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Cancer stem cells (CSCs) share many features with embryonic stem cells (ESCs) such as the ability for self-renewal and 
differentiation. Signaling pathways that are involved in these processes are also involved in chemo- and radioresistance (e.g.
Wnt, Notch and Hedgehog pathways). This review is focused on the influence of three important differentiation pathways
on carcinogenesis and on chemo- and radioresistance in ESCs and CSCs.
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Differentiation signaling pathways (e.g. Wnt, Notch and
Hedgehog) are active in stem cells. Nowadays, embryonic stem 
cells (ESCs) and cancer stem cells (CSCs) are the most studied 
types of stem cells. They share many common characteristics,
e.g. self-renewal, unlimited proliferative potential, ability to dif-
ferentiate in certain cell types and cell detoxification by special
molecules; but there are also some differences between both
cell types (Tab. 1). Stem cell hallmarks are termed as markers 
of “stemness” [1-5].

ESCs have been first time isolated from inner cell masses
of late mouse blastocyst cells [6]. Human ESCs have been iso-
lated in 1998. These cell lines have normal karyotypes [unlike
embryonic cancer cells (ECCs)], high telomerase activity and 
surface markers specific for primate ESCs [7].

Tumor cells possessing self-renewal ability, multilineage 
differentiation and maintenance of malign growth are termed
cancer stem cells (CSCs). Tumor cells are surrounded with 
microenvironment called tumor niche. Factors maintaining 
the CSCs in self-renewing and undifferentiated state are pre-
sented in this niche [8]. ESCs have not stable niche in vivo, 
because during embryo development they are attendant only 
transiently [9]. Factors in the ESC niche are changed depend-
ing on the ESC final destination.

Cancer stem cells (CSCs) have been isolated from tumors of 
diverse organs, for example blood, breast, brain, lung, prostate, 
colon, liver, pancreas and skin. [10]. Fluorescence-activated cell 
sorting (FACS) by flow cytometer is used for isolation of side
population (SP) enriched by CSCs on the basis of the ability 
to exclude Hoechst 33342 stain by ABCG2, or other members 
of the ABC (ATP-binding cassette)-transporter family, such 
as ABCB1 (P-glycoprotein or MDR-1), ABCC1 (MRP-1) and 
ABCA2 [11, 12]. Recently, drug surviving cells (DSCs) were 
isolated from human cancer cell lines exposed to cisplatine, 
doxorubicin and ectoposid. These cells share the same main
characteristics as CSCs (self-renewal, clonogenic potential, 
expression of specific markers and the ability to differentiate).
From this point of view DSCs can be considered CSCs [13].

Major mechanisms of radio- and chemoresistance in ESC 
and CSC. Most of the cancer cells are destroyed during the 
treatment, but some of these (CSCs) survive. Stem cells express 
many pumps (such as ABC-transporters ABCB1, ABCC1, 
ABCG2) which are able to exclude chemotherapeutic agents 
out of the cells and enzymes metabolising drugs [e.g. ALDH1 
(aldehyde dehydrogenase 1), GST4 (glutathione S-trans-
ferase 4)]. They also produce DNA repair [e.g. Ku80, MGMT
(O-6-methylguanine-DNA methyltransferase), BRCA1 (breast 
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cancer type 1 susceptibility protein)] and other anti-apoptotic 
proteins [(e.g. BCL-2, BCL-XL, FLIP (flice inhibitory protein)]
preventing the cells against apoptosis. The big problem for
targeting stem cells by chemotherapeutic agents is a slow rate 
of cell turnover because these drugs naturally impair cell cycle 
in rapidly replicating cells [14-16]. 

Another mechanism how stem cells protect themselves 
against anti-cancer therapy is that these cells produce growth 
and angiogenic factors encouraging tumor recurrence. Angio-
genesis and metastasis formation are at least in part managed 
by the niche, that might protect CSCs from radio- and chemo-
therapies [8, 17, 18]. The radiation therapy modifies the tumor
niche. It leads to the enhanced expression or activation of many 
anti-apoptotic proteins or pro-inflamatory cytokines, or tumor
promoting factors [19]. VEGF (vascular endothelial growth 
factor) receptors activation stimulates CSCs proliferation and 
protects them from drug-induced apoptosis [13]. 

Similarly, HIF1 (hypoxia inducible factor 1) is responsible 
for tumor radiotherapy-response. Depending on other factors 
in the niche, HIF1 either induces ATP (adenosine-5’-triphos-
phate) metabolism, proliferation or apoptosis by p53 activation 
(cell sensitization to the therapy), or it allows CSCs to survive 
(tumor growth maintenance) [20]. Therefore, the use of drugs
that inhibit HIF1 may have a double effect.

Under hypoxic conditions the expression of transcription 
factor (TF) OCT4 is activated due to the HIF [21]. Recently, 
it was observed in lung cancer that increased level of OCT4 
may provide tumor resistance to the chemo-radiation therapy. 
It seems that OCT4 is linked with P-glycoprotein, member of 
the ABC-transporter family, and thus it may participate in the 
emergence of multidrug resistance (MDR) [22].

Other downstream targets of TFs OCT4 and SOX2 are 
responsible for the drug resistance of ESCs. TF ZFP206 (zinc 
finger protein 206) provides them the resistance to the retinoic
acid-induced differentiation [23], TF ZIC3 (zinc finger protein

of the cerebellum 3) prevents endodermal specification in ESCs
[24] and ESG1 regulates the pluripotency and the development 
of primordial germ cells (PGCs) [25].

Differentiation pathways involved in carcinogenesis and
in radio- and chemoresistance. For maintaining stem cells 
characteristics, the specific pathways supporting these proc-
esses must be active. These pathways are responsible for the
cell-fate determination of ESCs, since they downregulate the 
expression of certain target genes affecting cell differentiation.
Among these constitutive mechanisms with this ability are 
Wnt, Hedgehog and Notch signaling pathways [26, 27].

Wnt signaling pathway. The Wnt signaling pathway is
activated by secreted WNT glycoproteins (a gene family 
consisting of 19 members) binding to the 7-transmembrane 
(TM) receptor of the Frizzled (FZD) family. Human ESCs 
express all WNTs and most FZDs, while in multipotent cells, 
for example human mesenchymal cells (MSCs) and in the 
ECCs, the expression of certain WNTs and FZDs is missing 
[28, 29]. Depending on associated co-receptor, signals are 
transmitted in two different ways. When FZD cooperates with
LRP5/6 (low-density lipoprotein receptor-related proteins 5 
and 6) [30], the so-called canonical pathway participation 
in β-catenin stabilisation is activated (Fig. 1a) [31]. For this 
reason it is also called a Wnt/β-catenin signaling pathway 
[32]. Target genes of this pathway participate in self-renewal, 
pluripotency, proliferation and cell-fate determination [(c-Myc, 
Cyclin D1, MMPs (matrix metalloproteinase), VEGF, NOS2 
(nitric oxide synthase 2), PPARδ (peroxisome proliferator-
activated receptor-δ), COX-2 (cyclooxygenase-2), JAG1, CER1 
(cerberus 1)][33-36]. When FZD collaborates with ROR2/RYK 
co-receptors, the non-canonical pathway is triggered. This
in turn depends on Ca2+ and G-proteins that activate kinase 
cascades (Fig. 1b) [37].

During carcinogenesis, activation of Wnt/β-catenin signal-
ing is often involved through upregulation of Wnt ligands or

Table 1. ESC and CSC features

Feature ESC CSC References

Self-renewal potential Yes Yes 1-4

Differentiation potential Pluripotent Multipotent 1-4
Toxic stress response Yes Yes 2-4, 14, 15
DNA-repair mechanisms Active Active 14, 16
Anti-apoptotic mechanisms Active Active 14, 16
Stem cell niche Changing Stabile 8, 9
The role of Wnt signaling Cell-fate determination, anterior-posterior body 

orientation, formation of primitive streak, meso-
derm and endoderm, apoptosis prevention

Cell migration during metastasis formation, ap-
optosis, chemo- and radioresistance, maintenance 
of CSCs

16, 27, 40, 41, 44-47, 
49, 53, 54,56-58,

The role of Notch signaling Boundary formation, lateral inhibition, cell-
fate assignation, several organs and systems 
development

Epithelial-mesenchymal transition during progres-
sion and metastasing of tumors, pro-/anti-apoptotic 
effect, chemo- and radioresistance, self-renewal or
cell fate decision or terminal differentiation

15, 68, 69, 72, 77-79, 
82, 88-92, 102, 103

The role of Hedgehog signaling Organs development, proliferation Growth, self-renewal and metastatic potential, 
apoptosis prevention

15, 110, 112-116, 
125, 126, 
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FZD receptors. Parallelly, β-catenin degradation is stopped due 
to failure of some upstream members of the signaling pathway, 
and/or the β-catenin is mutated [38, 39]. Intracellular accu-
mulation of β-catenin and its translocation into the nucleus 
regulates the expression of target genes, or it forms complexes 
with E-cadherin in the cytoplasmatic membrane, thereby it 
becomes a part of cell-cell contacts. In this manner, β-catenin 
may be involved in cell migration during metastasis [40]. 
Negative regulators, such as sFRP (secreted Frizzled-related 
protein), AXIN and PPARγ (peroxisome proliferator-activated 
receptor γ), can be silenced or mutated [37, 41, 42]. As Wnt 
signaling is connected to the chromosome orientation during 
mitosis, its perturbations may lead to a mitotic disjunction 
typical of many cancer cells [43]. 

Wnt signaling is active in both CSCs and ESCs. In ESCs it 
has been shown, that Wnt signaling manages the undifferen-
tiated cell proliferation depending on the type of Wnt ligand 
and others factors. The Wnt pathway itself fails to maintain
these cells in the pluripotent state. Its activity increases at the 
stage when the cell makes the decision which direction of dif-
ferentiation will develop. In quiescent ESCs, the OCT4/SOX2 
pathway is first activated and during cell-fate determination
Wnt signaling is enhanced [44, 45, 27]. At that time, the Wnt 

pathway regulates the anterior-posterior body orientation [46] 
and formation of primitive streak, mesoderm and endoderm 
[47]. Wnt signaling is also necessary for the maintenance of 
the progenitor cells pool [26]. 

Wnt signaling is not a single unit but depending on the 
cell type it collaborates with other cell factors. It cooperates 
with several signaling pathways (e.g. Hedgehog, Notch, TGFβ, 
PI3K/AKT, Src/ERK, Activin/Nodal, FGF) [31, 48-50], and 
also with many nuclear receptors (NRs), such as the androgen 
receptor (AR), the retinoic acid receptor (RAR), the vitamin 
D receptor (VDR), the progesterone receptor (PR) and PPAR. 
β-catenin acts in their transcription as a co-activator. NRs 
serve as transcription factors, but they also affect posttransla-
tional events, such as phosphorylation. Thus they can interact
with other signaling pathways, including the Wnt [51]. Further, 
NRs (AR, RAR amd VDR) act as repressors of Wnt/β-catenin 
signaling [52], since they can increase β-catenin accumulation 
in the plasma membrane in conjunction with E-cadherin. 
In this way its nuclear levels decline and stabilisation of the 
adherent junction is increased [51].

During both embryogenesis and carcinogenesis, Wnt 
ligands prevent apoptosis in progenitor cells. When DNA is 
damaged, the β-catenin affinity to TCF (T-cell factor) is in-Figure 2: Notch signaling  

Figure 1. Wnt signaling
a) Canonical pathway activated in the presence of certain Wnt ligands through Dishevelled (DVL) phosphorylation leads to the inactivation of β-catenin 
destruction complex consisting of APC (adenomatous polyposis coli), scaffold protein AXIN and GSK3β (glycogen synthase kinase 3β). β-catenin is
translocated to the nucleus where it is complexed with TCF/LEF (T-cell factor/lymphoid enhancer factor) family transcription factor. In the absence of 
the activating Wnt signals, GSK3β phosphorylates β-catenin. Thus, GSK3β predestinates β-catenin for the ubiquitination and subsequent degradation
in proteasomes. 
b) Wnt signals of non-canonical pathway either phosphorylate DVL activating small G-proteins (RHO, RAC, CDC42) and JNK, that through MAP-kinase 
cascade transmit the signal up to the nucleus, or they release Ca2+ affecting NLK (Nemo-like kinase) or NFAT (nuclear factor of activated T-cells). This
inhibits the canonical Wnt signaling pathway and facilitates cytoskeletal reorganization during invasion and metastasis. [31].

Figure 2: Notch signaling  
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creased due to PARP-1, and for this reason, β-catenin target 
genes expression is found [53]. Some of these genes may be 
responsible for the emergence of resistance to therapy, for 
example MMPs, Livin, BCL-2 and MRP4. MMPs through 
EGFR (epidermal growth factor receptor) activate the Src/ERK 
signaling pathway which may contribute to the emergence of 
endocrine therapy resistance [41]. Livin, a member of the IAP 
(inhibitor of apoptosis) family, prevents cell apoptosis and thus 
takes part in the development of tumor cell chemoresistance 
[54]. PI3K/AKT signaling is activated by the non-canonical 
Wnt pathway. Both Wnt pathways (canonical and non-canoni-
cal) regulate the expression of anti-apoptotic protein BCL-2 
[49]. This is one of the anti-apoptotic mechanisms in stem
cells. For this reason, the Wnt/β-catenin signaling pathway 
activation may be involved in tumorigenesis by promoting 
cell survival [55]. Radiotherapy leads to breaks in the DNA 
molecule, but since apoptosis is blocked, the cell switches on 
reparation mechanisms and survives. In this way, Wnt sign-
aling is also involved in CSC radioresistance [56]. ABCC4, 
known as MRP4 (multidrug resistance protein 4), is also the 
target gene of Wnt signaling. It is an ABC-transporter and 
participates in the transport of cyclic nucleotides and some 
nucleoside monophosphate analogs [57]. Therefore, treatment
with these chemotherapeutic agents fails in the presence of 
MRP4 and the cells become chemoresistant. 

Recently, it has been found that Wnt/β-catenin signaling is 
one of the key pathways in the maintenance of CSCs (for exam-
ple in lung, colon, liver, leukemia, melanoma, breast and skin 
cancer) [58]. Surprisingly, this pivotal role of Wnt/β-catenin 
signaling is not so evident in human ESCs because inhibition 
of this pathway alone does not influence their self-renewal
potential. It depends on collaboration with other signaling 
pathways and especially, on the origin of ESCs (e.g. mouse, 
rat or human ESCs) [44].

“The stemness” of colon CSCs depends not only on the
presence of mutations in APC or β-catenin but also on my-
ofibroblast-secreted factors which are able to restore the CSC
phenotype in more differentiated tumor cells [59]. Other exam-
ples of molecules presented in the microenvironment during 
carcinogenesis and cancer are the inflammatory tissue prod-
ucts, interleukins (ILs). These stimulate the signaling pathways
that regulate expression of Wnt ligands. IL6 induces through 
JAK/STAT3 signaling in CSCs, the activity of both canonical 
and non-canonical Wnt pathways and therefore it takes part in 
self-renewal and also metastasis. Under physiological condi-
tions this activation maintains tissue homeostasis [60]. In the 
presence of different inflammatory cytokines, NOS2 expression 
is increased through TBE (Tcf-binding element) [34]. 

A number of substances have been found recently to inhibit 
the Wnt signaling pathway. Some of these, such as non-steroi-
dal anti-inflammatory drugs (NSAIDs) (for example aspirin
and indomethacin) and vitamins (retinoids and vitamin D), are 
used in the treatment of inflammatory diseases [61-63]. Others
are developed for the treatment of cancer, such as the tyrosine-
kinase inhibitors (e.g. imatinib) [64] and some substances are 

chemical compounds, like lithium, curcumin and flavonoids
[65]. Many small molecules [for example 6-bromoindirubin-
3´-oxime (BIO), deoxycholic acid and pyrimidine derivates] 
inhibit Wnt signaling, but there are also agents that support 
Wnt activation (e.g. GS11 – increases the level of free β-cat-
enin by dissociation of binding with E-cadherin) [66]. In 
mouse ESCs, the small molecule IQ-1 can support long-term 
pluripotency. The destiny of ESC has been reported to depend
on β-catenin co-activators. If CBP (CREB binding protein) is 
present, the expression of transcription factors maintaining 
pluripotency (OCT4, SOX2) occurs. After CBP switching by
p300, the cell initiates differentiation (e.g. c-MYC expression).
IQ-1 blocks the switching by p300 co-activator and guarantees 
mouse ESCs their pluripotency [67].

Apparently, Wnt signaling takes place in different processes
during embryogenesis and carcinogenesis, but it cooperates 
with many other signaling pathways in a species-specific man-
ner. These facts markedly complicate any definition of the exact
function of the Wnt pathway.

Notch signaling pathway. Notch signaling differs from
other signaling pathways mainly in activation by cell-cell 
contact. The Notch receptor is a single transmembrane protein
composed of intra- and extracellular regions with distinct do-
mains responsible for its specific functions. Notch ligands are
also single transmembrane proteins. In mammals, four types 
of Notch receptors (Notch1 – 4) and five types of Notch ligands
[Delta-like1, 3, 4 (DLL1, 3, 4) and Jagged1 and 2 (JAG1, 2)] 
have been described [68]. When the ligand binds to the recep-
tor, the transfer of signal is activated (Fig. 2) [69]. However, 
the high levels of ligand may have, conversely, an inhibitory 
effect [70, 71]. Target genes (transcription factors HES (hairy/
enhancer of split) and HERP (HES-related repressor protein 
family) are bHLH (basic helix-loop-helix) transcriptional 
repressors maintaining the self-renewal potential in the stem 
cells. During development they govern boundary formation, 
lateral inhibition and cell-fate assignation (differentiation,
proliferation or apoptosis). Likewise, they contribute to the 
emergence of developmental diseases and tumors, as well as 
to EMT (epithelial-mesenchymal transition) during tumor 
metastasis [68, 69, 72].

Boundary formation is a necessary event in development. 
For example, in vertebrates it is involved in somite formation. 
The oscillation of Notch signaling is controlled by WNT3a,
which is evidence of Notch with Wnt signaling cooperation 
[73, 74]. Lateral inhibition is a process by which the cells over 
the Notch signaling inhibit differentiation potential in neigh-
bouring cells [e.g. the selection for sensory organ precursor 
(SOP) in Drosophila neurogenesis, or in mice development 
of hair cell in the inner ear] [75, 76]. The cell-fate assignation
is a determination of the fate of two daughter cells. These
acquire a variable differentiation potential and therefore
are able to differentiate into distinct cell types. For instance,
different regulators (Numb and Neuralized) are involved in
asymmetric cell division during SOP. These regulators are
asymmetrically distributed among the daughter cells. After
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four cycles of division, five cell types arise (socket, shaft,
sheath, neuron and glial cells) [69]. In this way the stem 
cell population can be maintained [77]. Notch signaling 
may also be involved in the development of several organs 
and systems, such as the pituitary gland, gut, nervous and 
vascular system [77-79].

During very early embryogenesis, Notch signaling activity 
is not required. Even in human ESCs Notch signaling is inac-
tive. In pluripotent ESCs, the transcription factors NANOG, 
OCT4 and SOX2 are necessary for self-renewal whereas 
NOTCH1 expression is very low. However, the level of these 
transcription factors decreases after cell-fate determination
(in multipotent stem cells and in ECCs) and the NOTCH1 
expression increases [80, 81, 29]. Notch signaling activation 
does not disturb the ESC differentiation and in some cases it
is necessary (e.g. T-cell differentiation) [82]. The cells with ac-
tive Notch pathway cannot differentiate into nervous system

cells, but they maintain a neural stem/progenitor cell pool. 
They can also differentiate into other developing lines. The
lineage commitment depends on the ligand. Recently, it was 
reported that Notch signaling activated by JAG1 promotes 
neural commitment in contrast to activation by DLL4 which 
promotes mesodermal commitment [83-85]. Notch signaling 
has to be completely switched off before terminal differ-
entiation [86]. The differentiation and maintenance of the
stem/progenitor cell pool by Notch signaling in mammary 
gland or hair formation is regulated by the same inhibition 
mechanism [87, 76]. The regulation of apoptosis by the Notch
pathway is quite controversial. It has pro-apoptotic, as well 
as anti-apoptotic effects. For example, in endothelial cells or
keratinocytes apoptosis is promoted by inactivation of Wnt, 
respectively PI3K pathways. However, in tumors, where the 
PI3K pathway is activated, the cells are protected against the 
upcoming apoptosis [88-92].

Figure 3: Hedgehog signaling  

Figure 2. Notch signaling 
The first step after the Notch receptor interaction with Notch ligand is the Notch receptor splicing in the site S2 by ADAM/TACE (a desintegrin and
metallopeptidase/tumor necrosis factor α converting enzyme) family. It is followed by the cleavage at transmembrane site S3/S4 by γ-secretase. NICD 
(Notch intracellular domain) is chipped and transported by endocytosis to the nucleus. There it displaces a repressor (co-R) linked with histone deacety-
lase (HDAC) and associates with transcription factor CSL (C-promoter binding factor1, RBP-jk/Su(H)/Lag-1) and co-activator mastermind (MAM). 
They together generate a ternary complex and support the activation of target genes [69].
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Endocytosis does not operate only in NICD (Notch intracel-
lular domain) transport into the nucleus. It also participates in 
NICD degradation and recycling and, in activation of Notch 
receptors. In this way it prevents the continual activation of 
Notch signaling. NOTCH monoubiquitination with subse-
quent endocytosis is required before the cleavage of NOTCH 
by γ-secretase [93 94]. NICD directs to the nucleus after Notch
signaling activation and there it guides target genes transcrip-
tion. In contrast, when NICD associates with a lysosome by 
ESCRT (endosomal sorting complex required for transport) 
it leads to NICD degradation. When NICD is ubiquitinylated 
by E3 ubiquitin ligase Deltex (DX), it is transported back to 
the membrane for NOTCH recyclation [95-98]. 

The Notch signaling pathway may bypass transcription
factor CSL (C-promoter binding factor1, RBP-jk/Su(H)/
Lag-1) and thus activates genes expression in other ways. 
For example, shaggy-dependent (Su(H)-independent) tran-
scription is driven by a type of Notch allele called Abruptex 
(Ax) in Drosophila. Shaggy encodes the Drosophila homo-
logue of GSK3β, which is how Notch and Wnt signaling are 
connected [99, 100]. There is also evidence on the effect of
Notch signaling on β-catenin in vertebrates. For example, 
Notch1 supresses β-catenin-mediated signaling in mouse 
skin and therefore may be considered a tumor suppressor 
[101]. A conserved sequence of double TCF/LEF-binding 
sites in the JAG1 promoter is another example of Notch and 
β-catenin cooperation. JAG1 expression by the complex of 
β-catenin with the TCF/LEF transcription factor may be the 

first step in Notch signaling activation in progenitor cells for
maintaining their homeostasis [35].

Notch1 signaling contributes to p53 inhibition through the 
mTOR (mammalian target of rapamycin)-dependent PI3K-
Akt/PKB (protein kinase B) pathway. When mTOR is mutated 
or NOTCH1 signaling is aberrantly activated, the cells can 
avoid apoptosis [92]. Another way of aberrant NOTCH1 ac-
tivation is through oncogenic H-RAS. This route is associated
with the emergence of chemoresistance [102]. JAG1 expression 
arises in CSCs and activates signalization via NOTCH1 during 
radiotherapy. As a result the genes supporting proliferation 
are transcribed (Cyclin D1, CDK2) and the tumor gains the 
potential for radioresistance [103]. This can explain why ra-
diotherapy may have similar effect on both Notch signaling
and Wnt/β-catenin pathway activation. 

In breast cancer, gastrointestinal and certain haematological 
tumors, Notch signaling governs the stem cell self-renewal and 
cell-fate decisions and it may act as an oncogene. However, in 
keratinocyte-derived tumors, the Notch signaling supports 
terminal differentiation [68] and in some types of lung tumor
subtypes [adenocarcinoma, small cell lung cancer (SCLC)], 
the activation of Notch1 inhibits the growth of tumors [104, 
105]. Therefore it can serve either as protooncogen or tumor
suppressor depending on the context. 

Hedgehog signaling pathway. In mammals, there are 3 
types of secreted glycoprotein ligands: Sonic Hedgehog (SHH), 
Indian Hedgehog (IHH) and Desert Hedgehog (DHH). These
bind to the 7-TM receptor Patched (PTCH) associated with 

Figure 3. Hedgehog signaling 
PTCH represses the SMO activity. After activation of signalisation by Hedgehog ligand the SMO inhibition by PTCH is stopped and SMO governs the
suppression of Supressor of Fused (SuFu) in protein complex with Fused (Fu). Then the members of GLI family transcription factors are released from
the zinc-finger type protein complex Fu/SuFu. It leads to their translocation into the nucleus and subsequent transcription of target genes [106].
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the second TM receptor Smoothened (SMO) and activate the 
signaling (Fig. 3) [106]. Target genes (GLI1, PTCH1, Cyclin D, 
Cyclin E, MYC, VEGF, PDGF, etc.) are able to control tissue 
patterning, differentiation, proliferation and migration [31,
107, 108]. Hedgehog signaling activation is attenuated by the 
presence of Hedgehog-interacting protein (HIP) near PTCH, 
that uptakes Hedgehog ligands [109]. Transcription factors 
GLI1 and GLI2 serve as positive regulators of Hedgehog 
signaling pathways, but GLI3 is a negative regulator [110]. 
Most involved genes are oncogenes but for example PTCH1 
is a tumor suppressor [111].

Hedgehog signaling is involved in the development of many 
organs including mammary gland, pancreas, lung, skin and 
hair follicle and central nervous system [112-116]. Signaling 
through SHH facilitates the differentiation of human ESCs,
but under other conditions Hedgehog signaling supports their 
proliferation [117]. In tissue stem/progenitor cells, Hedgehog 
activity is high, but it is downregulated during the cell differ-
entiation [118]. Thus, Hedgehog signaling promotes survival
and proliferation of stem/progenitor cells, rather than the 
management of cell-fate determination and differentiation
[116]. It all depends on the cooperation with other signaling 
pathways. Among these signaling pathways are Wnt, Notch 
and PI3K/Akt pathways [86, 119, 120]. In adults, the activity 
of Hedgehog signaling has to be exactly defined in time and
space and there is an unlimited capacity for self-renewal [31, 
108]. This means that Hedgehog signaling plays a crucial role
in carcinogenesis and metastasis [111].

The disturbances in Hedgehog pathway are commonly
observed in a large number of tumors, e.g. medulloblastoma, 
basal cell carcinoma, stomach, colon, pancreatic, prostate and 
breast carcinomas [100, 111, 112, 121-123]. The Hedgehog-
GLI1 pathway has an essential role in promoting growth, 
self-renewal and the metastatic potential of CSCs in colon 
cancer. In mice it operates in paracrine fashion, whereas in 
humans in autocrine fashion [124, 125]. 

PTCH loses its tumor suppressor effect either through
germline mutations or through silencing of PTCH after meth-
ylation in the medulloblastoma. This signaling can be stopped
with cyclopamine, the SMO inhibitor downstream PTCH. This
leads to reduced proliferation and induction of differentiation
[126, 127]. The SHH and mTOR signaling may be essential for
CSCs self-renewal in pancreatic cancer. On the other hand, 
the targeting of these pathways by cyclopamine and paramy-
cine is not enough to eliminate pancreatic CSCs. The CSCs
were eliminated only after adding gemcitabine, as a standard
chemotherapy agent. This means that the combination of tar-
geted therapy and standard chemotherapy could be effective
in the elimination of CSCs [128]. The Hedgehog signaling may
be also inhibited by treatment with forkoskolin that activates 
the protein kinase A (PKA). The level of cell cAMP (cyclic
adenosine monophosphate) is increased after stimulation of
adenylyl cyclase [129], which is commonly a sign of energy 
depletion in the cell. Then the cell enters apoptosis. Conversely,
certain agents are known to amplify the activation of Hedgehog 

signaling pathway. These are, for example the co-conjugates of
chondroitin-6-sulfate with dermatan sulfate. These together
increase the expression of IHH [130].

Since Hedgehog signaling promotes stem cells proliferation 
and prevents their differentiation or entry into apoptosis, it
creates appropriate conditions for the accumulation of vari-
ous genetic events [110]. This is an excellent basis for further
detailed research to clarify the involvement of this pathway in 
chemo- and radioresistance.

Conclusion

 The CSCs and ESCs have the ability for self-renewal and
differentiation, and they are also able to exclude “toxic” sub-
stances from the cell through certain membrane transporters. 
CSCs in solid tumors are more similar to normal tissue stem 
cells than to ESCs because CSCs have determined the direction 
of differentiation and thus they are using competent signal-
ing pathways. ESCs from the inner cell mass of blastocyst 
are just deciding about the direction of further development. 
Therefore the signaling pathways in ECSs are only involved in
self-renewal and proliferation. The Wnt, Notch and Hedgehog
signaling pathways are activated in ESCs only during their 
differentiation. These pathways can also be actived during
carcinogenesis and are also involved in the emergence of drug 
resistance by regulating their target genes such as ABCC4 
(known as MRP4) and antiapoptotic BCL-2. The detailed
understanding of the role of these pathways in radio- and 
chemoresistance however requires further research. 
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