki et al. 2003;
Larchet et al. 2008; Fernandez-Sempere et al. 2009). The
thickness can also be estimated by measuring the osmotic
volume flux (Helfferich 1962; Barry and Diamond 1984).
The review of methods determining the thickness of CBL
is presented in the papers as follows (Barry and Diamond
1984; Larchet et al. 2008).

In the previous paper (Slezak et al. 2010) it was presented
that for binary solutions (aqueous glucose solutions), con-
centration polarization of the membrane in a horizontal
plane depends both on diffusion and hydrodynamic instabili-
ties at the membrane surface. The cause of such instabilities
is asymmetry of membrane transport in the gravitational
field. We state that this asymmetry was observed for the
cases with R¢ greater than a critical value. The mathemati-
cal model based on Kedem-Katchalsky (K-K) equations

C, configuration A
-J,
layer |, wy
Q, membrane w,
layer |, w,,
+J,
ckh

and R¢ number was presented. On the basis of this model
and the dependence of volume flux through the membrane
as a function of glucose concentration in the upper (Fig. 1,
configuration B) and lower (Fig. 1, configuration A) chamber
of the membrane system, the dependencies of thickness of
CBL, R, and the introduced coefficient of asymmetry as
a function of glucose concentration were presented for both
configuration. The asymmetry of membrane transport is
observed for R > (R¢)rir and AC > (AC) iy

In this paper we present a method for estimating the
thickness of CBL () in a single-membrane system that con-
tains ternary nonionic solutions, i.e. glucose solution in 0.2
mol/l aqueous ethanol solution. This method, based on the
K-K formalism for ternary solutions and an experimentally
measured osmotic flux as a function of glucose concentration
in aqueous ethanol solutions in the upper (Fig. 1, configura-
tion B) and the lower (Fig. 1, configuration A) chamber of
the membrane system with the membrane in a horizontal
plane, is presented in this paper. We derive a mathematical
formula, which contains the membrane (Lp, 0, w), the solu-
tions (D, C) transport parameters and the osmotic volume
flux (J,). Besides, we introduce a mathematical formula
called by us the Katchalsky number (Ka), which contains
the membrane (w), solutions (v, C), thickness of CBLs (&),
acl, etc. The dependencies of Ka for the membrane system
with Nephrophan hemodialyser membrane in the horizontal
plane as a function of glucose concentration in binary and
ternary solutions were also calculated.

Materials and Methods

Let us consider a model shown in Fig. 1, in which a neutral,
symmetric, isotropic and selective polymer membrane (M)
separates two heterogeneous (mechanically unstirred) ter-
nary non-electrolyte solutions with concentrations Cyy, and
Ci1 (Ciny Cipy k =1, 2) at the initial moment (¢ = 0). In the
configuration A, solution with concentration C; is located in

C.. configuration B
A ~Ji
w,, layer I,
w, membrane Q,
layer |
w, o i I ER—
| | +Jv
C.Id

Figure 1. The model of single-membrane system (see the description in the text).
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the compartment above the membrane, whereas a solution
with concentration Cyy, is located below the membrane. In
the configuration B, the location of solutions with concentra-
tion of Cy; and Cyy, is opposite.

Under these conditions, water and two dissolved sub-
stances (k = 1, 2) diffusing through the membrane form the
CBL]I}, and ] on both sides of the membrane. The thicknesses
of the layers 1, and 1} (§; and 6,), respectively, are increased
following the dependencies 6; = Kyt and 8, = K1, where
K;and K, are certain experimental constants (Dworecki et al.
2000, 2005). These layers cause that the concentration differ-
ence decreases from Cyj, — Cyjto Cy; — Ci,, Where Cy; > Cieps
Ckp, > Ck; and Cy, > Cyy. When the solution of lower density
is below the membrane, then the system l;,/M/]; loses stabil-
ity and natural convection that has destructive properties
may appear in the near-membrane areas. This process limits
the growth in thickness of CBL and accelerates diffusion of
substances outside the layers (Slezak 1989). Natural convec-
tion occurs when the hydrodynamic conditions cause that
the CBL thickness §; and J, reach critical values (6;),;; and
(8¢)criv» and Re (Rep, Rey) that control the natural convec-
tion process reach their critical values. Then, the process of
natural convection develops and in certain conditions can
even lead to the liquid-type structure called “plum structure”
(Puthenveettil and Arakeri 2008). The process of creation
of concentration layers may be presented by optical meth-
ods (Dworecki 1995; Dworecki et al. 2005). Moreover, the
characteristics 8; = f(t), 8, = f(t), ACy, = f(t) and AC; = f(¢)
can be calculated using a proper set of measurement, the
mathematical procedure presented in the papers Dworecki
et al. (2003, 2005) and specialized software. In the special
case, when the process of creation of the layers I}, and 1 is
symmetrical, one can assume that §; = §, = 6.

The process of creation of the CBL is accompanied by
osmotic volume and solute flows, which are measured as
the osmotic volume flux (J,,) and solute flux (J;). We assume
that J, and J; are positive when they are directed vertically
upwards, and negative when directed downwards. In the
initial moment, when solutions separated by the membrane
are homogeneous, the flux J, for the certain concentrations of
solutions reaches the maximum value (Slezak and Dworecki
1984; Slezak et al. 2002). The formation of layers I, and ;
reduces the difference in concentrations on the membrane,
and thus reduces the value of the flux J,, (Slezak 1989). This
flux can be determined using the procedure described in the
paper Slezak and Dworecki (1984), or can be calculated using
the K-K formalism (Grzegorczyn et al. 2008).

For osmotic volume flows of homogeneous (evenly
stirred) solutions, the value of the osmotic volume flux
does not depend on the configuration of the membrane
cell. Therefore, to describe this volume flux the classic form
of K-K equation is sufficient and can be written in the fol-
lowing form:

2
J, ZLp[ZO'kAﬂ'k —APJ (2)
k=1
2 —
J, =Y o Ar, +J,(1-0,)C, (3)
k=1

where J, and J; are volume and solute fluxes, respectively;
Ly is the coefficient of hydraulic permeability; AP the hy-
drostatic pressure difference; g and o, are the reflection
coeflicients of the membrane for the k-th and s-th substance,
respectively, Amry. = RT(Cyy, — Cyy) is the osmotic pressure dif-
ference for k-th substance; RT the product of gas constant
and thermodynamic temperature; Cy;, and Cy; the concentra-
tion of homogeneous solutions; the subscript k = 1, 2 refers
to the solute; indexes h and [ signify higher (h) and lower
(I) the concentration of “1” and “2” ternary solutions; C; is
an average solute concentration; (j’s =0.5(Cg; + Cy), ws is
the permeability of the s-th substance which passes across
the membrane under the influence of a gradient of the k-th
substance osmotic pressure difference (wgs = wgk CSC,JI)
and s, k=1, 2, s # k. For AP = 0, the following condition
is fulfilled

2 J—
> oy Ar, >>J,(1-0,)C, (4)
k=1

Lack of mechanical mixing enables a spontaneous crea-
tion of CBL. In this case, K-K equation should be written in
a different form, presented in the paper Slezak et al. (1989).
For ternary non-electrolyte solutions in conditions AP = 0,
the equation describing the osmotic volume flux can be
written in the following form:

J, =L,RT[0,6,(Cy;, —Cy)) +0,6,(Cy, =Cy)] - (5)

where: {; and (, are coeflicients of concentration polari-
zation for substances “1” and “2”, respectively, in ternary
solution.

In the previous paper (Slezak et al. 2005) it was shown
that coefficients {; and (, for the case where §; = §, = § can
be written as

& =Q0, = Dy(D, +2RTw,5)™ (6)
&, =Q,0, " = Dy(D, +2RT0,5)™" (7)

where: () and Q, are permeability coefficients of the com-
plex I/M/]; of the substance “1” and “2”, Dy and D, are
coefficients of diffusion in solutions for substances “1” and
“2”, wy and w, are coeflicients of permeability of substances
through the membrane for substances “1” and “2”, § is aver-
age thickness of concentration boundary layer.
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Taking into consideration Egs. (6) and (7) in Eq. (5) and 12
applying necessary transformations, we obtain the square S = 72Dkv (Cin —Cr) (16)

equation for §

S*+yS+y=0 (8)
where: v = [ - LP(KIACl + K AC) ], ], =y[l -
L RT(01AC1 + AC)), s a = Qi) B= (Dywy +

Dzwl)(RT) 5 k1 = 01D1w); k3 = 0Dy y = 0.25D1Dy(RT)
wywy) ™5 ACy = Cjy — Cipy ACy = Cyp — Cy

Solving Eq. (8), using the typical procedure for solving
a square equation, we obtain the average § that is dependent on
the individual components of ternary solutions. For binary non-
electrolytic solutions, Eq. (8) can be simplified to the form:

§=1Do'[L,a/,”(C,-C)-(RT)™"] )

For the CBL]j and I, using the following relations a3, =
(pe = pD(pide) " and ;B = (py - p)(prd) ™", Eq. (1) can be
written in the following forms (Slezak et al. 1984; Guyon et
al. 2001; Dworecki et al 2005):

5
(Re), =P Pr 8% (10)
P Dy
—p 057>
(Rc)i =ph pl g i (11)
P D,

where D, and D; are the solute diffusion coefficients in the
layers 1} and I, v; and vy, are the kinematic viscosity coefhi-
cients, p, and p; are the densities of solutions at the interfaces:
membrane/CBLs, and py, py, are the solutions densities outside
the layers. In order to estimate (p, — p;) and (p, — p;) in the
steady state, we will make the following consideration. For
small glucose (index 1) and ethanol (index 2) concentrations
the density is linear, so

2

Pe—P1 = 1; ac, (Cre =Cir) (12)
2 ap

= C,—C 13

kz ac, (Cun = Cu) (13)

In order to calculate differences of solutions (Cy, — C;)

and (Cyy, — Cy,) (k =1, 2) for the stationary state, the following
considerations will be carried out. In the case of membrane
transport of ternary non-electrolyte solutions, on the basis
of Egs. (3) and (4) for the membrane system presented in
Fig. 1, we can write

1 2

Ja = *ZDM (Cre = Cir) (14)
5& k=1
2

Jsm = RTZ Dy (Cki - Cke) (15)

k=1

é‘i k=1

If fluxes of dissolved substances permeating through
layer 1}, membrane M and layer 1}, stand for Jg, J;,,, and Jg,
respectively, in the stationary state, they fulfill condition Jg =
Jsm = Jon- Using Egs. (14)-(16) we get

1 2 2
72Dks (Cre —C) = RTZwks(Cki =Cy) =

e k=1 k=1

1 2
=—2. D (Cy —Cp)
5 &

(17)

If we assume that Dy >> Dy, Dy >> Dy, w1 >> wy; and
w, >> w1, on the basis of above equation, we obtain

RTw,0,D,,(Cy;, —Cy))

C.-C, = (18)
RTw, (D6, + D,,6;) + D, Dy;
RTw,5.D,.(C,, —C
C,, —Cy = @©,0,D,;(Cy, 21) (19)
RTw,(Dy;6, + D,,6;) + D,,Ds;

RT D —
C,—C = ®,0,D,,(Cy, —Cy)) (20)
RTw,(Dy,6; + Dy;6,) + D, Dy;
Czh _Czl' — RTw25iD2[ (CZh _CZI) (21)

RTw,(D,,06; + Dy;6,)+ Dy, Dy,

Combining Egs. (10)-(13) and (18)-(21), we obtain equa-
tions describing concentration Rayleigh numbers R¢; and
Rgy, for the isothermal membrane transport

gRTS,” | 0
Re = { £ m(Cy, —Cy) +
Py, (0C,
22)
o (
+ %772 (Cy = Cy )}
ng“ 5
Ry, = = LGy —C)+
pyviDy; [9C,
(23)
9p
+—A,(C,, -C
oC, 2 (Cyy 2/)}
where

= w1 Dy;[RTw (D10, + D16;) + DycDyj] ™!

712 = 0;D5i[RTwy(Dyi, + Dyedy) + DaeDyi] ™

= w1 Dyo[RTw; (D18, + Dy8;) + DyeDy] ™!

/12 = 0D [RTwy(Dyi, + DycBy) + DyeDy] ™!
0p/C; and 9dp/C, are the variation of solution density
with concentration of glucose (subscript 1) and ethanol
(subscript 2), Dy, and Dy; the coefhicients of solute diffu-
sion in the layers Ij and ly,, respectively, and §, and §; are the
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thicknesses of the layers I} and 1y, respectively. One antici-
pates the onset of large-scale natural convection when the
experimental R¢ exceeds some critical value.

Assuming that for the complex I/ M/ly,, in steady state, §, =
0; =8, D1, = Dy; = Dy, Dy, = Dy; = D, and for small glucose
and ethanol concentration vjp; = vjpp, = vop,> We can write
on the basis of above equation

_ gRTS* Op | o(Cy, —Cyy) "

p.V,D |0C, | 2RTw,0 + D,

+6p{wxcm—cyq} 24

0C, | 2RT®,6 + D,

We have obtained the equation describing the R for
isothermal passive trans-membrane transport processes. If
we find the critical value of § = §,,;, on the basis of that equa-
tion we can calculate the critical value of R¢. The remaining
parameters: p,, v, W1, Wo, D1, Da, dp/Cy, dp/dC, needed to
calculate (R¢).¢ value on the basis of Eq. (24) were deter-
mined experimentally.

Egs. (6) and (7) can be transformed to the following
form

_2¢RTw, 6
1-¢
26,RTw,6

1-¢,

R =Rey = Re

(25)
(26)

Inserting Egs. (25) and (26) into Eq. (24), we get

g8°(1-¢))

e =
4RTpo o lé/l

LﬁC (I=&Cy, —Cy)+
(27)
0
+7GC/?2 (1—§2)(C2h—C2,)}

We have obtained the equation describing the modified
R for isothermal passive trans-membrane transport proc-
esses.

If we assume that {; =
of above equation

{, = {, we can write on the basis

-1
0
257 (Clh Cu)"'acp (Cyy - sz)}
2
_(-¢y?
g

4R p,v,RTw,
8C1

(28)
=Ka

Such a modified form of R¢ we will call the Katchalsky
number (Ka). The above expression can be used to describe
the transition from the state of diffusion to convective diffu-

sion in the membrane system. On the basis of Egs. (1), (24),
or (28) the critical values of the density gradient (dp/0z)..,s
were obtained, in which the diffusive-convective transport
appears as well

% _ (20 \@Cu=Co) (30 \@r(Cu=Ca)
oz oC, ) D, +2RTw,5 |\ 6C, ) D, +2RTw,5
(29)

or

3  DKa H ap

op
-Cy)+ C -C
oz 4RTans” 5CIJ( 1= Cu) (6 (Cop = Coy)

(30)

Experimental studies of osmotic volume flows were carried
out by means of the measurement set-up that was described
in detail in a previous paper (Slezak and Dworecki 1984). The
set-up consisted of two Plexiglas vessels (1, h) separated by
a membrane (M) with an equal active surface area of 3.36 +
0.2 cm?. The membrane was mounted in a horizontal plane.
The experiments were performed with the flat sheet Neph-
rophan membrane. Parameters of the membrane, i.e. hydraulic
permeability (L), reflection (o) and solute permeability (w,)
coeflicients were determined in accordance with methods
described in previous papers (Katchalsky and Curran 1965).
Their values for the Nephrophan membrane and for binary
aqueous glucose solutions are as follows: L, = 4.9 x 10712 m?
N~1s71 67 =0.068, 05 = 0.025, w; =0.8 x 10~ mol N~'s 1 and
wy = 1.43 x 10~ mol N™!s™1. The diffusion of each individual
component in solution is characterized by the following coef-
ficients: D; = 0.69 x 10~ m?/s and Dy = 1.074 x 10~° m?/s.
Volumes of the vessels (1, h) were the same and equal to 200
cm?. For small glucose and ethanol concentration: py, = p(1 +
a1Cip+ 0Cop), vy = v(1 + 1 Crp, + y2Cop) where coeflicients

=p; 19p/dC; = 6.01 x 107> m*/mol, y; = v 1dv/C; =3.95
x 1074 m°/mol, a, = pflap/acz =-9.02 x 107® m*/mol and
Yy = pl_lav/aCz = 1.82 x 10™ m>/mol (p1=998kg/m, v;=
1.012 x 1075 m?/s. The vessel (h) contained aqueous glucose
or glucose in 0.2 mol/l aqueous ethanol solution, whereas
the vessel (1) contained pure water in all experiments at the
initial moment. The vessel (h) was coupled with a calibrated
pipette, while the vessel (1) was connected to an external
reservoir of pure water at the same height as the pipette. The
volume flux, J,, was determined from J,, = AV/SAt, where S is
the membranes surface area and AV/At is the volume change
(V) occuring in the time (f). All experiments were carried out
at temperature T =295 K.

Results and Discussion

Values of the osmotic volume flow for configurations A and B
of the single-membrane system were determined experimen-
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tally, as shown in Fig. 2. This figure shows that dependencies
J, = fTIAC;) for the binary solutions and for configurations
A and B are linear outside the range of concentrations
5 mol/m><AC 1<25mol/ m3. Whereas for ternary solutions,
these characteristics are nonlinear, but contain ranges ACy,
where the tangent of the angle between the tangent to the
curve and the axis of ACy is a constant value. The figure also
shows that the flux of binary solutions J, in the configura-
tion B of the membrane system is significantly greater than
in the configuration A of the membrane system. The curves
presented in Fig. 2 show that ], for AC; fulfilled the condi-
tions 5 mol/m® < AC; < 25 mol/m? (for binary solutions and
configurations A and B), 0 mol/m® < AC; < 0.0325 mol/m®
(for ternary solutions and configurations B) ~25 mol/m? <
AC; < -5 mol/m? (for binary solutions and configuration
A) and to -60 mol/m? < ACy £-40 mol/m? (for binary and
ternary solutions and configuration A) and is approximately
equal. Moreover, for 0 mol/m> < AC; < 32.5 mol/m°, the
fluxes J, for ternary solutions in the configuration B and
the same values AC; are lower than the fluxes J, in the
configuration A. For AC; > 32.5 mol/m?, fluxes J, for ternary
solutions in the configuration B are higher than the fluxes
in the configuration A for the same values of AC;. Rela-
tively large increase in the value of the volume flow is due
to the emergence of additional osmotic pressure gradients
caused by hydrodynamic instabilities of CBL (Dworecki et
al. 2005; Slezak et al. 2005). These instabilities are caused by
sufficiently large gradients of solutions density in the CBLs
areas with the opposite direction to the gravity vector. They
are the cause of change in the nature of the solute transport

T T T T T T T T
5
ADS
] O O binary AN )l
4 A <7 ternary ﬁ 7]
) O  configuration A A ]
34 O A configuration B A T
24 _
@ VAN oo
E [m]
o 1 ﬁj—_ﬁ;‘? o E
o -
So opoosh
- vvivireseceelel
14 < i
-2+ VV -
34 VovvV i
T T T T T T T T T T T T
-60 -40 -20 0 20 40 60

3.
AC, (mol/m”)

Figure 2. Dependencies of the experimental volume osmotic flux
(J,) on glucose concentration difference (ACy) at constant ethanol
concentration difference (AC,) in binary (AC, = 0 mol/m?) and
ternary (AC, = 200 mol/m?®) for configurations A and B of the
single-membrane system.
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3
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Figure 3. Dependencies of concentration boundary layer thick-
ness (8) on glucose concentration difference (AC;) at constant
ethanol concentration difference (AC,) in binary (AC, = 0) and
ternary (AC, = 200 mol/m®) for configurations A and B of the
single-membrane system. Squares, experimental results (Slezak et
al. 2005); lines, calculated from Eq. (8).

from diffusive to diffusion-convection (Rubinstein and
Zaltzman 2000; Dworecki et al. 2005; Larchet et al. 2008;
Puthenveettil and Arakeri 2008). Such a situation occurs
in the case of binary solutions and configurations B of the
membrane system for AC; < 15 mol/m?. In the case of ter-
nary solutions, hydrodynamic instability appears to AC; <25
mol/m? (for configuration B of the membrane system) and
~40 mol/m> < AC; < 0 mol/m? (for the configuration A of
the membrane system). Except for these ranges ACy, trans-
port in CBL areas is diffusion. Taking into consideration
the experimentally determined transport parameters of
the Nephrophan membrane, the experimental results of J,
shown in Fig. 2 and Eq. (7), the calculations of thicknesses
0 were done for aqueous solutions of glucose and glucose in
200 mol/m? aqueous ethanol solution for ACy, that is in the
range of 5 mol/m® < AC; < 60 mol/m? for configurations
A and B of the membrane system.

The results of calculations of dependence & = {AC;) for
the configurations A and B of the membrane system and
binary solutions are represented by curves 1 and 2 in Fig. 3.
The figure shows that this dependence for both tested con-
figurations of the membrane system is non-linear. For 5 mol/
m?® < AC; <20 mol/m?® and —20 mol/m? < AC; < -5 mol/m?,
thickness of J; for both configurations is the same and the
value is equal to 0.7 mm. However, for AC; > 20 mol/m? the
value of § in the configuration B decreases and for AC; = 60
mol/m? reaches 0.28 mm. In the configuration A, the value
of 8 decreases non-linearly for AC; < -20 mol/m? to about
the value & = 1.33 mm for AC; = -60 mol/m>.
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Figure 4. Dependencies of Katchalsky number (Ka) on glucose
concentration (Cyy) in binary solutions for configurations A and
B of the single-membrane system calculated on the basis of
Eq. (28).

The results of calculation of § = f{AC,) for different con-
centration of glucose in 200 mol/m> aqueous solutions of
ethanol and the configurations A and B in the membrane
system are presented as curves 3 and 4 in Fig. 3. Curves 3 and
4 show dependence § = f{AC,) for configurations A and B in
the single-membrane system. Points on this figure illustrate
the experimental results of §, obtained using methods of laser
interferometry. These data were published in the previous paper
(Slezak et al. 2005). We observe two different rates of increase
(curve 3) and decrease (curve 4) in thickness § accompanying
the AC) increase. From Fig. 3 it results that for ternary solutions
and the configuration A of the membrane system (curve 3) for
-32.5 mol/m® < AC; <0 mol/m®and AC; < -40 mol/m?, and
for the configuration B and 0 < AC; < 32.5 mol/m> and AC,
> 40 mol/m?>, the value & is weakly dependent on the value
AC;. For the curve 3 the sudden change in § occurs for AC; in
the range -40 mol/m? < AC; < =35 mol/m> whereas for the
curve 4 the sudden change in & occurs for ACy, satisfying the
condition 15 mol/m> < AC; < 30 mol/m?. It should be noted,
that for the curve 3 the value § increases from § =0.4mm up
to § = 5.5mm, and for the curve 4 the value § decreases from
d=54mm to § =0.5 mm. The changes of the § value are as-
sociated with changes in the value of J,. Jumping decreasing
values § are associated with transition from the non-convective
to convective areas of CBL.

The results of calculations of § obtained in this paper
can be confronted with the results of § measurements using
a laser interferometer presented in other papers (Dworecki
1995; Dworecki et al. 2003, 2005; Slezak et al. 2005). In the
stability state (the state of the system with diffusion) of CBL

the thickness of the layer is 4-6 mm, whereas in the instability
state (the state of the membrane system with diffusion and
gravitational convection), the average value calculations of §
is in the range between 0.2-0.4 mm. Therefore, the presented
method is compatible with the method that uses a laser
Mach-Zehnder Interferometer (Dworecki 1995; Dworecki
et al. 2003). However, interferometric (Dworecki 1995;
Dworecki et al. 2003) or holographic (Fernandez-Sempere
et al. 2009) optical methods enable the visualization of the
processes occurring in near-membrane areas.

The results of calculations presented in the paper
Dworecki et al. (2005) indicate that in the diffusive state the
dependence § = K-, for a = 0.5, is satisfied. For the convec-
tive state this dependence is incorrect, since the value of
a calculated in the same way as for the diffusive state gives
the value of a = 0. This means that § interferometrically
recorded or calculated on the basis of Eq. (8), is the thick-
ness of the hydrodynamics layer, called the Prandtl layer
(Schlichting and Gersten 2000). Its value in the convective
state for binary and ternary solutions is constant (Dworecki
etal. 2005; Slezak et al. 2005), which is reasonable in relation
to the data published in Schlichting and Gersten (2000).
Recently, it has been reported (Puthenveettil and Arakeri
2008) the registration of dendritic structure of solution un-
der turbulence conditions for the case of Rayleigh-Benard
natural convection with the use of optical methods. Recorded
images show that the dendritic structure is a mark of fractal
structure for large values of concentration Rayleigh number.
In this situation, i.e. in the center of convection, super-diftu-
sion occurs (Iomin and Baskin 2005).

Figs. 4 and 5 shows the dependence Ka = f(Cy;,) for binary
(Fig. 4) and ternary (Fig. 5) solutions. From the Fig. 4 it is
seen that the shape of these curves is different. Let us consider
the curves 1 and 2 in the Fig. 4. The curve 1 is a hyperbola,
and the curve 2 is an asymmetrical parabola, of which the
minimum has coordinates Ka = 2, Cy;, =29 mol/m> Moreo-
ver, the point of coordinates of Ka = 3.11, Cyj, = 15 mol/m? is
the last common point of curves 1 and 2. From the course of
curves 1 and 2 results that C;j, < 15 mol/m> transport of the
solute has a nature of diffusion and the membrane system
does not distinguish the direction of gravity. This means
that the viscous forces prevail over the forces of buoyancy.
Concentration of the solution C;j, = 15 mol/m? is a critical
concentration above which the nature of transport trans-
forms from diffusive into diffusion-convection. For this con-
centration Ka = 3.11. It is worth mentioning that determined
in the previous paper (Slezak et al. 2010) the critical value of
concentration Rayleigh number (R.) . = 1709.3.

The courses of curves 1 and 2 in the Fig. 5 differ from
each other. In the case of curve 1, for 0 < Cy, < 27.5 mol/m>
Ka increases non-linearly up to the value about -22.63 for
Cyj, = 0 mol/m? to a minimal value of Ka = —48.8 for Cyj, =
27.5 mol/m? (Cyy, = 200 mol/m®" For Cy > 37.5 mol/m> Ka
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Figure 5. Dependencies of Katchalsky number (Ka) on glucose
concentration (Cyj) at constant ethanol concentration (Cy,) in
ternary solutions (Cy;, = 200 mol/m?) for configurations A and
B of the single-membrane system calculated on the basis of
Eq. (28).

is approximately constant and equals Ka ~ 0.02. A maximal
value of Ka = 21.76 was obtained for C;, = 32.5 mol/m> and in
the case of curve 2, Ka decreases non-linearly from the value
of Ka = -0.02 for Cy, = 0 mol/m> (C,j, = 200 mol/m?) to the
minimal value of Ka = -11.99 for Cyj, = 27.5 mol/m?>. A max-
imal value of Ka = 84.43 was obtained for Cy, = 32.5 mol/m>.
In addition, curves 1 and 2 meet at the point of coordinates
Ka =0and Cy, = 30 mol/m?. Results presented in Figs.4and 5
suggest that the critical value of Ka for the binary solutions is
different than for the ternary solutions. Is that reasonable? To
answer this question, we calculate the appropriate values for
the density gradients (dp/dz) for binary (aqueous solutions of
glucose) and ternary solutions (glucose solutions in 0.2 mol/l
aqueous solutions of ethanol) using Eq. (29), results of § shown
in Fig. 2, and 0p/0C; = 0.06 kg/mol and dp/0C, = -0.009 kg/
mol. The calculation results are shown in Fig. 6. Curves 1 and
2 were obtained for binary solutions and the curves 3 and 4
— for ternary solutions. Curves 1 and 3 were obtained for the
configuration A, and curves 2 and 4 — for the configuration B
of the membrane system. From the figure it results, that for
the configuration A the density gradient is consistent with the
direction of the gravity vector, which means that dp/dz < 0.
For the configuration B the density gradient has the reverse
direction to the gravity vector, which means that dp/dz > 0. For
ternary solutions, within one configuration depending on the
value ACy, the density gradient may fulfill one of the following
conditions: dp/0z < 0, dp/dz = 0 or dp/dz > 0. For AC; < -29
mol/m? and the configuration A and AC; > 29 mol/m? and
the configuration B of the membrane system, dp/dz < 0. On
the other hand, for AC; = —29 mol/m? and the configuration

Figure 6. Dependencies of density gradient (dp/dz) on glucose
concentration difference (AC;) at constant ethanol concentration
difference (AC,) in binary (AC, = 0) and ternary (AC, = 200 mol/
m?) for configurations A and B of the single-membrane system
calculated on the basis of Eq. (29).

A and AC) = 29 mol/m?> and the configuration B, 9p/dz = 0.
And for AC; > -29 mol/m® and the configuration A and
AC; > 29 mol/m® and B configuration of the membrane
system, dp/dz > 0. Let us consider the case dp/0z = 0. The
comparison of the test results for ternary solutions presented
in Figs. 2-6 shows that for this case and the configuration
A of the membrane system J, = -2.2 x 10~8m/s (Fig.2), 6=
0.5mm (Fig. 3) and Ka = 1.64 (Fig. 4). Analogically, for the
configuration B we obtain: J, = 2.25 x 10"3m/s (Fig. 2), § =
0.66 mm (Fig. 3) and Ka = 1.64 (Fig. 4). It is worth noticing
that a minimum of curve 2 in Fig. 4 and the point of meet of
curves 1 and 2 in Fig. 5 occur for the same glucose values, i.e.
Cyj, = 30 mol/m>. The presented considerations show, that the
critical value dp/0z for Cyj, = 15 mol/m? (in binary solution)
is 9p/0z = 5.15 x 10°kg/m?, while the critical value dp/dz
for Cyj, = 30 mol/m? (in ternary solution) is much smaller
because dp/dz = 0. It means that in such conditions buoyancy
forces balance the viscous forces. The critical thickness values
of CBLs for these concentrations are of the order of 0.5-0.7
mm. This means, that achieving the thickness §,,;; of CBLs is
anecessary condition for the transition from diffusive into
convective diffusion state. This process can be controlled by
amodified concentration Rayleigh number, called by us the
Katchalsky number.

Conclusions

1. The square equation, derived from the K-K thermo-
dynamic formalism, is useful to estimate the thickness
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of CBL (9) in the single-membrane system, which con-
tains non-electrolyte ternary solutions. This equation can
be used if the transport parameters of the membrane (L),
0, w), solutions (D, C) and osmotic volume flux (J,) are
known.

2. The value of average thickness § is dependent upon the
concentration of the solutions separated by the membrane
and upon the orientation of a membrane in relation to
the gravity field (the configuration of the membrane
system).

3. Nonlinearity of characteristics § = f(AC}) s, —cong. isthe
result of competition between spontaneously occurring
processes of diffusion and the natural convection.

4. The process of transition from diffusive into convective
diffusion state can be controlled by a modified R called
by us the Katchalsky number (Ka)

-1
4R pVRTw op
Ka=—S——| > ——AC,
go x 0Cy

5. Designated in the paper the critical value of Ka for
aqueous glucose solutions is Ka = 3.11, and for glucose
solutions in 200 mol/m?® aqueous ethanol solution is
Ka =1.64.
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