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Abstract. Peroxisome proliferator-activated receptors (PPAR), ligand-activated transcription factors, 
belong to the nuclear hormone receptor superfamily regulating expression of genes involved in different
aspects of lipid metabolism, inflammation and cardiac energy production. Activation of PPAR-α isoform
by its natural ligands, fatty acids (FA) and eicosanoids, promotes mitochondrial FA oxidation as the pri-
mary ATP-generating pathway. On the other hand, PPAR-γ regulates lipid anabolism or storage, while, 
until recently, the function of PPAR-β/δ has been less explored. Under conditions associated with acute 
or chronic oxygen deprivation, PPAR-α modulates expression of genes that determine substrate switch 
(FA vs. glucose) aimed at maintenance of basic cardiac function. Although PPAR-α and PPAR-γ synthetic 
agonists, hypolipidemic and antidiabetic drugs, have been reported to protect the heart against ischemia/
reperfusion injury, it is still a matter of debate whether PPAR activation plays a beneficial or detrimental
role in myocardial response to ischemia, in particular, in pathological conditions. This article reviews some
findings demonstrating the impact of PPAR activation on cardiac resistance to ischemia in normal and
pathologically altered heart. Specifically, it addresses the issue of susceptibility to ischemia in the diabetic
myocardium, with particular regards to the role of PPAR. Finally, involvement of PPAR in the mechanisms 
of lipid-independent cardioprotective effects of some hypolipidemic drugs is also discussed.
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Introduction

Peroxisome proliferator-activated receptors (PPAR) are 
ligand-activated transcription factors that belong to the nu-

clear hormone receptor superfamily regulating expression 
of genes involved in different aspects of lipid metabolism
(Desvergne and Wahli 1999; Kliewer et al. 2001), energy pro-
duction (Barger and Kelly 2000) and inflammation (Michalik
and Wahli 2006). All three isoforms of PPAR detected so far 
PPAR-α, PPAR-ß/δ and PPAR-γ, encoded by separate genes, 
are expressed in many species including rodents (Kliewer et 
al. 1994) and humans (Greene et al. 1995). They differ in their
tissue distribution, ligand specificity and cofactor interac-
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tions (Braissant et al. 1996; Escher at al. 2001). Therefore,
PPAR isoforms regulate different sets of genes and there
are different biological consequences of their stimulation.
PPAR-α has been recognized as the central regulator of mi-
tochondrial fatty acids (FA) catabolism, whereas PPAR-γ is 
believed to regulate lipid anabolism or storage. Until recently, 

the function of PPAR-ß/δ was relatively less explored. How-
ever, several lines of evidence suggest that all three isoforms 
modulate cardiac energy metabolism (Desvergne and Wahli 
1999; Kliewer et al. 2001). Nevertheless, it is still a matter of 
debate whether PPAR activation plays a beneficial or detri-
mental role in the setting of ischemia/reperfusion (I/R), in 
particular in pathologically altered myocardium. Conflicting
findings have documented both, negative impact of PPAR-α
up-regulation on myocardial functional recovery upon I/R 
(Panagia et al. 2005; Sambandam et al. 2006), in particular 
during early reperfusion (Kantor et al. 2000), and beneficial
effects of PPAR-α and PPAR-γ agonists on I/R damage (Tab-
ernero et al. 2002; Wayman et al. 2002; Yue et al. 2003; Yeh et 
al. 2006). This contradiction is apparently related to the fact
that PPAR activation may improve myocardial function via 
metabolic or other, metabolic-independent, actions. 

Tissue distribution and function of PPAR

Main tissue distribution and physiological effects of PPAR
isoforms are illustrated in Table 1. Two of the three PPAR 
isoforms, PPAR-α and PPAR-β/δ are abundantly expressed 
in tissues with high level of FA oxidation (FAO) including 
heart, liver, kidney, skeletal muscle and pancreas (Braissant 
et al. 1996; Gilde et al. 2003). PPAR-γ (and its splice vari-
ants) is mainly associated with adipose tissue and macro-
phages, with a low level of more ubiquitous expression in 
liver, heart, skeletal muscle and bone marrow (Escher et al. 
2001). PPAR-β/δ is abundantly and ubiquitously expressed 
at much higher levels than PPAR-γ and PPAR-α (Kliewer et 
al. 1994). It is important to note that tissue expression of all 
three PPAR isotypes may vary under different physiological
and/or pathological conditions. 

Heart tissue normally utilizes FA as the major energy 
source, and PPAR-α regulates genes encoding enzymes 
of FA transport/uptake and utilization via β-oxidation in 
mitochondria (Finck 2007). Activation of PPAR-α by its 
natural ligands (long-chain FA, eicosanoids) promotes mi-
tochondrial FAO as the primary ATP-generating pathway 
in the normal adult myocardium (Barger and Kelly 2000; 
Finck 2007). Moreover, under physiological and pathological 
conditions associated with acute or chronic oxygen depriva-
tion, PPAR-α modulates expression of genes that determine 
myocardial substrate selection (FA versus carbohydrates) 
in order to maintain adequate production of energy and 
preserve basic cardiac function (Huss and Kelly 2004). In ad-

dition, involvement of PPAR in anti-inflammatory response
in different tissues has been also recognized (Delerive et al.
2001; Smeets et al. 2007). 

Mechanisms of action of PPAR

Natural and synthetic PPAR ligands 

Upon binding to PPAR, different ligands can induce stimula-
tory or inhibitory responses depending on the nature of the 
specific target gene and its cellular location. Both natural
and synthetic compounds have been recognized as PPAR 
ligands. Although many FA are capable of activating all three 
PPAR isoforms, some preference for specific FA by each
PPAR has been demonstrated (reviewed by Collino et al. 
2008). The long-chain polyunsaturated FA and their oxidized
derivatives, especially eicosanoids such as 8-S-hydroxyeico-
satetraenoic acid (8-S-HETE), leukotriene B4 (LTB4), and 
arachidonate monooxygenase metabolite epoxyeicosatrieno-
ic acids have been shown to potently activate PPAR-α with 
high affinity (Feige et al. 2006). PPAR-γ can be activated by 
several prostanoids, such as 15-deoxy-12,14-prostaglandin 
J2 (15d-PGJ2) and 12- and 15-hydroxy-eicosatetraenoic acid 
(12- and 15-HETE), which are derivatives of arachidonic acid 
synthesized through the lipoxygenase pathway (Theocharis
et al. 2004). Prostaglandin 15d-PGJ2 is not only the most 
potent natural ligand for PPAR-γ identified to date, but also
by far the most commonly used naturally occurring PPAR-γ 
agonist (Forman et al. 1997). In addition to PPAR-γ naturally 
occurring agonists produced by human body, flavonoids psi-
baptigenin and hesperidin found in plants were identified as
strong PPAR-γ agonists (Salam et al. 2008).

Several synthetic agonists of PPAR-α and PPAR-γ are 
known as marketed drugs used in the treatment of hyper-
trigliceridemia and diabetes mellitus, respectively (Bal-
lantyne et al. 2003; Tenenbaum et al. 2004). Hypolipidemic 
drugs fibrates (e.g. fenofibrate, clofibrate) are well-known
synthetic ligands for PPAR-α (Theocharis et al. 2004). Fi-
brates activate PPAR-α leading to increased expression of 
lipid metabolizing enzymes that effectively lower serum lipid
levels, in particular triacylglycerides, in humans. 

The most widely used synthetic PPAR-γ agonists belong 
to the thiazolidinedione (TZD) or glitazone class of anti-
diabetic drugs used in the treatment of type-2 diabetes. 
The two available TZDs, rosiglitazone and pioglitazone,
are currently used alone or in combination with other oral 
anti-diabetic agents (Theocharis et al. 2004). These drugs
are known as insulin sensitizers stimulating the tissue up-
take of glucose in the diabetics (Sidell et al. 2002), however, 
their action extends far beyond their hypoglycemic activity 
(Khandoudi et al. 2002; Shiomi et al. 2002; Lee et al. 2003). 
Table 2 summarizes currently known PPAR modulators, as 
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well as clinically important PPAR-α and PPAR-γ agonists, 
fibrates and glitazones, respectively.

Transcriptional transactivation

Upon activation by endogenous or synthetic ligands, PPAR 
form obligate heterodimers with the 9-cis retinoic acid re-
ceptors (retinoid X receptor, RXR). The resulting complex
undergoes a conformational change which allows binding 
of the heterodimer to a DNA sequence in the promoter re-
gion of target genes known as the PPAR response element 
(PPRE) followed by the induction of gene transcription 
(Kliewer et al. 1992; Forman et al. 1997) and synthesis 
of the respective gene products. When both PPAR and 
RXR are activated simultaneously, it results in significant
synergistic enhancement of gene transcription (Kliewer et 
al. 1992). The search for PPAR target genes with identified
PPREs has led to the identification of numerous genes
involved in lipid metabolism, oxidative stress and the in-
flammatory response (Desvergne and Wahli 1999; Delerive
et al. 2001; Tan et al. 2005; Finck 2007), as well as genes 
responsible for insulin signaling and glucose metabolism 
(Grossman and Lessem 1997; Oshida et al. 1999). 

Transcriptional transrepression

In addition to PPAR transactivation, stimulation of PPAR 
can also negatively regulate gene expression in a ligand-
dependent manner by inhibiting the activities of other 
transcription factors, such as activated protein-1 (AP-1), 
nuclear factor-kappaB (NF-κB), nuclear factor of activated 
T-cells (NFAT) or signal transducer and activator of tran-
scription (STAT) via mechanism known as ligand-depend-
ent transrepression (Abdelrahman et al. 2005). In contrast 
to transcriptional activation, transrepression does not 
involve binding of PPAR to response elements of the target 
genes but direct interaction with other transcription factors 
and co-repressors or modulation of kinase activity. 

Research suggests that PPAR may exert beneficial effects
by negatively regulating the expression of pro-inflamma-
tory genes in inflammation-related diseases including
myocardial ischemia/reperfusion injury (Abdelrahman 
et al. 2005). Several mechanisms have been suggested to 

account for this activity including ligand-independent 
repression of the transcription of target genes via binding 
of PPAR to response element in the absence of ligands and 
recruitment of the co-repressor complexes (reviewed by 
Collino et al. 2008). 

Regulation of PPAR activity

Many proteins act as co-activators or co-repressors that 
regulate the ability of PPAR to either stimulate or repress 
gene transcription. In the unbound state, PPAR/RXR het-
erodimers are associated with co-repressors, which prevent 
gene transcription. However, once a ligand binds to the 
receptor, a conformational change occurs that not only fa-
cilitates co-repressor dissociation, but also the recruitment 
of several positive co-activators that initiates a sequence of 
events ultimately leading to gene transcription (Shibata et 
al. 1997). 

Although co-activators and co-repressors appear to be 
the major factors responsible for regulation of PPAR activity, 
these receptors can also be modulated by mitogen-activated 
protein kinase (MAPK)-induced phosphorylation. In fact, 
phosphorylation by extracellular signal regulated kinases 
(ERK1/2) has been found to repress PPAR-α activity (Barger 
and Kelly 2000; Barger et al. 2000), while phosphorylation 
induced by p38-MAPK enhances PPAR-α-mediated gene 
expression (Barger et al. 2001).

Figure 1 summarizes regulation of PPAR function in the 
cell, control of gene expression and PPAR-mediated effects.

PPAR function and the outcome of myocardial  
ischemia/reperfusion injury

Delivery of oxygen and metabolic substrates via coronary 
circulation is essential for normal cardiac function, and its 
cessation leads within minutes to irreversible cellular injury. 
The duration of ischemia and the extent of metabolic and
structural alterations in the myocardium are the main factors 
that determine the progress towards cell death (by mechanisms 
of necrosis or apoptosis) or cell survival. Restoration of blood 
flow in the previously occluded coronary arteries is undoubt-
edly the main prerequisite of the heart rescue. However, 

Table 1. Tissue distribution and physiological effects of PPAR isoforms

PPAR isoform Tissue distribution Effects
PPAR-α Liver, skeletal muscle, heart, kidney, adipose tissue FA metabolism, cell cycle, control of inflammation and apoptosis
PPAR-β/δ Ubiquitously FA metabolism, wound healing, control of inflammation
PPAR-γ1 All tissues including heart, muscle, kidney

Adipogenesis, lipid storage, control of inflammation and apopto-
sis, increased insulin sensitivity and glucose disposalPPAR-γ2 Adipose tissue

PPAR-γ3 Macrophages
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reperfusion may have injurious components and limit the 
recovery of the tissue through the induction of “reperfusion 
injury” (Braunwald and Kloner 1985). I/R injury represents 
a clinically relevant problem associated with restoration of 
blood supply that occurs during trombolysis, percutaneous 
coronary intervention and coronary artery bypass graft sur-
gery (Roberto and Prado 2002; Rodrígez-Sinovas et al. 2007). 
I/R injury is a complex cascade of events, where oxidative 
stress and inflammatory response play the pivotal role (Turer
and Hill 2010) and besides other factors involve activation of 
NF-κB as one of the central processes (Hall et al. 2006), in 
particular in the ex vivo perfused heart (Li et al. 1999). 

The role of PPARs in the pathogenesis of a variety of
heart disorders including acute myocardial I/R is a matter 
of controversy and still remains unclear. Gene expression 
of PPAR-α declines in chronically hypoxic heart resulting 
in a substrate switch from FA to glucose that has been con-
sidered as an adaptive response (Barger et al. 2000; Razeghi 
et al. 2001). In line, experimental overexpression of PPAR-α 
was found to be related to the impaired cardiac recovery 
after ischemia (Sambandam et al. 2006). It appears that in
long-term processes, such as myocardial hypoxia and/or 
hypertrophy linked with limitations in oxygen supply, glu-
cose as a fuel may be beneficial for the heart by decreasing
oxygen consumption (Barger and Kelly 2000). Moreover, 
chronic activation of PPAR-α (and increased rates of FAO 
at the expense of glucose oxidation) may be detrimental to 
the heart during postischemic reperfusion possibly due to 
FAO-induced oxidative stress (Sambandam et al. 2006).

On the other hand, other studies indicated that targeted 
deletion of PPAR-α resulted in increased serum levels of 
free FA and a larger size of infarction in mice subjected to 
ischemic challenge (Yue et al. 2003). In acute settings of I/R, 
decrease of PPAR-α and corresponding metabolic effects
were observed in a rat ex vivo model of 30-min ischemia/2-
h reperfusion (Tian et al. 2006) and in the in vivo mice. In 
these models, reversal of down-regulation of PPAR-α and 
its target genes responsible for the metabolic fuel shifts
(decreased FAO and increased glucose oxidation) improved 
postischemic myocardial contractile recovery and reduced 

the size of infarction (Yue et al. 2003). In line, in our study 
in the isolated rat heart, 30-min global ischemia significantly
decreased mRNA and protein levels of PPAR-α and their 
further decline observed following 2-h reperfusion was ac-
companied by the development of irreversible myocardial 
injury (Ravingerová et al. 2009). 

There is no clear consensus on whether attenuation of I/R-
induced down-regulation of PPAR-α and FAO is beneficial
or detrimental to the heart. The discrepancy in the results
may arise from the different substrate availability in the dif-
ferent experimental models (ischemia/reperfusion, in vivo 
versus in vitro protocols). Although FAO is an important 
source of energy production during the basic conditions, 
glucose uptake may be crucial during ischemia. It is believed 
that partial inhibition of FAO and a substrate switch from 
FA to glucose (Barger and Kelly 2000) improves functional 
recovery of the heart upon reperfusion (Fragasso et al. 
2003) while overexpression of PPAR-α impairs postischemic 
cardiac recovery (Sambandam et al. 2006). Thus, pharma-
cological interventions that increase glucose oxidation and 
suppress FAO appear to be beneficial for the recovery of
the myocardium previously subjected to I/R (Kantor et al. 
2000; Panagia et al. 2005). In the long-term, however, this 
switch may become detrimental as less ATP is generated 
per mole of glucose oxidized, and lipid accumulation and 
lipotoxicity of the myocardium may develop (Barger and 
Kelly 2000). The controversy regarding the role of PPAR-α
in the heart suggests that the function of this transcription 
factor might not be the same in different cardiac pathologies
or in their different stages and that the effects other than
lipid metabolism might be also involved. Figure 2 shows 
potential involvement of PPARs in the pathophysiological 
mechanisms of ischemia/reperfusion injury.

PPAR and endogenous protection against ischemia/
reperfusion

The role of PPAR in the mechanisms of endogenous pro-
tection against I/R injury is less documented, although 

Table 2. Naturally occurring and synthetic PPAR-α and PPAR-γ modulators

PPAR-α modulators PPAR-γ modulators

Naturally occurring agonists
Fatty acids
Eicosanoids
Leukotriene B4

Fatty acids
Eicosanoids
Prostaglandin
Flavonoids: ψ-baptigenin, hesperidin

Synthetic agonists
Fibrates: fenofibrate, clofibrate, bezafibrate,
gemfibrozil
WY14643, GW7647

Thiazolidinediones (glitazones): rosiglitazone, 
pioglitazone, ciglitazone

Synthetic antagonists MK-886 GW9662
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Takeda et al. (2001) demonstrated that PPAR-γ agonists 
activated ERK1/2 pathway of MAP-kinases in vascular 
smooth muscle cells through phosphatidylinositol 3-kinase 
(PI3K). Cascades of ERK1/2 and PI3K and its effector pro-
tein kinase B (Akt) are implicated in protective mechanisms 
of ischemic preconditioning and other forms of intrinsic 
cardioprotection (Hausenloy et al. 2005; Ravingerová et al. 
2007). It has also been hypothesized that PPAR activation 
prior to I/R could confer preconditioning-like protection 
to the myocardium (Wynne et al. 2005). Indeed, increased 
PPAR-γ activity resulted in significant anti-infarct pro-
tection comparable with the effect of classical ischemic 

preconditioning that appeared to involve both survival 
cascades (ERK1/2 and PI3K/Akt).

Moreover, it has been shown that PPAR-γ participates 
in a delayed effect of preconditioning with endotoxin (li-
popolysaccharide, LPS) on myocardial and renal I/R injury 
in rats (Collino et al. 2005; Sivarajah et al. 2005). In addition, 
pretreatment of rabbits with anaesthetic desflurane has been 
reported to induce overproduction of endogenous PPAR-γ 
agonists, such as 15d-PGJ2 and others, resulting in a delayed 
infarct size-limiting protection (Lotz et al. 2011a). Recently, 
the involvement of both, PPAR-α and PPAR-γ isoforms 
in the mechanisms of “remote” (renal ischemia-induced) 

Figure 1. Regulatory pathways of PPARs in the cell and control of gene expression by PPARs. PPARs regulate gene expression by binding 
with RXR to specific DNA sequence elements (PPRE) located in the promoter region of target genes, thus regulating their transcription 
and synthesis of the respective gene products (Trans-activation). PPARs repress gene transcription (Trans-repression) by negatively in-
terfering with transcription factors such as NF-κB, STATs, cJun and c-Fos in a DNA-binding independent manner. The activity of PPARs 
is also regulated by phosphorylation events through MAPK signaling. CPT1, carnitine palmitoyltransferase; ERK, extracellular signal 
regulated kinases; FA, fatty acids; GLUT4, glucose transporter; ISGF-RE, interferon stimulated gene factor response element; MAPK, mi-
togen-activated protein kinases; MCAD, medium-chain acyl-CoA dehydrogenase; NF-κB-RE, nuclear factor-κB response element; PDK4, 
pyruvate dehydrogenase; PPAR, peroxisome proliferator-activated receptors; PPRE, PPAR response element; RXR, retinoid X receptor; 
STATs, signal transducer and activator of transcription; TRE, TPA (12-O-tetradecanoylphorbol-13-acetate) response element.
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preconditioning against myocardial infarction in rabbits 
in vivo coupled with an increased transcriptional activity 
of inducible NO synthase has also been documented (Lotz 
et al. 2011b). 

Cardioprotective effects of exogenous PPAR agonists

Activation of PPAR-α with synthetic ligands has been shown 
to be cardioprotective in a setting of I/R as manifested by 
a reduced infarct size and improved postischemic recov-
ery of contractile function in different in vivo and ex vivo 
models of I/R (Wayman et al. 2002; Yue et al. 2003; Tian et 
al. 2006). In this context, treatment with PPAR-α selective 
and potent agonist GW7647, that reversed I/R-induced 
down-regulation of PPAR-α and its target genes, attenuated 
myocardial contractile dysfunction and reduced the size of 
infarction (Yue et al. 2003). Similar cardioprotective effects,
in conjunction with the metabolic effects, were observed in
a rat ex vivo model of 30-min ischemia/2-h reperfusion after
treatment with PPAR-α agonist clofibrate (Tian et al. 2006).
These studies do not support the view of the beneficial role
of FAO inhibition in the mechanisms of protection against 
acute I/R, at least in this experimental setting. 

PPAR-α agonists fibrates have shown protection against
myocardial I/R injury beyond their lipid-lowering properties 
(Wayman et al. 2002). Other potent hypolipidemic drugs, 
statins, are being also intensively studied in this respect. 
By inhibition of the enzyme HMG-CoA reductase statins 
have been reported to prevent the synthesis of isoprenoid 
intermediates of cholesterol biosynthesis pathway involved 
in posttranslational modification of small GTP-binding pro-
teins, such as Ras, Rho, and Rac, which modulate a variety of 
cellular processes (Takemoto and Liao 2001), e.g., oxidative 
stress and inflammation (Van Linthout et al. 2007; Zhou et al.

2008; Adameová et al. 2009b), vascular endothelial dysfunc-
tion (Takemoto and Liao 2001) and the outcome of myo-
cardial response to I/R (Adameová et al. 2006, 2009a). It is 
hypothesized that in the myocardium, treatment with statins 
induces preconditioning-like effects attributed to up-regula-
tion of “survival” pathways, such as PI3K/Akt, ERK1/2 and 
eNOS (Di Napoli et al. 2001; Efthymiou et al. 2005; Merla et
al. 2007). In addition, in the hearts of normocholesterolemic 
rats exposed to I/R after 5-days treatment with simvastatin,
a remarkable elevation in PPAR-α gene expression coupled 
with an enhanced protein expression (3.3-fold and 2-fold 
increase in mRNA and protein levels, respectively) was ob-
served in the myocardium of these animals at baseline and 
after 30-min global ischemia and 2-h reperfusion. This was
accompanied by a significant reduction of the infarct size,
improved contractile recovery and attenuation of severe 
ventricular arrhythmias (Ravingerová et al. 2009). 

Although statins are not specific PPAR ligands, they have
been reported to up-regulate PPAR-α in some cell types, 
such as human HepG2 hepatoma cells (Martin et al. 2001) 
or mice peritoneal macrophages (Paumelle et al. 2006) and 
to increase both PPAR-α expression and its protein levels in 
primary endothelial cells (Inoue 2000). Our findings provid-
ed evidence of the up-regulation of PPAR-α by statins in the 
myocardium, perhaps not via a direct agonistic mechanism. 
In support of the view that PPAR-α activation may underlie 
mechanisms of beneficial effects of statins against lethal
myocardial injury in the hearts of normocholesterolemic 
animals, anti-infarct protection conferred by 5-days treat-
ment with simvastatin in a rat ex vivo model (Adameová 
et al. 2009a; Ravingerová et al. 2009) was comparable with 
the effect of WY14643, a hypolipidemic compound that has
been shown to protect rat myocardium against I/R injury 
(Bulhak et al. 2006) as one of the most potent and selective 
PPAR-α agonist (Forman et al. 1997). This is also in agree-

Figure 2. Involvement of PPARs in pathophysiological mechanisms of ischemia/reperfusion injury. FA, fatty acids; PPAR, peroxisome 
proliferator-activated receptors.
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ment with the data documenting a beneficial effect of PPAR-
α activation on cardiac I/R injury (Wayman et al. 2002; 
Yue et al. 2003; Tian et al. 2006) indicating that preserved 
FAO is important for the maintenance of adequate energy 
production under the conditions of restored coronary flow,
when oxygen supply is no longer rate limiting. 

PPAR and inflammation

Protective effects of PPAR agonists may be attributed not
only to modulation of cardiac metabolism but also to in-
hibition of inflammation with the salutatory effects on the
cardiac muscle (Diep et al. 2004; Smeets et al. 2007). In 
fact, in the experiments which have demonstrated benefi-
cial effects of PPAR-α and -γ agonists on the myocardial,
cerebral and hepatal I/R injury, protection was attributed 
to the attenuation of oxidative stress and inflammatory
response via inhibiton of the activation of NF-kB (Delerive 
et al. 2000; Yue et al. 2003; Ogata et al. 2004; Collino et 
al. 2006; Yeh et al. 2006; Xu et al. 2008). Recent study by 
Collino et al. (2011) has demonstrated protective effects
PPAR β/δ agonist against myocardial I/R associated with 
suppression of proinflammatory cytokines and neutrophil
accumulation. Lipophilic HMG-CoA reductase inhibitors 
exerted an anti-inflammatory effect via reduction of mRNA 

levels for interleukin-1β, interleukin-6, cyclooxygenase-2, 
and p22phox by up-regulation of PPAR-α (and PPAR-γ) 
in primary endothelial cells (Inoue et al. 2000). Positive 
impact of statins on inflammatory processes may be medi-
ated through the activation of both PPAR-α and PPAR-γ 
(Inoue et al. 2002; Zelvyte et al. 2002). Research indicates 
that acute anti-inflammatory effect of simvastatin occurs
through a mechanism involving inhibition of PKC- (and 
ERK1/2 cascade of MAPK)-induced phosphorylation (and 
inactivation) of PPAR-α, activation of PPAR-α (and PPAR-γ) 
via a cyclooxygenase (COX)-2-dependent increase in the 
levels of natural PPAR ligands 15d-PGJ2, as well as decreased 
transactivation of NF-κB (Inoue et al. 2002; Zelvyte et al. 
2002; Paumelle et al. 2006; Yano et al. 2007). Figure 3 sum-
marizes potential mechanisms of PPAR activation as a part 
of pleiotropic effects of statins induced by the inhibition of
HMG-CoA reductase-mevalonate pathway. A remarkable 
similarity between the pleiotropic effects of statins (includ-
ing anti-inflammatory and anti-oxidant effects) and the
agonists of PPAR-α fibrates, suggests a mechanistic link
between these two classes of drugs and similarity in their 
effects on PPAR-α (Tian et al. 2006; Paumelle and Staels
2008). Thus, an improved outcome of I/R injury in statin-
treated normocholesterolemic animals may be also linked 
to anti-inflammatory effects of PPAR activation. In support

Figure 3
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Figure 3. Schematic representation of the potential mechanisms of PPARs activation by statins through the inhibition of HMG-CoA 
reductase-mevalonate pathway of cholesterol biosynthesis. COX, cyclooxygenase; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA; 
MAPK, mitogen-activated protein kinases; PGJ2, 15-deoxy-delta-12,14-prostaglandin J2; PKC, protein kinase C; PPAR, peroxisome 
proliferator-activated receptors.
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of this, Planavila et al. (2005) have reported that atorvastatin 
treatment prevented both, the fall in the protein levels of 
PPAR-α and NF-kB activation in pressure overload-induced 
cardiac hypertrophy. 

PPAR function in the diabetic heart: susceptibility to 
ischemia/reperfusion injury

PPARs are up-regulated in the diabetic myocardium (Huss 
and Kelly 2004) that almost exclusively relies on FAO for 
energy production resulting in higher myocardial oxygen 
consumption. The latter, along with elevated circulating
levels and uptake of FA, as well as excess myocardial lipid 
accumulation may predispose the heart to contractile dys-
function and failure. 

Clinical and epidemiological studies clearly demon-
strated that diabetic patients are at a higher risk of con-
gestive heart failure and ischemic heart disease including 
myocardial infarction and rhythm disorders (Kannel 1985). 
It has been found that development of diabetes leads to 
oxidative stress (Singal et al. 2001; Maritim et al. 2003) 
and defects in the cell sarcolemmal and sarcoplasmic 
reticular membranes, as well as to alterations in the func-
tion of ion transport systems (Na+/K+- and Ca2+-ATPase, 
Na+/H+ and Na+/Ca2+ exchangers and Ca2+ channels). 
The latter leads to abnormal Na+ and Ca2+ handling in the 
diabetic myocardium that might compromise its tolerance 
to ischemia (Pierce et al. 1990; Lee et al. 1992; Dhalla et al. 
1998; Anzawa et al. 2006).

On the other hand, animal studies are not unequivocal 
and suggest that, besides higher myocardial vulnerability, 
diabetes mellitus may trigger adaptive processes leading 
to paradoxically enhanced ischemic tolerance. This is now
considered as a form of “metabolic preconditioning” sharing 
some molecular pathways with endogenous cardioprotection 
in the non-diabetic heart. In particular, it has been demon-
strated that susceptibility to I/R in the experimental model 
of streptozotocin (STZ)- or alloxan-induced diabetes mel-
litus is decreased similarly to the effect of preconditioning
in the non-diseased animals documented by reduced size 
of infarction, improved contractile recovery, suppressed ar-
rhythmogenesis and lower myocardial generation of reactive 
oxygen species during ischemia as compared with non-dia-
betic hearts (Ravingerová et al. 2003, 2010; Galagudza et al. 
2007; Matejíková et al. 2008). 

Potential mechanisms of preconditioning-like protec-
tion in the diabetic myocardium may involve along with 
antiapoptotic effects of high glucose itself acting as a pre-
conditioning mimetic in the absence of insulin (Ricci et al. 
2008), a higher activity of “survival” protein kinases ERK1/2 
and PI3K/Akt in acutely diabetic myocardium (Strnisková 
et al. 2003; Xu et al. 2004; Tsang et al. 2005; Ma et al. 2006). 

In addition, several other protective mechanisms, such 
as reduction in the levels of pro-inflammatory cytokines,
increase in the cell survival factors (HIF1-α, VEGF) and 
angiogenesis, along with reduced fibrosis have been found
to be activated in the acute phase of STZ-induced diabetes 
(Malfitano et al. 2010).

Although PPAR-γ agonists, insulin-sensitizing drugs 
glitazones, are widely used for the control of glycemia in 
diabetic patients (Grossman and Lessem 1997), the role 
of PPAR in ischemia-induced myocardial injury in the 
diabetic myocardium still remains elusive (Nikolaidis and 
Levine 2004). Limited evidence suggests that increased 
resistance to ischemia in the experimental models of dia-
betes mellitus might be coupled with enhanced baseline 
and post I/R mRNA levels of PPARs in contrast to their 
marked down-regulation in non-diabetics (Ravingerová 
et al. 2009, 2010). The latter indicates that the mainte-
nance of enhanced PPAR gene expression during I/R may 
contribute to improved outcome of myocardial I/R injury 
in the diabetic heart, at least in the early phase of the dis-
ease. Moreover, this protective effect of PPAR up-regula-
tion might possibly involve not only metabolic effects of
PPARs but also their anti-inflammatory and antioxidative
effects (Delerive et al. 2001; Smeets et al. 2007), through
the negative regulation of NF-κB (Abdelrahman et al. 
2005), that might be of particular importance in the dia-
betic myocardium. In line, Khandoudi et al. (2002) have 
shown that cardioprotective effects of PPAR-γ activation
in diabetic rat hearts exposed to global I/R is associated 
with inhibition of Jun NH(2)-terminal kinase phosphor-
ylation. Recently, Collino et al. (2011) have demonstrated 
that acute activation of PPAR-β/δ by its selective agonist 
GW0742 conferred protection against renal I/R injury in 
rats with STZ-induced diabetes. Protection of kidney by 
activated PPAR-β/δ in this model involved attenuation 
of neutrophil infiltration and decreased proinflammatory
cytokine signaling (Collino et al. 2011). 

Loss of ischemic tolerance in the diabetic heart

It has been shown that hypercholesterolemia (HCH) abro-
gated cardioprotective effect of preconditioning in the non-
diabetic heart via alterations in preconditioning-induced gene 
expression resulting in an enhanced oxidative/nitrosative 
stress signaling (Giricz et al. 2006; Kocsis et al. 2010). Simi-
larly, this pathology appeared to be one of the reasons for the 
loss of enhanced ischemic tolerance in the diabetic rats on 
7-day high fat-cholesterol diet (Adameová et al. 2007, 2009a). 
Thus, comorbidity, such as HCH, blunted infarct size- limiting
effect in the Langendorff-perfused hearts and exacerbated
severe ventricular arrhythmias in the open-chest in vivo 
diabetic-hypercholesterolemic animals. Moreover, HCH 
suppressed upregulation of myocardial PPAR gene expres-
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sion in diabetics, in particular, it decreased mRNA levels of 
PPAR-γ below those detected in non-diabetic controls both 
at baseline and after I/R (Ravingerová et al. 2010). In addi-
tion, in a similar model of STZ-induced diabetes, inhibition 
of PPAR-β/δ by its selective antagonist GSK0660 abrogated 
beneficial effects of PPAR-β/δ activation on renal I/R injury
(Collino et al. 2011). These findings indicate that changes
in PPAR gene expression might be involved in the adaptive 
protective mechanisms activated in the diabetic myocardium 
in the acute phase of the disease to counteract metabolic dis-
orders, while loss of protection might be potentially related to 
concomitant HCH and down-regulation of PPAR promoting 
detrimental pro-inflammatory and oxidative effects.

Summary

In conclusion, experimental data suggest that changes in 
gene expression of PPARs are involved in the pathophysi-
ological mechanisms of myocardial injury and may modulate 
it in a distinct way dependent on the type and duration of car-
diac pathology. Collectively, these data indicate that up-regu-
lation of PPARs may underlie mechanisms of precondition-
ing-like effects observed in the normal animals subjected to
different protocols of adaptation prior to sustained ischemia
or induced by lipid-independent cardioprotective action of 
some hypolipidemic drugs in non-diseased myocardium. 
Likewise, enhanced PPAR activity might be implicated in the 
mechanisms of enhanced resistance to ischemia in the acute 
phase of experimental diabetes. Thus, PPARs might repre-
sent an important therapeutic target in the management of 
ischemic heart disease in patients with or without metabolic 
disorders. However, a more detailed elucidation of the role of 
PPARs in myocardial ischemic injury and cardioprotection 
requires further investigation.
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