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Signal transduction pathways participating in homeostasis and malignant 
transformation of the intestinal tissue
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Intestinal homeostasis is a complex and tightly regulated process governed by a variety of signalling pathways that balance 
cell proliferation and differentiation. As revealed by extensive use of defined mouse models, perturbations within the signal-
ling circuitry trigger initial expansion of premalignant cells. In this review, we attempt to summarise recent advances in the 
knowledge of the cellular signalling mechanisms that drive tumorigenesis in the human and mouse intestine.
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Carcinoma of colon and rectum [colorectal cancer (CRC)] 
represents the third most common human malignancy world-
wide. It is estimated that more than one million patients are 
clinically diagnosed each year; up to one third of the cases 
constitute metastatic settings resulting in a disease-related 
mortality rate exceeding 30% [1]. Development of colorectal 
neoplasia is characterised by progression through histologically 
defined stages that include hyperplastic and dysplastic lesions,
adenoma and adenocarcinoma [2]. This stepwise evolvement
towards more advanced stages is driven by genomic alterations 
and epigenetic changes. Colorectal cancers are characterised 

by a complex genomic “landscape”; individual tumors harbour 
nine rearranged loci on average [3] and a median of 76 non-si-
lent mutations [4]. However, only a fraction of these changes is 
considered to be causative in tumor initiation and progression. 
For example, several recent studies based on high-throughput 
sequencing of tumor DNA indicate that only a small portion 
of mutations are “driver” mutations affecting genes essential
for tumor development [4, 5]. Nevertheless, the contributions 
of seemingly harmless “passenger” mutations should not be 
underestimated as these can substantially underpin the known 
tumorigenic pathways [6].

The single-layer epithelia of the small intestine and colon
represent the most rapidly self-renewing adult tissue that 
completely regenerates approximately every five days [7, 8].
The long-lived stem cells located at the bottom positions
of microscopic invaginations called crypts feed an upward 
compartment of transit-amplifying cells. On migrating up, 
cells terminally differentiate towards secretory (goblet and
enteroendocrine cells) or absorptive (enterocytes) lineages 
that fulfil physiological roles of the tissue. When the differen-
tiated cells arrive at the top of the villus – villi are finger-like
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projections of epithelium found only in the small intestine 
– or to the luminal surface of the large intestine, they undergo 
apoptosis and are shed to the intestinal lumen. Paneth cells of 
the small intestine are the only exception to this scheme. These
antibacterial agent-producing cells stay at the crypt base where 
they persist for approximately three to six weeks. In addition, 
M-cells [9], brush cells [10] and tuft cells [11] represent further
minor mucosal populations.

Two types of intestinal stem cells have been described 
based on their markers and location in the crypt. Fast-cycling 
crypt base columnar (CBC) stem cells are found interspersed 
among the Paneth cells and are positive for leucine-rich-re-
peat containing G-protein coupled receptor (Lgr) 5 [12]. The
intestine also contains slowly dividing stem cells that reside 
several cell diameters from the bottom of the crypt. These

cells express polycomb group protein Bmi1 and represent the 
reserve stem cell population [13, 14]. The niche for the stem
cells is possibly constituted by pericryptal myofibroblasts
closely lining the crypt base basal lamina [15]. Recently, Sato 
and colleagues reported that the tissue niche for CBC cells 
is generated mainly by Paneth cells [16]. However, since the 
Lgr5-positive CBC cells retain their proliferative and clono-
genic capacity even upon complete ablation of Paneth cells, 
the contribution of Paneth cells to the stem cell niche remains 
questionable [17].

The proper maintenance of epithelial architecture is
controlled by various signalling pathways that regulate the 
balance between the opposing processes of proliferation 
and differentiation [18]. Importantly, the majority of these
pathways is deregulated in CRC, including Wnt/β-catenin, 

Figure 1. Architecture of the small intestine epithelium and pathways governing its fate
A population of actively cycling, crypt base columnar (CBC) stem cells positive for Lgr5 resides at the bottom of the crypt intermingled with Paneth 
cells. In contrast, more quiescent stem cells expressing Bmi1 are present above the Paneth cells at the +4 position from the crypt base. Cell divisions in 
the CBC compartment give rise to transit-amplifying (i.e. committed progenitor) cells that terminally differentiate towards all intestinal lineages as they
move up the villus (arrow). Once reaching its top, the cells undergo apoptosis and are shed to the intestinal lumen. The only exceptions are long-lived
postmitotic Paneth cells which stay at the bottom of the crypt. The proper homeostasis of the intestinal epithelium is regulated by an interconnected
network of principal signalling pathways that govern the balance between proliferation and lineage specification. Synergism of the Wnt and Notch
pathways sustains undifferentiated and proliferative stem and progenitor cells; moreover, both cascades are essential for adopting a specific lineage
commitment. A descending Wnt signal generates an opposing gradient of repulsive EphB/ephrin-B interactions that facilitate spatial segregation of 
distinct cellular compartments within the crypt. Paracrine Hedgehog and BMP signalling in the upper part of the crypt and on the villus promote dif-
ferentiation while restraining cell proliferation. The pro-differentiation activity of the BMP pathway is, at the bottom of the crypt, locally counteracted
by secreted mesenchyme-derived BMP antagonists. Notably, the amplitude of mitotic signalling downstream of EGF is, at the crypt base, suppressed 
to restrict the expansion of the stem cell compartment.
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Hedgehog and Notch signalling, the ephrin type-B recep-
tor (EphB)/ephrin-B cell communication system, the bone 
morphogenetic protein (BMP) signal transduction pathway 
and signalling downstream of the epidermal growth factor 
receptor [(EGFR); Figure 1]. Here, we present recent findings
regarding the role of these principal pathways in both the 
healthy or diseased gut tissue. Moreover, particular types of 
CRC, both sporadic and hereditary, can be recapitulated in 
genetically engineered mice [19]. Employment of the mouse 
models brings new insights about the signalling mechanisms 
functioning in the gut tissue and in addition provides valu-
able clues for the establishment of stratification criteria for
patients with CRC [20].

Wnt/β-catenin and EphB/ephrin-B signalling. Wnt 
proteins are secreted ligands that bind to the Wnt receptor 
complex composed of a seven-span transmembrane receptor 
of the Frizzled (Fz) family and a lipoprotein-related co-recep-
tor (Lrp5/6). The central feature of canonical Wnt signalling is
the post-transcriptional control of β-catenin protein stability 
[21]. In the absence of a Wnt ligand, the intracellular level 
of β-catenin is kept constantly low due to the activity of its 
degradation complex, consisting of scaffolding proteins axis
inhibition protein (Axin) and adenomatous polyposis coli 
(Apc), and kinases casein kinase 1 alpha (Ck1α) and glycogen 
synthase kinase-3 beta (Gsk-3β). The recruited β-catenin is
phosphorylated and subsequently destroyed in the ubiquitin-
proteasome pathway. Wnt signalling leads to the membrane 
sequestration of Axin followed by disruption of the β-catenin 
degradation complex and the accumulation of the protein 
in the cytoplasm and nucleus. Nuclear β-catenin associates 
with transcription factors of the lymphoid enhancer-binding 
(Lef)/T-cell factor (Tcf) family (afterwards referred to as Tcfs).
These high mobility group (HMG) box-containing effec-
tors of the Wnt pathway function in an unstimulated cell as 
transcriptional repressors. However, since β-catenin contains 
a strong transactivation domain, Tcf/β-catenin heterocom-
plexes activate transcription of specific Wnt-responsive genes
such c-Myc [22], Cyclin D1 [23, 24], CD44 [25] and Axin2 [26].
For a more comprehensive survey on Wnt signalling, refer 
to the Wnt signalling home page at http://www.stanford.edu 
/group/nusselab/cgi-bin/wnt/.

In the adult mouse intestine, crypt-restricted expression 
of Wnt3, Wnt6, Wnt9b and their cognate receptor Fz5 was 
observed, indicating that proper epithelial turnover is main-
tained by a descending gradient of Wnt signalling along the 
crypt-villus axis [27, 28]. The activity of the Wnt pathway
is essential for preservation of undifferentiated and prolif-
erative stem and progenitor cells as revealed by disruption or 
conditional ablation of the genes encoding HMG box family 
member Tcf4 [29, 30, 31] or β-catenin [32, 33]. Importantly, 
sustainment of the progenitor phenotype is dependent on the 
direct repression of cell cycle inhibitor p21Cip1/Waf1 which is 
mediated by the Tcf4 target gene c-Myc [34]. Inhibition of the 
pathway results in a robust G1 arrest and consequently halts 
cell proliferation [35]. A similar phenotype was observed upon 

blocking the signalling via ectopic expression of dickkopf 1 
(Dkk1), a secreted Wnt inhibitor [36, 37].

The pathway controls self-renewal of CBC stem cells via
activity of its responsive genes encoding the basic helix-loop-
helix (bHLH) transcription factor achaete-scute complex 
homolog 2 (Ascl2) [38] and Lgr5. Targeted deletion of either 
Ascl2 [38] or Lgr5 [39] leads to the elimination of CBC stem 
cells. In contrast to CBC cells, Bmi1-positive intestinal stem 
cells are Wnt signalling independent [14]. Interestingly, Lgr5 
and its related receptors Lgr4 and Lgr6 bind extracellular Wnt 
signalling agonists R-Spondins (RSpos) and association of 
RSpos with the receptors mediates enhancement of the Wnt 
signal [39, 40, 41]. The Wnt signalling pathway in CBC cells
is possibly activated by the Wnt3 ligand secreted from neigh-
bouring Paneth cells [42]. Nevertheless, as described above, 
CBC cells maintain their “stemness” even in the absence of 
Paneth cells. Therefore, the cellular source of the Wnt signal
in the intestinal crypts remains unknown. Some controversies 
also prevail about a possible role of Ascl2 and Lgr5 in gut 
tumorigenesis. While Ascl2 expression in transgenic mice 
induced crypt hyperplasia, ectopic Ascl2 did not promote in-
testinal neoplasia [38, 43]. In addition, several research teams 
described elevated expression of ASCL2 or LGR5 in human 
sporadic cancer [44, 45, 46, 47]; however, these observations 
have not been confirmed by parallel studies [48, 49].

Injection of human RSPO1 into mice induced a rapid on-
set of proliferation of crypt cells [50]. Similarly, homozygous 
inactivation of the Apc gene in the mouse intestine drives 
hyperproliferation of the crypt compartments followed 
by formation of adenomatous intestinal polyps displaying 
increased levels of β-catenin [51]. In humans, germinal mu-
tations of the APC gene are causative in development of the 
Familial adenomatous polyposis (FAP) syndrome, an auto-
somal dominant disorder characterised by multiple colorectal 
polyps and a variety of extraintestinal manifestations [52]. 
Moreover, inactivating mutations of both alleles of APC are 
detected in approximately one third of all sporadic CRC cases 
[53]. Mutations inactivating other negative regulators of Wnt 
signalling, AXIN1 or AXIN2, are rare and observed in CRC 
cases displaying microsatellite instability (MSI) [54]. Similarly 
to AXIN1/2-deficient neoplasia, oncogenic mutations in the
β-CATENIN gene have low frequency and are found mainly 
in tumors with MSI [53]. These mutations affect the regions
encoding regulatory N-terminal serine or threonine residues 
phosphorylated in the wild-type protein by CK1α or GSK-3β 
kinases. Consequently, a mutated form of β-catenin accumu-
lates in the affected cell and triggers aberrant Wnt signalling
[55]. The oncogenic activation of β-catenin was successfully
recapitulated in mice by cre-mediated “in-frame” deletion of 
exon 3 (encoding regulatory serines and threonines) of the 
β-catenin gene in the intestine [56, 57]. All this data supports 
the notion that non-physiological Wnt signalling is associated 
with cancer development. Unexpectedly, one recent study 
indicated that silencing of the Wnt-responsive genes such as 
ASCL2, AXIN2 and LGR5 by selective promoter methylation 
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identifies patients with a risk of recurrence [58]. Importantly, 
re-expression of these genes was associated with reduced tu-
mor growth in vitro and in vivo. Therefore, the activity status
of the selected Wnt signalling target genes can be used as one 
of the patient stratification criteria.

Wnt signalling is also implicated in the proper commitment 
and morphological maturation of the Paneth cell lineage. 
A homeostatic threshold of active Wnt/β-catenin signalling 
is required for terminal differentiation towards the Paneth
cells fate, as this is otherwise severely impaired [27, 59]. In 
the lower parts of the intestinal crypts, high levels of Wnt 
signalling induce expression of the cell-sorting receptors 
EphB2 and EphB3 with concomitant transcriptional repres-
sion of their repulsive ephrin-B1 ligand [60]. As progenitor 
cells leave the crypt bottom, the decline in Wnt cues results in 
the de-repression of the repulsive ephrin-B1 ligand [60, 61]. 
The decrease of Wnt signalling along the crypt-villus axis is
therefore involved not only in proper epithelial turnover but 
also controls correct positioning of cells by opposing gradient 
of transmembrane EphB2/B3-ephrin-B1 signalling. Paneth 
cells that exclusively express EphB3 escape the upward flow
and drift towards the crypt bottom [60]. The importance of
EphB3 in the positioning of Paneth cells was gleaned from 
studies using EphB3 null mice. In the EphB3-/- small intestine, 
Paneth cells do not follow their correct migratory path but are 
scattered along the villi [60]. A similar phenotype was observed 
in Fz5-/- mice [27] or upon conditional deletion of the gene 
encoding ephrin-B1 ligand [62]. Paneth cells fail to correctly 
specify upon conditional ablation of the Wnt target genes sex 
determining region Y (SRY)-box 9 (Sox9) [63, 64] and SAM 
pointed domain containing the ets transcription factor (Spdef) 
[65]. Expectedly, aberrant Wnt signalling induces de novo pro-
duction of Paneth cells [27, 59, 66]. Inappropriate expression 
of Paneth cell-specific genes [e.g. matrix metalloproteinase 7
(Mmp7), EphB3] was frequently observed in gastrointestinal 
cancer with aberrant Wnt signalling [27, 67]. Interestingly, the 
increased expression of EphB is often silenced during cancer-
ous growth possibly to overcome spatial restraints imposed by 
surrounding healthy tissue expressing ephrin-B1 [62, 68]. In 
general, abrogation of EphB-ephrin-B1 interactions in CRC 
coincides with acquisition of the malignant phenotype [62] 
and the degree of EPHB2 down regulation parallels a poor 
prognosis [69, 70].

Hedgehog signalling. The twelve-pass transmembrane pro-
teins patched (Ptch) 1 and 2 are receptors for secreted ligands 
of the Hedgehog (Hh) family which consists of three identified
members in vertebrates designated as sonic hedgehog (Shh), 
Indian hedgehog (Ihh), and desert hedgehog (Dhh). In its “off-
state”, Ptch prevents the entry of an otherwise constitutively 
active receptor smoothened (Smo) to the primary cilium. Un-
der these circumstances, the zinc-finger transcription factors
glioma-associated oncogene (Gli) 2 and Gli3, major effectors
of the Hedgehog pathway, are cleaved by proteasome into re-
pressive forms. Conversely, upon Hh binding, de-repression of 
Smo results in a cascade of downstream events that ultimately 

lead to Gli-dependent transcriptional activation of Hedgehog 
signalling target genes (reviewed in [71]).

Hedgehog signalling in gut homeostasis mediates reciprocal 
cross-talk between the epithelium and the adjacent mesen-
chyme. Shh and Ihh ligands secreted by transit-amplifying cells 
interact with Ptch receptors localised on mesenchymal cells 
to induce Bmp production [72, 73]. Paracrine Bmp signalling 
promotes enterocyte commitment and inhibits formation of 
additional crypts [72, 74]. The constitutive activation of the
Hedgehog pathway – upon deletion of the Ptch1 gene – leads 
to increased Bmp signalling with concomitant depletion of 
the proliferating progenitors [74]. In contrast, reduction in 
the levels of Hedgehog signalling enhances the Wnt pathway 
activity resulting in impaired intestinal differentiation and
crypt hyperplasia [72, 75, 76]. Additionally, the Hedgehog 
pathway controls proper maintenance of intestinal smooth 
muscle populations [74, 76, 77].

Several types of sporadic and hereditary cancers are de-
pendent on Hedgehog signalling and/or carry genetic changes 
in the components of the Hedgehog pathway. SHH and IHH 
expression is significantly increased in a subset of human CRC
and CRC-derived cell lines [78, 79, 80]; however, the contribu-
tion of the pathway to CRC is somewhat controversial [81]. In 
concordance with the role for Hedgehog signalling in healthy 
tissue, Hh proteins produced in tumor cells likely activate the 
signalling in the tumor-associated stroma. This was confirmed
in experiments utilising human tumor xenografts. Yauch and
colleagues showed that inhibition of the pathway by either 
small molecule inhibitors of Smo, neutralising anti-Hh anti-
body, or genetic ablation of the Smo gene substantially reduced 
size of the tumor implants growing in mice [80]. Contrary to 
these results, Varnat and colleagues described ligand-driven 
autocrine Hedgehog signalling loops promoting the growth 
of tumor cells [79]. Despite these rather contradictory data, 
inhibition of the Hedgehog pathway is considered to be prom-
ising for treatment of Hh-dependent tumors [81].

Notch signalling. The mammalian Notch family comprises
four single transmembrane Notch1-4 receptors and five trans-
membrane Delta/Serrate/Lag2 (DSL) ligands, jagged (Jag) 1, 
Jag2, delta-like (Dll) 1, Dll3 and Dll4. Ligand-receptor engage-
ment on neighbouring cells triggers a cascade of proteolytic 
cleavage of the Notch receptor liberating its notch intracellular 
domain (NICD). NICD then shuttles to the nucleus, where 
it binds to the recombination signal binding protein for im-
munoglobulin kappa J region (RBPj) core transcription factor. 
Heterocomplex NICD-RBPj activates expression of target 
genes, such as bHLH transcription repressors achaete-scute 
and hairy and enhancer of split (Hes) [82].

The Notch pathway governs the intestinal binary cell fate
decision between the secretory versus absorptive cell lineages. 
Progenitor cells receiving a Notch signal are stimulated to 
express Hes1, which in turn antagonises the effector bHLH
transcriptional factor atonal homolog 1 (Atoh1, also called 
Math1) [83]. Subsequent differentiation towards enterocytes
is under the control of the Hes1/E74-like factor 3 (Elf3)/trans-
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forming growth factor beta (TGFβ) signalling cascade [84, 85]. 
Consistently, blocking the pathway using pharmacological 
inhibition of the Notch receptor-cleaving protease γ-secretase 
[86], genetic ablation of RBPj [86], Hes1 [83], Elf3 [87] or si-
multaneous deletion of both Notch1 and Notch2 genes [88] is 
phenotypically associated with an excess of secretory cells at 
the expense of enterocytes. Production of secretory lineages 
from the cells expressing Notch ligands depends on the func-
tion of Atoh1, since inactivation of the Atoh1 gene results in 
depletion of goblet, Paneth and enteroendocrine cells [89, 90, 
91]. Moreover, cell commitment to the secretory lineages is 
blocked in transgenic mice expressing the intestine-specific
NICD protein [92]. Of note, Notch activity promotes terminal 
differentiation of goblet cells via suppression of zinc-finger
transcription factor Krűppel-like factor 4 (Klf4) [93, 94].

Although the contribution of Paneth cells to the niche for 
CBC cells remains to be confirmed (see previous text), the in-
volvement of Notch signalling in the maintenance of intestinal 
stem cells has been well-established. In the mouse, Notch1 and 
Notch2 represent the predominant receptors produced on the 
surface of CBC cells [95], with their ligands Dll1 and Dll4 being 
expressed on neighbouring Paneth cells [16]. Furthermore, 
sustained proliferation of crypt cells is mediated through 
direct transcriptional repression of cyclin-dependent kinase 
(CDK) inhibitors p27Kip1 and p57Kip2 by the Notch-responsive 
gene Hes1 [88]. In agreement with these data, Dll1/4 double 
deficient mice displayed premature differentiation of stem cells
[96]. In CRC with perturbed Wnt signalling, β-catenin-driven 
aberrant expression of the Notch ligand JAG1 was observed, 
indicating synergism of both pathways. It has been proposed 
that while Wnt signalling enhances proliferation, the Notch-
dependent contribution to tumorigenesis includes a block of 
differentiation and promotion of vasculogenesis [97].

The BMP pathway. BMPs belong to the TGFβ superfamily 
of extracellular signalling molecules. Upon binding of a BMP 
ligand to a membrane heterocomplex of BMP type I (Bmpr1) 
and BMP type II (Bmpr2) receptor, the signal is further 
transduced through receptor-mediated phosphorylation of 
Smad1/5/8 transcription factors [alternatively named, moth-
ers against decapentaplegic homolog (Madh)]. Phosphorylated 
Smads associate with the core mediator Smad4 and enter the 
nucleus to regulate expression of target genes such as the Msx 
homeobox genes or proto-oncogene JunB [98]. Extracellular 
antagonists, such as noggin, follistatin or gremlin, sequester 
Bmp ligands, thereby abrogating their interaction with the 
receptors [99].

In the intestine, the BMP pathway is implicated in re-
straining cell proliferation. The signalling is activated in the
epithelial cells by BMPs produced in the mesenchyme [15, 
100]. Bmp signalling is restricted to epithelial compartments 
containing differentiated cells as the activity of the pathway
in the crypt is locally counteracted by expression of the Bmp 
antagonists [15, 101, 102, 103]. Inhibition of the Bmp pathway 
in the mouse intestine using transgenic expression of noggin 
[104] or conditional ablation of the Bmpr1a receptor [101] 

was associated with development of hamartomatous polyps 
morphologically corresponding to lesions found in the hu-
man Juvenile polyposis syndrome [101]. The formation of
benign intestinal hamartomas represents an initiator event 
in carcinoma development in affected individuals carrying
inactivating mutations in the BMPR1A or SMAD4 genes [105]. 
Interestingly, in sporadic CRC, epigenetic silencing of BMPR2 
or deletion of SMAD4 promotes transition from adenoma to 
carcinoma, i.e. a late event in the tumor progression cascade 
[99, 106]. In the mouse, conditional inactivation of Bmpr2 
in stromal cells of the colon initiated epithelial hyperplasia 
and formation of hamartomatous polyps. Strikingly, the 
polyps formed in these mutant animals showed increased 
proliferation not only of epithelial but also mesenchymal cells, 
especially myofibroblasts [107]. 

EGF signalling. Binding of EGF or related ligands to their 
cognate receptors, members of the ErbB/HER/Neu family of 
receptor tyrosine kinases, activates several major cellular pro-
survival and proliferation-inducing pathways that include the 
Ras-Raf-mitogen activated protein kinase (MAPK) cascade, 
phosphatidylinositol 3-kinase (PI3K)/Akt, and phospholipase 
C pathways [108]. EGF signalling is required for proliferation 
and maintenance of the intestinal CBC stem cell compartments 
[16]; however, its output is tightly controlled by leucine-rich 
repeats and immunoglobulin-like domains (Lrig) 1 produced 
in the stem cell niche [109, 110].

As many as 30% of sporadic CRC cases carry mutations 
in the KRAS gene that compromise inactivating hydrolysis 
of Ras-bound GTP to GDP, thus rendering the mitogenic 
downstream signalling constitutively activated [53]. Onco-
genic Kras is considered to be involved in later stages of CRC, 
where it synergises with the changes initiated by the loss of 
Apc [111, 112]. This stage-specific function of Kras in CRC
was supported by studies in the mouse showing that oncogenic 
activation of Kras induced premalignant epithelial hyperplasia 
[113] which, however, did not progress to malignancy [114]. 
Interestingly, perturbed Wnt signalling promotes stabilisation 
of the Ras protein and, consequently, stimulates activity of the 
MAPK pathway [115].

Non-physiological activation of the EGF cascade may also 
occur through changes affecting EGFR, PI3K, or RAS down-
stream effector BRAF (full name: v-raf murine sarcoma viral 
oncogene homolog B1) [116]. EGFR itself can be hyperactivated 
by overexpression and mutations in the kinase domain or by 
gene amplification [117]. The p110 catalytic subunit alpha of
PI3K (encoded by the PIK3CA gene) is found mutated in 15-
18 % of CRC [118]; however, the clinical relevance of distinct 
mutations found in PIK3CA remains to be elucidated [119]. 
Additionally, loss of phosphatase and tensin homolog (PTEN), 
a tumor suppressor gene encoding dual phosphatise regulat-
ing the levels of phosphatodylinositol-3,4,5-trisphosphate, 
is involved in the process of bowel tumorigenesis. Notably, 
germline mutations in PTEN underlie the Cowden syndrome, 
a disease characterised by development of hamartomatous 
polyps [120]. A phenotype similar to the Cowden syndrome 
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was recapitulated in Pten heterozygous mice [121], support-
ing the role of PTEN in human cancer. In sporadic CRC, loss 
of heterozygosity (LOH) in the PTEN locus is common but 
presumably represents an additional “hit” during later stages of 
malignant progression [122]. Approximately 12-19% of color-
ectal carcinomas harbour an oncogenic mutation activating 
kinase BRAF [123, 124]. These mutations occur in a mutually
exclusive manner with activation of KRAS [125]. Strikingly, 
whereas BRAF changes are associated with colorectal cancers 
with a so-called serrated morphology displaying CpG island 
methylator phenotype (CIMP) or MSI, KRAS mutations are 
linked predominantly to tumors characterised by chromosom-
al instability (CIN) [126]. The “druggable” properties of EGFR
led to clinical usage of EGFR antagonists, e.g. receptor-specific
monoclonal antibodies cetuximab and panitumumab or small 
molecule tyrosine kinase inhibitors gefitinib and erlotinib
[127]. Moreover, the presence of mutant KRAS or BRAF has 
been established as a predictive marker of “non-response” to 
EGFR-targeting treatment [128].

Other signalisations involved in intestinal homeostasis 
and CRC development. Several other cellular signalling sys-
tems have been demonstrated to regulate proper maintenance 
of the intestinal epithelium. Abrogation of the interaction 
between epithelial platelet-derived growth factor (Pdgf) lig-
and A with its cognate mesenchymal Pdgf receptors (Pdgfr) 
results in misshaping of villi and loss of the pericryptal stroma 
[129]. Furthermore, liver kinase B1 (Lkb1) [also known as 
serine/threonine kinase (Stk) 11] regulates epithelial cell 
polarity and metabolism [130, 131]. LKB1 acts as a tumor 
suppressor and its germline mutations cause the Peutz-Jeghers 
syndrome, a predominantly inherited disease characterised by 
development of gastrointestinal hamartomatous polyps [132]. 
The Peutz-Jeghers syndrome is phenocopied in Lkb+/- mice 
[133]. Interestingly, polyp development can also be initiated 
by a mesenchymal-specific deletion of the Lkb1 gene [134]. In 
summary, results obtained in mouse models of the Juvenile 
polyposis, Cowden and Peutz-Jeghers syndromes support 
the notion that the initiating event in the development of 
some CRC likely occurs in mesenchymal tissue adjacent to 
the epithelia.

Conclusion

A wealth of genetic studies have provided invaluable in-
sights into the signalling networks that govern homeostasis of 
the gastrointestinal tissue and are at the same time “hijacked” 
to drive malignant conversion. A better understanding of the 
relationships and interconnectivity between tissue homeo-
static signalling and distinct aspects of tumor initiation and 
progression can lead to the discovery of potential targets 
for therapeutic intervention. Concomitantly, mouse model 
systems can substantially contribute to the establishment of 
prognostic or predictive biomarkers that, upon translation 
and validation in human medicine, can be implemented to 
individualise anti-cancer treatment. 
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