Study of the effect of DNA polymorphisms in the mannose-binding lectin gene (MBL2) on disease severity in Slovak cystic fibrosis patients

Eva Tothova Tarova¹, Helena Polakova², Hana Kayserova³, Peter Celec¹,⁴, Maria Zuzulova⁵ and Ludevit Kadasí¹,²

¹ Department of Molecular Biology, Faculty of Natural Sciences, Comenius University Bratislava, Slovak Republic
² Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
³ Cystic Fibrosis Centre, University Hospital with Policlinic, Bratislava, Slovak Republic
⁴ Institute of Pathophysiology, Faculty of Medicine, Comenius University Bratislava, Slovak Republic
⁵ Institute of Laboratory Medicine, St. Elisabeth Cancer Institute, Bratislava, Slovak Republic

Abstract. Lung infections are the leading cause of morbidity and mortality in cystic fibrosis (CF). Mannose-binding lectin (MBL) is a key factor in innate immunity. We therefore investigated whether MBL2 gene variants are associated with pulmonary function or susceptibility to Pseudomonas aeruginosa and Burkholderia cepacia infection in Slovak patients affected with CF. DNA polymorphisms in exon 1 and the promoter region were typed by single base primer extension assay in 91 patients and 100 healthy controls. The concentrations of MBL protein were determined in 34 patients by a sandwich enzyme-linked immunosorbent assay, and spirometric and microbiological data were collected from medical records. In this study we found that MBL2 genotypes were associated neither with earlier acquisition of P. aeruginosa or B. cepacia nor with reduced pulmonary function among patients. Although MBL2 genotypes were associated with the MBL2 protein serum level, results were statistically significant only for polymorphisms in exon 1, with \(p = 0.0008 \). The role of the MBL2 gene in lung disease severity in CF patients represents a very complex phenomenon where both genetic and environmental factors play an important role in addition to that of the MBL2 gene. Understanding this complexity requires further studies based on a broader scale of genetic factors involving both a whole-genome approach and a larger patient cohort.

Key words: Cystic fibrosis — Mannose-binding lectin-polymorphism — Modifier gene — Lung function

Abbreviations: CF, cystic fibrosis; FEV₁, forced expiratory volume in 1 second; MBL, mannose-binding lectin.

Introduction

Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians. The leading cause of mortality in 90% of CF patients is respiratory insufficiency due to chronic inflammation caused by bacterial colonization of the respiratory tract. The most important pathogens are Pseudomonas aeruginosa and Burkholderia cepacia (Carlsson et al. 2005). Pulmonary symptoms are highly variable among patients, and even among those in the same family.

It is assumed that the severity and progression of pulmonary dysfunction in CF is modulated by secondary genetic factors called CF modifiers (Cutting 2005; Knowles 2006). One of the first genes implicated as a pulmonary modifier in CF was the mannose-binding lectin 2 gene (MBL2) (Garred et al. 1999). MBL2 protein is an important mediator component of the innate immune defense system, which functions as an opsonin and complement activator. It is assigned to the family of proteins called collectins, because these contain
collagen-like regions and lectin domains, and they bind to carbohydrate structures from a wide range of pathogenic bacteria, viruses, fungi and parasites through the lectin domain. MBL2 is synthesised in the liver by hepatocytes, secreted into the blood and circulates as dimers or hexamers composed of subunits containing three identical polypeptides (Petersen et al. 2001; Yarden et al. 2004).

The human MBL2 gene is derived from a single gene on chromosome 10q11.2-q21 (MBL1 is an inactive pseudogene) (Garred et al. 1999). It has been shown that MBL2 variant alleles causing low MBL2 serum levels are associated with an increased risk of different types of infections, primarily occurring in children (Summerfield et al. 1997), but also in adults (Summerfield et al. 1995).

The following three single nucleotide polymorphisms caus

Materials and Methods

In this study, 91 Slovak CF patients and 100 randomly selected healthy people were included. Clinical diagnosis of CF was performed at the Centre of Cystic Fibrosis (University Hospital with Policlinic, Bratislava) and departments of clinical and medical genetics in Slovakia.

Of the 91 patients, 68 were homozygous for the p.F508del mutation, while 23 patients were compound heterozygous for the mutation p.F508del with these other severe mutations: g.CFTDele2,3 (5), g.P542X (5), p.N1303K (3), g.2184insA (2), p.R553X (2), g.3659delC (1), g.1898+1G>A (1), p.W1282X (1), g.605insT (1), g.4108delT (1), p.E831X+p.R851X (1). The median diagnostic age of patients aged between 1 month and 19 years was 20.7 months while the median age of patients from 1.2 to 40.0 years at the time of diagnosis, the mutation p.F508del with these other severe mutations: g.CFTDele2,3 (5), g.P542X (5), p.N1303K (3), g.2184insA (2), p.R553X (2), g.3659delC (1), g.1898+1G>A (1), p.W1282X (1), g.605insT (1), g.4108delT (1), p.E831X+p.R851X (1). The median diagnostic age of patients aged between 1 month and 19 years was 20.7 months while the median age of patients from 1.2 to 40.0 years at the time of diagnosis, plus the Chi-squared test for testing associations between quantitative parameters.

The FEV$_1$ (%) value, signifying the forced expiratory volume in 1 second, was chosen to measure lung function (Aurora et al. 2000). FEV$_1$ predicted values were calculated according to the Knudson coefficient (Knudson et al. 1983) and were measurable in 73 patients. Spirometry measurements were not performed on patients under 6 years of age.

Chronic bacterial infections with Pseudomonas aeruginosa were recorded in 65 patients and with Burkholderia cepacia in 26 patients.

DNA samples were isolated using the Puregen™ DNA purification kit (Qiagen, Germany) and the SNaPshot method in multiplexed PCR reaction, also referred to as "mini-sequencing", was employed in MBL2 gene polymorphism analysis (Quintans et al. 2004; Yarden et al. 2004). Yarden et al's method was modified in the following steps:

1) Amplification of target genomic DNA sequence by PCR.
2) Purification of PCR product before extension reaction by Exonuclease I/Shrimp alkaline phosphatase (USB, USA).
3) SNaPshot extension reaction by SNaPshot™ (Applied Biosystems, USA) and 4 unlabelled single nucleotide extension primers (Sigma, Germany) (Table 1) and 200 ng/μl DNA. The mixture was then incubated in an XP-Thermal Cycler (Bioer Technology Co., China) using the following amplification profile: denaturation at 94°C for 4 min, 32 cycles at 94°C for 1 min, 62°C for 40 s, 72°C for 2 min, and a final extension step at 72°C for 7 min. The length of PCR product was 782 bp which was verified by gel electrophoresis on 1.5% agarose gel.
4) Purification of PCR product following the extension reaction was conducted with Shrimp alkaline phosphatase (Fermentas, USA).
5) The mixture for capillary gel electrophoresis contained 9.15 μl Hi-Di™ formamide (Applied Biosystems, USA), 0.25 μl GeneScan™ 120 LIZ™ size standard (Applied Biosystems, USA) and 0.6 μl SNaPshot product. After denaturation, the mixture was resolved on an ABI PRISM 3100 Avant genetic analyzer (Applied Biosystems, USA).

Statistical analysis

For analysis and date evaluation the GeneMapper v3.7 software was used. One-way ANOVA with an LSD post-hoc test was performed for statistical analysis of quantitative parameters, plus the Chi-squared test for testing associations between quantitative parameters. p-values less than 0.05 were considered significant. Data was analyzed using XLStatistics...
MBL2 gene polymorphisms in cystic fibrosis

5.0 and Microsoft Excel 2007 and are presented as mean (± the standard deviation).

Genotypes were verified by direct sequencing using the BigDye Terminator v1.1 cycle sequencing kit (Applied Biosystems, USA).

Concentrations of MBL2 protein were determined in 34 patients by a Sandwich enzyme-linked immunosorbent assay (ELISA) on microtitre plates coated with monoclonal anti-MBL antibodies.

Results

MBL2 gene variants and genotypes

Genotyping was performed separately for the exon 1 variants and the promoter polymorphism. In exon 1 variants, the AA genotype represents patients with only wild-type variants, genotypes AB, AC and AD were commonly designed as A0, where A represents the wild-type allele with 0 for alleles B, C or D, and the 00 genotype specified compound heterozygotes for non-wild-type alleles (BC, BD, CD) or homozygotes for the non-wild-type alleles (BB, CC, DD). The only homozygote for the BB polymorphism was detected in one control subject.

Polymorphism in the promoter region was classified as follows: YY were homozygotes for wild-type allele, YX heterozygotes and XX homozygotes for non-wild-type allele (Table 2).

Comparison of genotype frequencies between patients and controls showed no significant differences for the exon 1 variants (p = 0.438) or for the promoter polymorphism (p = 0.666, Table 2). Likewise, combining these polymorphisms into joined genotypes (AA-YY, AA-YX, AA-XX, A0-YY, A0-YX, 00-YY, 00-YX) did not show significant differences between patients and controls (p = 0.744, Table 3).

Spirometric data and MBL2 gene variants

The FEV₁ value efficiently correlates with lung disease prognosis in CF (Aurora et al. 2000). The average age of patients at spirometric measurement was 14 years, and the average FEV₁ value was 77.9% (± 22.44%). The FEV₁ values were evaluated as follows: 1) ≥80% normal value, 2) 60–79% mild type, 3) 45–59% moderate severe type, 4) <45% severe type. Although, we found more AA patients with FEV₁ above 80% than A0 and 00 patients, these results were not statistically significant (p = 0.802, Table 4). For the promoter polymorphism, we observed no differences between lung function and Y genotypes (Table 4).

In the next step, the patients were subdivided into groups, according to the level of MBL2: 1) high producers, genotypes AA-YY and AA-YX (≥1000 μg/l), and 2) low producers, genotypes AA-XX, A0-YY, A0-YX, 00-YY, and 00-YX (<1000 μg/l) (Yarden et al. 2004). The results were similar to those for polymorphisms in exon 1, where more patients were found with FEV₁ above 80% in the group of high producers than in low producers, but neither of these results was statistically significant (p = 0.18, Table 4).

Analysis of other spirometric data evaluated in this study besides FVC (forced vital capacity), such as PEF (peak

Table 1. Sequences of primers for amplification of the MBL2 gene fragment and sequences of single nucleotide extension primers for MBL2 SNPs

<table>
<thead>
<tr>
<th>Primer</th>
<th>Nucleotide sequence 5´→3´</th>
</tr>
</thead>
<tbody>
<tr>
<td>YX-F</td>
<td>5´- CTCCTCCCTTTGGATCACCA-3´</td>
</tr>
<tr>
<td>YX-R</td>
<td>5´- CAGGGATTTCCCTCTCTGG-3´</td>
</tr>
<tr>
<td>AB (875 g/a)</td>
<td>5´- CGGCTCCAGGCAAGATGCGTAG-3´</td>
</tr>
<tr>
<td>AC (884 g/a)</td>
<td>5´- AGCCTCCGCCAGGCAAGATGCG-3´</td>
</tr>
<tr>
<td>AD (868 c/t)</td>
<td>5´- AGCCTCCGCCAGGCAAGATGG-3´</td>
</tr>
<tr>
<td>YX (425 g/c)</td>
<td>5´- AGCCTCCGCCAGGCAAGATGG-3´</td>
</tr>
</tbody>
</table>

Primers were modified from the original protocol Yarden et al. (2004). The concentration of YX-F and YX-R primers was 0.4 μmol/l, and of other 4 SNP primers 0.2 μmol/l. The anelling temperature of first two primers was 62°C and the lengh of PCR product 782 bp.

Table 2. Genotype frequencies of MBL2 gene variants in Slovak patients with CF and controls

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Polymorphisms</th>
<th>CF patients n (%)</th>
<th>Controls n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>A0</td>
<td>58 63.7 66 66</td>
<td></td>
</tr>
<tr>
<td>A0</td>
<td>BB</td>
<td>17 18.7 18 18</td>
<td></td>
</tr>
<tr>
<td>A0</td>
<td>BC</td>
<td>4 4.4 5 5</td>
<td></td>
</tr>
<tr>
<td>A0</td>
<td>BD</td>
<td>7 7.7 9 9</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>BB</td>
<td>0 - 1 1</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>BC</td>
<td>1 1.1 0 -</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>BD</td>
<td>2 2.2 1 1</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>CD</td>
<td>2 2.2 0 -</td>
<td></td>
</tr>
<tr>
<td>YY</td>
<td>62 68.1 62 62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YY</td>
<td>27 29.7 34 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td>2 2.2 4 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exon 1: p = 0.438; promoter: p = 0.666.
expiratory flow rate) and MEF (maximum expiratory flow rate), showed no significant association with particular MBL2 genotypes, therefore the results of these statistical analyses are not presented. Similarly, the association analysis of Cl⁻ ion concentration with MBL2 genotypes exhibited no statistically significant results.

MBL2 protein level

Data on the MBL2 serum level was available in 34 CF patients (Table 5). The average value was 1967.5 μg/l, with a median of 1363.2 μg/l. Our results show that high levels of MBL2 (≥1000 μg/l) are associated with genotype AA and low levels (<1000 μg/l) with genotypes A0. These results are statistically significant ($p = 0.0008$). The average value of MBL2 in patients with AA the genotype was 2734.12 μg/l (median 1901.6 μg/l), while in patients with genotype A0 it was 364.7 μg/l (median 89.0 μg/l) ($p = 0.0008$). Protein levels were also compared with the promoter polymorphism and these results were, also statistically insignificant (YY had an average value of 2075.94 μg/l with median 1691.5 μg/l and YX had 1740.9 μg/l with a median of 1270.6 μg/l) ($p = 0.14$).

MBL2 genotypes and bacterial infection

The majority of the patients (71.4%) had experienced positive cultures for *P. aeruginosa*. No significant correlation was found between genotypes and the age of onset of the first *P. aeruginosa* infection, and on average, patients with AA, A0, and 00 genotypes were infected at about 10 years of age. Significant differences were, however, found in MBL2 levels in infected patients with *P. aeruginosa*. Patients with the AA genotype had protein levels of 2764.29 μg/l (median 1901.6 μg/l), while patients with A0 and 00 genotype had only 371.4 μg/l (median 89.0 μg/l) ($p = 0.0008$).

Similar results were observed for *B. cepacia* infection. Patients with the AA genotype had a protein level of 1712.87 μg/l (median 1271.8 μg/l) while A0 patients had a significantly lower level at 233.6 μg/l (median 27.7 μg/l) ($p = 0.001$).

In this study we also assessed the correlation of analyzed DNA polymorphisms with other clinical symptoms such as aspergillosis, increased immunoglobulin levels, hepatopathy, pancreatic insufficiency, meconium ileus, hypo-albuminemia, cystic fibrosis related diabetes mellitus, atopy, body mass index, cardiomyopathy, pneumothorax, and nasal polyps. As these results did not show any statistical significance, they are not presented herein.

Discussion

Lung disease, the major life-limiting complication of CF, is poorly correlated with types of mutations in the disease-causing CFTR gene. Emerging data suggests a multi-factorial modulation of lung disease severity including genetic, environmental, and stochastic factors (Cutting 2005). In recent years, many genes have been studied as candidate modifier genes in CF. One of the first of these was the MBL2 gene, an important mediator component of the innate defence system. Variants in the MBL2 gene showed an association with multiple symptoms of CF in some studies but not in others (McDougal et al. 2010).

No significant differences in the frequencies of genotypes in the MBL2 gene were found in our study, and similar results have been collaborated in other works (Garred et al. 1999; Yarden et al. 2004; Dorfman et al. 2008; Faria et al. 2009).

Although the majority of candidate gene studies have documented worse lung disease with insufficient MBL2 genotypes (Garred et al. 1999; Yarden et al. 2004; Dorfman...
et al. 2008; Chalmers et al. 2011), a few studies showed no effect (Carlsson et al. 2005; Collaco and Cutting 2008), while Collaco and Cutting (2008) reported reduced lung function with high or intermediate producers.

MBL2 deficiency has been associated with a more rapid decline in pulmonary function (Dorfman et al. 2008), and, although some association was observed in our cohort between genotypes in MBL2 gene and spirometric data, these results were not statistically significant. Spirometric data is not always reliable, and it can vary with age, sex and environmental factors. Other airway symptoms, such as sinusitis and nasal polyps have also been reported to affect lung function (Carlsson et al. 2005).

The A0 and 00 MBL2 genotypes are known to result in low MBL protein level (Muhlebach et al. 2006), and this was also confirmed in our results. This is in contrast to the promoter polymorphism which does not affect the protein level. This observation can be explained by the fact that homozygosity for any of the structural mutations or their compound heterozygosity prevents oligomerization of MBL2, while homozygosity for the X allele reduces production of the MBL2 oligomer (Dorfman et al. 2008). Disease association studies involving MBL have often been conducted at the genotype level instead of measuring the MBL protein concentration, but ideally, both genotype and protein data should be analyzed (Muhlebach et al. 2006). In our group of 23 patients with AA genotype, only 3 had a lower protein level than 1000 ng/ml, and in 11 A0 patients only 1 had a protein level higher than 1000 ng/ml (Table 5). These results indicate an association between genotypes and protein levels. Results of the MBL protein level average values corresponded with polymorphisms in exon 1.

In some studies, analysis of the age of contraction of first infection with Pseudomonas aeruginosa showed that MBL2 deficiency was significantly associated with earlier P. aeruginosa infection than the genotypes which corresponded to high levels of MBL. In our cohort, A0 patients with bacterial infection had a lower protein level than AA patients, but clinical symptoms and pulmonary function did not reflect these findings. This may be explained by the fact that the MBL protein is synthesized exclusively in the liver and therefore does not provide a protective role against P. aeruginosa colonization, since the MBL protein reaches the inflammation site quite late (Ezekowitz et al. 1988).

In conclusion, varying results achieved so far in the study of the relationship of the MBL2 gene to lung disease severity in CF patients indicate that this represents a very complex phenomenon. Besides the MBL2 gene itself, other factors, both genetic and environmental, play an important role. Understanding this complexity requires further studies based on a broader scale of genetic factors, with the whole-genome approach and a more extensive cohort of patients.

Acknowledgements. This contribution is the result of the project implementation “Diagnostics of socially important disorders in Slovakia, based on modern biotechnologies” ITMS 2624020058, supported by the Research & Developmental Operational Programme funded by the ERDF. Furthermore, we thank Ray Marshall for English revision and helpful comments on the manuscript.

McDougal et al. (2010) found that MBL2 genotypes corresponding to low levels of MBL2 were associated with earlier P. aeruginosa infection than the genotypes which corresponded to high levels of MBL. In our cohort, A0 patients with bacterial infection had a lower protein level than AA patients, but clinical symptoms and pulmonary function did not reflect these findings. This may be explained by the fact that the MBL protein is synthesized exclusively in the liver and therefore does not provide a protective role against P. aeruginosa colonization, since the MBL protein reaches the inflammation site quite late (Ezekowitz et al. 1988).

In conclusion, varying results achieved so far in the study of the relationship of the MBL2 gene to lung disease severity in CF patients indicate that this represents a very complex phenomenon. Besides the MBL2 gene itself, other factors, both genetic and environmental, play an important role. Understanding this complexity requires further studies based on a broader scale of genetic factors, with the whole-genome approach and a more extensive cohort of patients.

Acknowledgements. This contribution is the result of the project implementation “Diagnostics of socially important disorders in Slovakia, based on modern biotechnologies” ITMS 2624020058, supported by the Research & Developmental Operational Programme funded by the ERDF. Furthermore, we thank Ray Marshall for English revision and helpful comments on the manuscript.

References

Table 5. MBL2 protein level in CF patients (n = 34)

<table>
<thead>
<tr>
<th>MBL2 (μg/l)</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA-YY/1</td>
</tr>
<tr>
<td>≤100</td>
<td>1/1</td>
</tr>
<tr>
<td>100–1000</td>
<td>1/0</td>
</tr>
<tr>
<td>≥1000</td>
<td>14/6</td>
</tr>
</tbody>
</table>

Grey color in table indicates the number of patients deviating from the expected value. AA genotype should be associated with higher values, while A0 genotype with lower values. p = 0.0008.
nose-binding protein is an acute-phase reactant that shares
sequence homology with other vertebrate lectins. J. Exp. Med. 167, 1034–1046
http://dx.doi.org/10.1084/jem.167.3.1034
Faria E. J., Faria I. C., Ribeiro J. D., Ribeiro A. F., Hessel G., Bertuzzo
C. S. (2009): Association of MBL2, TGF-β1 and CD14 gene
polymorphisms with lung disease severity in cystic fibrosis. J. Bras. Pneumol. 35, 334–342
http://dx.doi.org/10.1590/S1806-37132009000400007
Garred P., Pressler T., Madsen H. O., Frederiksen B., Svejgaard
A., Hoiby N., Schwartz M., Koch C. (1999): Association of
mannose-binding lectin gene heterogeneity with severity of
http://dx.doi.org/10.1172/JCI6861
Pulm. Med. 12, 416–421
http://dx.doi.org/10.1097/01.mcp.0000245707.59138.40
Changes in the normal maximal expiratory flow-volume curve
Madsen H. O., Garred P., Kurtzhals J. A., Lamm L. U., Ryder L.
P., Thiel S., Svejgaard A. (1994): A new frequent allele is the
missing link in the structural polymorphism of the human
mannan-binding protein. Immunogenetics 40, 37–44
http://dx.doi.org/10.1007/BF00163962
Madsen H. O., Garred P., Thiel S., Kurtzhals J. A., Lamm L. U.,
and structural gene variants control basal serum level of man-
McDougal K. E., Green D. M., Vanscoy L. L., Fallin M. D., Grow
M., Cheng S., Blackman S. M., Collaco J. M., Henderson
L. B., Naughton K., Cutting G. R. (2010): Use of a mod-
ing framework to evaluate the effect of a modifier gene
http://dx.doi.org/10.1038/ejhg.2009.226
Muhlebach M. S., MacDonald S. L., Button B., Hubbard J. J., Turner
between mannan-binding lectin and impaired lung function
http://dx.doi.org/10.1111/j.1365-2249.2006.03151.x
Petersen S. V., Thiel S., Jensonius J. C. (2001): The mannan-binding
lectin pathway of complement activation: biology and disease
association. Mol. Immunol. 38, 133–149
http://dx.doi.org/10.1016/S0161-5890(01)00038-4
Quintâns B., Alvarez-Iglesias V., Salas A., Phillips C., Lareu M. V.,
Carracedo A. (2004): Typing of mitochondrial DNA coding
region SNPs of forensic and anthropological interest using
SNaPshot minisequencing. Forensic. Sci. Int. 140, 251–257
http://dx.doi.org/10.1016/j.forsciint.2003.12.005
Summerfield J. A., Ryder S., Sumiya M., Thursz M., Gorchein A.,
gene mutations associated with unusual and severe infections
in adults. Lancet 345, 886–889
http://dx.doi.org/10.1016/S0140-6736(95)90009-8
Association of mutations in mannan binding protein gene
with childhood infection in consecutive hospital series. BMJ 314, 1229–1232
Yarden J., Radojkovic D., De Boeck K., Macek M. Jr., Zemkova D.,
morphisms in the mannan binding lectin gene affect the cystic
http://dx.doi.org/10.1136/jmg.2003.017947

Received: September 5, 2011
Final version accepted: September 29, 2011