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Abstract: HMGB1 has been formerly known for its intracellular function – as the intranuclear non-histone DNA 
binding protein, which contributes to stabilization of nucleosomes, mediation of DNA bending and is regarded to 
have an essential position in DNA repair. Lately, its participation in innate and specifi c immune responses has 
been revealed. Passively released from necrotic cells or actively produced by various cell types it acts as an 
alarmin and is responsible for production of pro-infl ammaory cytokines. HMGB1 is able to interact with RAGE 
and TLRs, receptors that belong into family of pattern recognition receptors and are involved in activation of 
pathways leading to production of pro-infl ammatory cytokines. Its key role has been revealed in mediation of 
sepsis and as it is released later than other pro-infl ammatory cytokines it became known as a “late mediator of 
sepsis”. HMGB1 also contributes to the development of atherosclerosis and autoimmune diseases, e.g. its as-
sociation with immunopathogenesis of SLE and RA has been suggested. Beside its negative function, HMGB1 
protein seems to be able to attract stem cells to the area of infl ammation and thus promotes regeneration pro-
cesses. This paradoxical function of HMGB1 protein has also been revealed in growth and spread of many 
types of tumours. HMGB1 represents a potential target in therapy of various disorders related to infl ammation 
(Fig. 2, Ref. 137). Full Text in PDF www.elis.sk.
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The high mobility group (HMG) nuclear proteins were discov-
ered in 1973 in an attempt to fi nd a better explanation how gene 
expression is regulated (1). Since then this family of non-histone, 
chromatin-associated proteins have been considered involved in 
DNA organization and regulation of transcription. This group of 
proteins has common structural characteristics unusual to other 
chromosomal proteins. Long AT-rich 3′ untranslated regions as 
well as highly negatively charged carboxy-terminated regions 
belong to these different characteristics (2). 

The high mobility group box-1 protein (HMGB1), a member 
of HMG family, was fi rst isolated from perinatal rat brain in 1987. 
It was found in central neurons, where this heparin-binding pro-
tein could support neurite outgrowth (3) Belonging to group of 
highly evolutionarily conserved and ubiquitous proteins, HMGB1 
in mouse has amino acid sequence 100 % identical to amino acid 
sequence in rat and there is nearly a 99 % identity between rodents 
and humans (4–6). While in mice HMGB1 gene lies on chromo-
some 5 (7), in humans the gene is localized on chromosome 13 (8). 

HMGB1 was originally found in the nucleus. It was character-
ized as a 215 amino acid DNA-binding non-histone chromosomal 
protein, which consists of two positively charged DNA binding 
domains named HMG box A and box B, and a negatively charged 

C-terminal domain that contains 30 repetitive glutamic and aspartic 
acid residues (Fig. 1) (9, 10). HMGB1 can bind without sequence 
specifi city to double-stranded, single-stranded as well as misshapen 
(deformed, distorted) DNA (2, 10–13). Highly affi nitive interac-
tions of HMGB1 with nucleosomes lead to the stabilization of their 
structure and mediation of DNA bending. These interactions also 
facilitate the binding of transcription factors along with steroid 
hormone receptors (14), steroid/nuclear hormones progesterone 
(15) and oestrogen (16, 17), HOX proteins (18) and transcription 
factor IIB (19). HMGB1 is regarded to be a master DNA repair 
mechanic due to its specifi c ability to bind to distorted and dam-

Fig. 1. Structure of HMGB1 protein. Legend: HMGB1 – High Mobility 
Group Box 1; RAGE – Receptor for Advanced Glycation End-prod-
ucts. HMGB1 protein consists of two positively charged DNA binding 
domains named HMG box A and box B, and a negatively charged C-
terminal domain that contains 30 repetitive glutamic and aspartic acid 
residues. Box A is responsible for anti-infl ammatory activity of HMGB1 
protein and also forms the region for binding of heparin and proteo-
glycans. Box B except of its pro-infl ammatory, migration-enhancing 
and cell differentiating activity carries also a binding region for RAGE. 
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aged DNA. Lange and Vasquez also discussed an important role 
of HMGB1 in the nucleotide excision repair (NER) pathway and 
discussed aspects of both the “repair shielding” and “repair en-
hancing” hypotheses. Furthermore, they report recently observed 
a participation of HMGB1 protein in the base excision repair 
(BER) pathway and its function in mismatch repair (MMR) (97). 
On account of HMGB1, the knockout mice died within 24 hours 
of birth from hypoglycaemia. Therefore, the nuclear role of this 
protein seems to be indispensable to life (20). 

Several cell types are able to produce HMGB1, but their pro-
duction varies due to development and age of each cell (21). It has 
been shown that migration of HMGB1 between the cytoplasm and 
nucleus is possible,and this migration is dependent on the cell cycle 
phase. In some cell types, HMGB1 was found mainly in the cyto-
plasm, especially in brain and liver tissue, whilst in lymphoid cells, 
HMGB1 is located both in the cytoplasm and nucleus (22, 23). 

Passive release of HMGB1

HMGB1 is likely to be released into extracellular milieu in 
two ways - passively from necrotic or injured cells and actively 
by activated monocytes, macrophages and dendritic cells (DCs) 
in the area of infl ammation or injury (Fig. 2) (88).

Necrotic and damaged cells can passively secrete HMGB1, 
while apoptotic cells can`t, thus giving a distinct signal to organ-
ism, so it can recognize these two types of cell death. Passive re-
lease of HMGB1 to extracellular fl uid represents a good intracel-
lular signal of tissue injury and a very good „necrotic marker“, 
and it results in immunostimulatory, infl ammatory and reparative 
responses. HMGB1 belongs to the group of alarmins - endog-
enous signals of threat to organism called also damaged associ-
ated molecular patterns (DAMPs). It promotes the recruitment of 

mononuclear cells that clear cellular debris and protects against 
infection (24, 89, 90).

In contrast to necrotic cells, in apoptotic cells on the basis of 
cell death, HMGB1 can not be released to extracellular fl uid. Re-
sponsible for this distinction between apoptotic and necrotic cells 
is the chromatin binding affi nity of HMGB1. During a whole cell 
cycle, HMGB1 is not bound to the chromatin of living cells in a 
tight manner, and association and dissociation can proceed easily. 
This also allows a passive release of HMGB1 after damage or ne-
crosis of the cell. The intracellular retention of HMGB1 in apop-
totic cells is the result of an irreversible association of HMGB1 
with one or more hypoacetylated components of chromatin. So 
after apoptosis, HMGB1 can induce only negligible infl ammation 
in the surrounding tissue (24, 88, 91).

Active production of HMGB1

Apart from a passive releasing from necrotic or damaged 
cells, HMGB1 can be also secreted actively. As a consequence 
of exogenous bacterial stimulation, e.g. lipopolysacharide (LPS) 
or stimulation coming from pro-infl ammatory cytokines, such as 
TNF, IL-1 and also HMGB1 itself, HMGB1 is actively secreted 
from macrophages, monocytes, dendritic cells and many other 
components of innate immune system. Activated leucocytes se-
crete HMGB1 actively through processes that are routed differently 
from classical pathways of secretion, i.e. through endoplasmatic 
reticulum or Golgi apparatus. Specifi c process differs in the way of 
stimulation. While stimulating cells by TNF leads to releasing of 
HMGB1 through phosphorylation, stimulation by lipopolysacha-
ride results in HMGB1 releasing dependent on hyper-acetylating 
of its own lysine residues. This hyper-acetylating processes cause 
the changes in structure of HMGB1 protein that directly contrib-
ute to gathering of HMGB1 in cell´s cytoplasm and do not allow 
its returning into the nucleus of the cell (25, 26). HMGB1 is then 
absorbed into secretory lysosomes in a specifi c manner. This pro-
cess is followed by a specifi c secretion of HMGB1 that depends 
on extracellular stimulation of leukocyte by lys-phospatidylcholine 
(LPC). LPC is produced in the area of infl ammation later than 
other contributors of infl ammatory response, e.g. IL-1. After all, 
secretory lysosomes can fuse with cell membrane and HMGB1 
is secreted into the extracellular fl uid (27). 

There are some of the non-immune cells that HMGB1 can be 
released from, e.g. pituicytes stimulated with IL-1 or TNF (28). 
Also enterocytes can produce HMGB1 after the cytokine stimula-
tion (29). In addition to stimulation by cytokines, cells like hepa-
tocytes can secrete HMGB1 under hypoxic conditions or during 
oxidative stress and this secretion is based on changes in calcium 
level in a cell (30).

HMGB1 like a membrane-bound protein was found also to 
promote neurite outgrowth and to be involved in migration of some 
tumour cell lines when situated at the advancing plasma membrane 
or fi lopodia (31–33). HMGB1 is also involved in generation of 
active plasmin and matrix metalloproteinases, that facilitate mi-
gration by degrading extracellular matrix components, by bind-
ing plasminogen and tissue plasminogen activator (tPA) (34, 35).

Fig. 2. Active and passive release of HMGB1 protein. Legend: HMGB1 
– High Mobility Group Box 1; RAGE – Receptor for Advanced Glyca-
tion End-products. Actively (from monocytes/macrophages) or pas-
sively (damaged and necrotic cells) released HMGB1 interacts with 
RAGE on immune cells and activates them. The autocrine effect of 
HMGB1 enhances its own releasing from activated cells and circulus 
vitiosus is created – infl ammatory response sustains.
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HMGB1 receptors RAGE

HMGB1 can perform its extracellular roles through two types 
of receptors: Receptor for Advanced Glycation End-products 
(RAGE) and Toll-Like Receptors (TLR) 2, 4 and 9.

RAGE – the receptor for advanced glycation end-products 
(AGEs) was initially found in diabetes, renal impairment and 
disorders that lead to local or systemic oxidative stress. Encoded 
in the Class III region of the major histocompatibility complex 
(MHC), RAGE belongs to the immunoglobulin super-family. As 
it also functions as a pattern recognition receptor (PRR), it is able 
to recognize a 3-D structure of proteins instead of their amino 
acid sequence. 

RAGE is lowly expressed on endothelial cells, epithelial cells, 
smooth-muscle cells, neurons. A signifi cantly higher expression of 
RAGE is found on mature lung type-I pneumocytes than on other 
differentiated adult cells. Expression in high levels is also easily 
noticeable on embryonic cells (39, 40).

RAGE can interact with many ligands, e.g. AGEs, amy-
loid β-peptid as well as with HMGB1, and is capable of binding 
HMGB1 seven-times tightly than AGEs (41). Two major pathways 
are activated after ligands have been bound to RAGE  CDC42/
Racl and various MAPKs, both leading to NFκB-dependent tran-
scriptional activity. It was shown that RAGE and HMGB1 inter-
action in the developing nervous system contributes to neurite 
outgrowth and cell migration, and that was the fi rst time when 
RAGE was determined to be the receptor for HMGB1 (42, 43, 
92). CDC42/Rac1 pathway activated by HMGB1 is connected 
with migratory phenotype of neurites and various cancer cells and 
results in changes in cytoskeleton of the cell (43). As an alterna-
tive, there is another way of RAGE signalling that leads through 
activation of 38 MAPK (mitogen-associated protein-kinase) and 
Erk1/2. Thereafter, this interactions result in phosphorylation and 
degradation of IκB, and in activation of gene expression mediated 
by NF-κB (35, 41, 93). This gene expression contributes to produc-
tion of molecules that are involved in infl ammatory response, i.e. 
adhesion molecules (ICAM1, VCAM1) and cytokines like TNF, 
IL-1 and IL-8. Therefore, RAGE activation by HMGB1 is respon-
sible for both initiation and also sustaining of pro-infl ammatory 
phenotype (44, 45, 93).

Expression of RAGE has been found to be raised in many states 
due to acute or chronic infl ammatory conditions, e.g. chronic renal 
failure, sepsis, rheumatoid arthritis, infl ammatory bowel disease, 
arteriosclerosis, vasculitis and late diabetic complications (46, 
94). Many fi ndings confi rm RAGE´s important role in innate and 
adaptive immune system processes (47, 48). At fi rst, RAGE was 
found on the surface of various immune cells like monocytes/
macrophages, neutrophils, dendritic cells, and T and B lympho-
cytes (49–51). RAGE can interact through β2 integrin Mac-1 on 
leukocytes with endothelial cells, on which it is also expressed like 
an adhesion receptor and so contributes to recruitment of leuko-
cytes in mouse models of infl ammation (52, 53). Also numerous 
extracellular RAGE´s ligands are connected with acute or chronic 
infl ammatory responses (54–56). Finally, there is an activation of 
transcriptional factor NF-κB and variety of its downstream genes, 

which are also responsible for the regulation of innate and adap-
tive immune system (57, 94). 

Toll-like receptors (TLRs)

As a member of pattern recognition receptors (PRRs) family, 
the group of TLRs can recognize damage associated molecular 
pattern molecules (DAMPs) and microbial molecular patterns 
(PAMPs – pathogen-associated molecular patterns) and are able to 
trigger infl ammatory immune responses directly against pathogens 
that carry these molecular patterns (58, 61, 62). 

TLRs are expressed on various cells of the innate immune sys-
tem including neutrophils, macrophages and dendritic cells, and 
are also expressed on the surface of endothelial cells and mucosal 
epithelial cells (63).

Each receptor interaction is specifi c, i.e. double-stranded RNA 
is recognized by TLR3, TLR4 can recognize LPS from gram-
negative bacteria and TLR5 is activated by bacterial fl agellin. 
Furthermore, single-stranded RNA is recognized by TLR7 and 
un-methylated CpG motifs in DNA by TLR9. Finally, microbial 
peptidoglycans, lipoarabinomannan, lipoproteins, lipoteichoic acid 
and zymosan are able to activate TLR1, TLR2 and TLR6. Due to 
their function, some of TLRs are localized in endolysosomal com-
partments of the cell, like TLR3, TLR7 and TLR9 that can recog-
nize viral nucleic acids, contrary to those that recognize bacterial 
protein and lipid ligands directly on the cell surface (59, 60, 95). 
All TLRs, except TLR3, can signal through myeloid differentia-
tion factor 88 (MyD88) pathway that leads to the activation of 
MAPKs, extracellular signal regulated kinases and NF-κB (59, 60).

HMGB1 is ligand for TLR2, TLR4 and furthermore for TLR9 
(64, 68). After HMGB1 signalling, TLR pathways are responsible 
for the activation of NF-κB and later production of pro-infl amma-
tory cytokines in macrophages in the area of infl ammation, and 
consequently for recruitment of neutrophils in response to releas-
ing of these cytokines in vivo (65). Anti-tumour T-cell immunity 
is induced through TLR4 pathway by HMGB1 that comes from 
cells after dead from chemotherapy (66, 95).

Many studies have been speculating about HMGB1 protein`s 
ability to trigger activation of receptors in complexes with DNA. 
Tian et al. demonstrated that activation of TLR9 pathway is pos-
sible after complex of HMGB1 and DNA has been bound to it (68, 
96). TLR9 activation by HMGB1 is likely to be mediated rather 
by complexes of HMGB1 with DNA than by HMGB1 itself. In 
this way, TLR9 pathway leads in immune cells to maturation and 
production of cytokines (68, 69). Other researches indicated that in 
some other cell types HMGB1-DNA complexes are able to cause 
the suppression of immune response (70). In addition to signalling 
by HMGB1-DNA complexes, HMGB1 bounded to nucleosomes 
derived from apoptotic cells can interact with TLR2 and is able to 
induce production of anti-dsDNA and anti-histone IgG antibodies 
(67, 95). Increased pro-infl ammatory activity is noticed also after 
signalling HMGB1 in complexes with other cytokines like IL-1, 
IFN-γ, and TNF, in comparison to HMGB1 signalling alone (71). 
It is still questionable if other HMGB1 complexes or its modifi ca-
tions are necessary for activation of PRR`s pathways (96).
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Physiological and pathological roles of HMGB1

HMGB1, formerly known as non-histone DNA binding pro-
tein, was regarded to have an important function in structural sta-
bilization of nucleosomes and proper regulation of transcription 
in somatic cell. In addition to its intracellular activities, HMGB1 
also acts as a cytokine that activates many different receptors and 
through multiple downstream pathways induces various specifi c 
responses in numerous cell types (96, 97).

Effects of HMGB1 on individual cells

Cultures of monocytes and macrophages were revealed to pro-
duce pro-infl ammatory cytokines, e.g. TNF, IL-1, IL-1Ra, IL-6, 
IL-8, MIP-1, but not IL-10 or IL-12 after recombinant HMGB1 
had been added (72). Besides, LPS induction lead to monophasic 
TNF response, while HMGB1 stimulated TNF production seemed 
to be biphasic with peaks in 4th and 10th hour (73, 92). Also an 
increase of the adhesive capacity occured after HMGB1stimula-
tion and this appears to be augmented by other pro-infl ammatory 
cytokines (74, 75). 

In contrast to monocytes, in LPS, activated neutrophils induced 
the TNF release in 4hrs, HMGB1 lead to TNF peaking just in 60 
min (77, 92). Stimulation by HMGB1 also lead to an increased 
interaction between MAC-1 and RAGE that resulted in activation 
of adhesive and migratory phenotype of neutrophils (53). Under 
the infl uence of HMGB1, NAD-(P)-H oxidase and NF-κB were 
activated, and thus neutrophils were stimulated to produce reac-
tive oxygen species and also production of the pro-infl ammatory 
cytokines was increased (64, 76, 77).

HMGB1 in dendritic cells lead to higher expression of cell 
surface markers and increased releasing of pro-infl ammatory cy-
tokines as well, so it may play a role in maturation of these cells 
(78, 79, 96).

T-cells appeared to increase proliferation, survival and cyto-
kine production as a result of HMGB1 stimulation. Furthermore, 
Th-1 polarization was evident (78, 80, 96).

HMGB1 functions as a stimulator of expression of RAGE in 
endothelial cells. Also pro-infl ammatory cytokines (TNF, IL-8 and 
MCP-1) and regulators of fi brinolytic activity (tPA and PAI) are 
released from endothelial cells under the effect of HMGB1. Fur-
thermore, the expression of vascular adhesion molecules (ICAM-1 
and VCAM-1) was increased on the cell`s surface, thereby endo-
thelial cells were able to attract cells that played role in infl amma-
tory response as well as to promote their transition into the area 
of infl ammation. In addition to participation of HMGB1 in the 
processes of infl ammation, there was also local TNF production 
that contributed to amplifi cation of pro-infl ammatory effect of this 
protein on endothelial cells (83, 92).

The expression of inducible nitric oxide synthase was also in-
creased by HMGB1 and so barrier function of epithelial cells was 
damaged. It was revealed that systemic administration of HMGB1 
could impair the barrier function of gut-epithelial cells in mice, 
resulting in raised permeability of ileal mucosa and in subsequent 
bacterial invasion into mesenteric lymph nodes (81, 92). 

HMGB1 is at least as strong stimulator of smooth-muscle cell 
migration as bFGF is. It also induced cytoskeleton reorganization 
and thus enabled shape changes of these cells (88, 92).

HMGB1, reparative process and regeneration

Besides its role in the infl ammatory process, this protein is 
further implicated in regeneration that this is another interest-
ing feature of this molecule. Stem cells tend to move towards the 
area of infl ammation under the infl uence of HMGB1. In this way, 
HGMB1 contributes to reparative and regenerative tissue changes 
(53, 84). HMGB1 lead to increased myogenesis and angiogenesis 
in skeletal muscle (85, 96). While in normal mice wound healing 
has been slowed-down as a consequence of inhibition in HMGB1 
signalling, topical application of HMGB1 caused an acceleration 
of this process in diabetic mice, so HMGB1 might also take an 
important part in diabetic wound healing (86). Moreover, an exog-
enous HMGB1 directly injected to peri-infarcted area contributed 
to an increased amount of myocytes inside the area of infarcted 
cardiomyocytes that went along with an improved outcome con-
fi rmed by structural and functional measures (87, 96). These ex-
amples support an effect of HMGB1 in the regenerative processes.

HMGB1 and atherosclerosis 

An injury of endothelium is essential for the initiation of athero-
sclerosis as it leads to the attraction of macrophages. Progression of 
atherosclerosis goes along with prolonged pro-infl ammatory response 
(98). It was revealed that HMGB1 and RAGE were expressed in en-
dothelial cells, smooth muscle cells, and macrophages of atheroscle-
rotic lesions (99). Therefore, up-regulation and secretion of HMGB1 
may lead to the intensifi cation of infl ammatory response in endothe-
lium lesions and thus promote further atherosclerotic changes (93).

HMGB1 in ischemic and reperfusion injury

Many factors have been revealed to be involved in pathogen-
esis of ischemic and reperfusion (IRI) including nitric oxide or 
plenty of cytokines released under pro-infl ammatory conditions 
in the affl icted area in many organs i.e. heart, brain, kidney or 
liver (108, 109). Recent studies suggested a potential implication 
of HMGB1 signalling in IRI (110). Ischemia lead to tissue dam-
age and due to these changes high levels of HMGB1 protein were 
released around the central ischemic area (111). It was demon-
strated that HMGB1 was able to stimulate releasing of glutamate 
and while glutamate-excitotoxicity contributed to pathogenesis 
of stroke, it is possible that HMGB1 played a substantial role in 
stroke. Also RAGE has been lately identifi ed as an important recep-
tor implicated in stroke, giving another suggestion about function 
of HMGB1 protein in this condition (112).

HMGB1 and its role in sepsis and infectious infl ammation

Despite advances in antibiotic therapy and intensive care, sepsis 
remains the most common cause of death in the intensive care units.
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SIRS (Systemic Infl ammatory Response Syndrome) is a sys-
temic infl ammatory state triggered by a huge variety of stimuli, i.e. 
infection, trauma, ischemia, hemorrhage, burns and pancreatitis. 
SIRS is commonly complicated by multiple organ dysfunction 
syndrome (MODS), which is a result of SIRS-induced hypotension 
and disseminated intravascular coagulopathy, and fi nally can lead 
to death. The sepsis is a SIRS, in which an infection is the trigger-
ing stimulus. Its mortality is close to 30 % (100, 92). 

In 1999, Wang and colleagues using an animal model revealed 
that HMGB1 functioned as a mediator of endotoxin-induced le-
thality (73). Afterwards, Yang with his group described the same 
increased levels of HMGB1 also in animal CLP-induced (cecal liga-
tion and puncture) model of sepsis as a cause of mortality (101, 102).

Participation of HMGB1 in sepsis is interesting because of 
its later releasing and peaking during infl ammatory response in 
opposite to other pro-infl ammatory cytokines, e.g. TNF or IL-1. 
This was the reason why HMGB1 was known as “late mediator 
of sepsis”. Its levels are raising in 16hrs and remain signifi cantly 
elevated for 32hrs after induction with LPS in mice model (73). 
There were also studies, in which HMGB1 was revealed to be 
signifi cantly elevated in serum of septic patients and patients with 
MODS induced by sepsis. Comparing surviving patients with those 
who did not survive, a signifi cantly higher serum levels of HMGB1 
were in coincidence with a higher mortality in septic patients (73). 
Furthermore, increased levels of HMGB1 were found in plasma of 
patients after TNF or other classical pro-infl ammatory cytokines 
have been secreted in early phase of infl ammation, it is likely that 
TNF together with damaged and dying cells were stimuli for re-
lease of HMGB1 (101, 103).

The exact mechanism of tissue injuring by HMGB1 is not 
yet completely elucidated. High plasma levels of HMGB1 are re-
garded to be responsible for epithelial leakage after impairing an 
intestinal barrier. This is mediated through RAGE pathway (104, 
105). Furthermore, the production of ROS (reactive oxygen spe-
cies) after activation of NAD(P)H-oxidase in neutrophils through 
TLR4 signalling represents another mechanism of HMGB1 activity 
in tissue injury (106, 107). However, there are still many details 
that remain to be explained. 

HMGB1 and autoimmune diseases

Pro-inflammatory and immune-stimulatory function of 
HMGB1 indicates its association with autoimmune diseases, e.g. 
rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE). 
HMGB1 levels have been found to be elevated in animal models of 
experimental arthritis (113) and in synovial fl uid of patients with 
RA, where levels adequate to promote maturation of dendritic 
cells have been detected (78, 88, 115, 116). In contrast to synovial 
fl uid, HMGB1 levels had no tendency to be elevated in serum or 
plasma of patients with RA. This fi nding was most likely caused 
by interaction of HMGB1 with serum components, which resulted 
in creation of complexes that restrain HMGB1 to be detected by 
ELISA (114). Complexes consist of HMGB1 and IgG class anti-
HMGB1 antibodies, high levels of which have been detected in 
patients with RA (117).

SLE is another autoimmune disease, in which HMGB1 is im-
plicated. E. Voll with his colleagues (118) suggested a model of 
immunopathogenesis of SLE, in which impaired phagocytosis of 
dead cells in patients with SLE (119, 120) was accompanied by 
secondary necrosis of apoptotic cells. This process leads to the 
release of HMGB1 in complexes with nucleosomes (HMGB1 is 
tightly bound to the chromatin of apoptotic cells). These com-
plexes are later able to activate dendritic cells and macrophages 
and consequently the immunological tolerance to nucleosomes 
and dsDNA is disrupted.

HMGB1 in cancer and metastatic processes

HMGB1 has been revealed to regulate transcription of a few 
genes that contribute to growth and spread of tumours, e.g. TNF, 
BRCA or E-selectin (121–123). Also, HMGB1/RAGE-signalling 
has been found to be implicated in various cancer diseases (33) like 
colon cancer (124, 125) or prostate cancer (126). Lately, HMGB1 
overexpression in tumour endothelial cells has been suggested to be 
associated with pro-angiogenic and metastatic potential of tumour 
mass (127). Furthermore, high levels of HMGB1 were accompa-
nied with low differentiation of tumour cells (128, 129). Recent 
studies revealed paradoxical dual effect of HMGB1: in addition 
to its negative contribution in tumour neo-angiogenesis it also 
triggered protective anti-neoplastic T-cell responses (130). These 
fi ndings support the theory that HMGB1 plays an important role in 
tumour growth and metastatic process. Therefore, further investi-
gation may offer an important target in therapy of cancer diseases.

Therapeutic approach

There are few approaches in blockage of pathological activi-
ties of HMGB1 protein. The variety of antibodies have been used 
to restrain or reduce cytokine function of HMGB1 (132). Beside 
these biological agents there is another group – the cytokine-re-
lease inhibitory drugs (CRIDs) – that consists of small-molecule 
compounds like ethyl pyruvate, cholinergic agonists – nicotine 
and acetylcholine, stearoyl lysophosphatidylcholine and steroid-
like pigment tanshinone IIA. These are able to react directly with 
HMGB1 and thus inhibit its release out of the cells, but they have 
no infl uence on individual systemic activities of HMGB1 (133–
136). Glycyrrhizin have also been revealed to inhibit cytokine 
function of extracellular HMGB1 (132, 137). It does not affect 
HMGB1 releasing, once HMGB1 has been released out of the 
cell, glycyrrhizin directly binding to HMGB1 created complexes 
with it and blocked this way the chemotactic and mitogenic ac-
tivities (24, 132, 137).

Due to pro-infl ammatory effects of HMGB1, it is important 
to talk about its inhibition. To do this, a wide range of chemical 
substances have been studied experimentally. It was found that 
HSP72, which also plays a role of alarmin by itself, could inter-
estingly inhibit releasing of HMGB1. Original studies revealed 
that heat shock in macrophages, which were previously stimu-
lated by LPS, could inhibit HMGB1 releasing (36). Furthermore, 
HSP72 over-expression resulted in inhibited HMGB1 releasing 
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from LPS-, TNF-, or oxidative stress-stimulated macrophages. 
The intracellular cooperation between HMGB1 and HSP72 was 
likely the reason for this inhibition (37, 38). 

Also endogenous neuropeptides, vasoactive intestinal peptide 
and urocortin were revealed to decrease levels of HMGB1 and 
thus to increase survival when administered in animal model of 
lethal sepsis (131, 103).
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