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There is no curative therapy for glioblastoma multiforme (GBM) thus far. Combined therapies including surgery, fol-
lowed by concomitant irradiation and chemotherapy with the DNA alkylating agent temozolomide (TMZ), slightly improves 
patients’ survival but the prognosis remains poor. The fatal nature of glioblastoma is caused by tumor-initiating glioblastoma
cells. The tumor tropic ability of adult mesenchymal stem cells offers the attractive possibility to use these cells as a vehicle
to deliver therapeutic agents to the site of the tumor. In preclinical studies using animal models, mesenchymal stem cells 
engineered to express suicide genes were shown to elicit a significant antitumor response against various tumors including
glioblastoma. This review summarizes the current state of knowledge about stem cell directed glioblastoma therapy. Results
obtained in a preclinical study using mesenchymal stem cells engineered to express cytosine deaminase provided evidence 
that stem cell based gene therapy might also attack glioblastoma stem cells and therefore be curative. In addition to stem cell 
directed prodrug gene therapies, other immunotherapeutic modalities using mesenchymal stem cells are discussed as well. 
Encouraging results of preclinical studies of stem cell based gene therapy for glioblastoma support the argument to begin 
clinical studies.
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Malignant astrocytic gliomas, including the most common 
subtype, glioblastoma multiforme (GBM), are the most fre-
quent and lethal intracranial tumors. The median survival for
patients diagnosed with a WHO grade III glioma (anaplastic 
astrocytoma, anaplastic oligoastrocytoma and anaplastic 
oligodendroglioma) and grade IV glioma (glioblastoma multi-
forme) is only 8 to 15 months [1]. The prognosis for recurrent
malignant glioma with present therapies is poor; with a median 
survival of 3 to 9 months. Generally, glioblastoma is usually 
fatal within a year of diagnosis. 

The current standard glioblastoma therapy includes sur-
gery followed by concomitant radiation and chemotherapy 
with the DNA alkylating agent temozolomide (TMZ). This
is at present the best chemoradiotherapy approach providing 
modest improvement of the overall survival for a subset of 

TMZ-sensitive glioblastoma patients. The presence of O6-
methylguanine-DNA methyltransferase (MGMT) which 
repairs the most cytotoxic lesions generated by TMZ is one 
of the reasons for therapeutic failure in glioblastoma pa-
tients. Resistance to TMZ is also caused by the base excision 
repair enzyme alkylpurine-DNA-N-glycosylase (APNG), 
which repairs the cytotoxic lesions N3-methyladenine and 
N7-methylguanine [4]. Furthermore it was reported that 
in tissue culture experiments normal neural stem/progeni-
tors and glioma stem-like cells have differential sensitivity
to chemotherapy. The commonly-used chemotherapy drug
TMZ affects normal stem cells more than tumor-related
stem cells [5].

Despite the current combined therapy for glioblastoma that 
slightly improves survival for patients with newly-diagnosed 
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Figure 1. Selection of glioblastoma stem cells after radiotherapy and cytotoxic therapy. After short latent period relapsed resistant tumor progresses.

glioblastoma, the prognosis remains poor, with a median 
survival time of 12 to 15 months. It is believed that the reason 
for this poor outcome is the tumor’s polyclonal composition 
– clones of dividing tumor cells and few tumor initiating 
cells. Radiotherapy and chemotherapy kill dividing cells, 
but slowly dividing cancer stem cells remain unaffected. The
cytotoxic therapy selects for the more aggressive cancer stem 
cells. Consequently, there is frequent relapse following cyto-
toxic therapies, with tumors resistant to further conventional 
therapy (Figure 1).

GBM’s biological properties such as resistance to chemo-
therapy and radiotherapy, its infiltrative nature, proliferative
behavior, and progressive character, are caused by the pres-
ence of glioblastoma stem cells (GSCs). GSCs share many of 
the properties of normal stem cells, such as the ability to self 
renew, resistance to toxic compounds, asymmetric cell divi-
sion, etc. [for a review see 2]. It has also been postulated that 
GSCs are more resistant to the hypoxic and acidotic tumor 
microenvironment [3].

There is so far no curative therapy for GBM. New thera-
peutic approaches which are able to attack both tumor cells 
and tumor initiating cells holds hope for curative treatment of 
aggressive tumors like glioblastoma. Previously, two prodrug 
gene therapy systems using virus for transgene transfer have 
been studied: cytosine deaminase /5-FC system and Herpes 
simplex virus thymidine kinase (HSVtk)/ganciclovir. The
first clinical trials for the treatment of malignant glioma were
conducted in the 1990s with Herpes simplex virus thymidine 
kinase in combination with ganciclovir [6]. The potential of
these classic gene therapies for glioma treatment was augment-
ed when the tumor tropic property of mesenchymal stem cells 
(MSC) was discovered. The tumor tropic property of MSCs is
the basis for therapies using MSCs as a vehicle for delivery of 
the therapeutic agent to the site of neoplasm. The physiological
role of mesenchymal stem cells is to repair damaged and used 
tissue in the organisms. MSCs possess the ability to migrate 
to the site of injury. The tumor, being a “wound that does not
heal” [8], attracts MSCs. The MSCs home in the tumor and,
together with other cells, form tumor stroma. MSCs from 
bone marrow or from adipose tissue have tumor migratory 

ability and have been shown to share some characteristics with 
pericytes [9, 10]. This property might facilitate the migration
of MSCs to highly vascularized glioblastomas. We recently 
reviewed the molecular mechanisms of MSCs’ migration and 
homing to tumors [11].

Tumor targeting therapy, driven by mesenchymal (stro-
mal) stem cells brought hope for a therapeutic modality, 
which would kill both tumor cells and glioblastoma stem 
cells. Aboody et al. [7] summarized the first experimental
evidence that neural and mesenchymal stem cells can deliver 
therapeutic genes to elicit a significant antitumor response
in animal models of intracranial glioma, medulloblastoma, 
melanoma brain metastasis, disseminated neuroblastoma 
and breast cancer lung metastasis. Most studies reported 
a reduction in tumor volume and an increased survival of 
tumor-bearing animals. Complete cures have also been 
achieved in mice bearing disseminated neuroblastoma tu-
mors. Disease-free survival for more than one year in 90% 
of animals was observed. 

Cytosine deaminase/5-FC system. Prodrug cancer gene 
therapy driven by MSCs might be one of several treatments 
with potential for curative therapy of brain tumors. It rep-
resents an attractive tool for activating the prodrug directly 
within the tumor mass, thus avoiding systemic toxicity. In ad-
dition, MSCs lack major histocompatibility complex MHC-II 
and show only minimal MHC-I expression [12-14]. Thanks
to their immunosuppressive properties, allogeneic MSCs can 
substitute for autologous stem cells. Mesenchymal stem cells 
possess many attributes that support their use as a tumor 
specific therapeutic vehicle in clinical practice. They are
relatively easy to isolate by adherence to plastic and have 
enormous expansion potential in tissue culture. Human 
MSCs reside in many tissues in small numbers but most 
isolation is performed from the bone marrow (BM-MSCs) 
or from adipose tissue (AT-MSCs). BM-MSCs and AT-MSCs 
are very similar in their ability to migrate toward sites of tis-
sue injury as well as in tumor tropic ability. Previously, we 
have shown that human adipose tissue-derived mesenchy-
mal stem cells can be transduced with yeast fusion cytosine 
deaminase: uracil phosphoribosyltransferase, the gene which 
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can convert non-toxic 5-fluorocytosine (5-FC) to effective
cytotoxic compound 5-fluorouracil (5-FU). Such cells des-
ignated CDy-AT-MSCs are called therapeutic stem cells. In 
several papers, we proved the ability of AT-MSCs engineered 
to express cytosine deaminase to inhibit significantly growth
of human colon cancer xenografts [15], melanoma and other
cancers [16]. In a pilot preclinical study, we observed that 
co-injections of human bone metastatic prostate cancer cells 
along with therapeutic stem cells into nude mice treated 
with 5-FC induced a complete tumor regression in a dose-
dependent manner. Furthermore, we demonstrated that the 
therapeutic stem cells were effective in significantly inhibit-
ing prostate tumor growth after intravenous administration,
a key requisite for any clinical application [17]. We and 
others [7] are encouraged by the results of stem cell driven 
enzyme prodrug therapy experiments to treat glioblastoma 
multiforme, a tumor with fatal prognosis. Aboody et al.[7] 
demonstrated that neural stem cells (NSCs) administered 
intracranially possess extensive tropism for experimental 
glioma. Immortalized NSCs engineered to express bacterial 
cytosine deaminase have been exploited as a tumor-targeting 
strategy for glioma gene therapy. Preclinical studies accom-
plished in Abbody’s groups lead to, the first clinical study
entitled ‘‘A Pilot Feasibility Study of Oral 5-Fluorocytosine 
and Genetically-Modified Neural Stem Cells Expressing E.
Coli Cytosine Deaminase for Treatment of Recurrent High 
Grade Gliomas’’ ( http://www.clinicaltrials.gov/ct2/show/
NCT01172964?term%C4%BDstem%20cell’%20AND%20c
ancer%20%20AND%20gene&rank%C4%BD6).

Our experiments took the advantage of the fact that human 
AT-MSCs are not immunogenic in treatment of rat glioblas-
toma growing intracebroventricularly. The cell population of
C6 rat glioblastoma has been shown to be composed primarily 
of cancer stem cells [18–20]. Therapeutic experiments were
designed to simulate conditions of future clinical application 
for high-grade glioblastoma therapy by direct injections of 
therapeutic stem cells into the tumor. Results revealed that 
genetically modified therapeutic stem cells still have the tu-
mor tropism when injected to a distant intracranial site and 
effectively inhibit glioblastoma growth after 5-fluorocytosine
(5-FC) therapy. Intratumoral administration of therapeu-
tic stem cells improved the survival in a therapeutic stem 
cell dose-dependent manner. Furthermore, the repeated 
administration of therapeutic cells and continuous intracer-
ebroventricular delivery of 5-FC led to an increased number 
of animals being completely cured. Intracerebral injection of 
therapeutic stem cells and treatment with 5-FC did not show 
any detectable adverse effects [21].

Herpes simplex virus thymidine kinase/ganciclovir 
system. The system is based on the ability of Herpes simplex
virus thymidine kinase (HSV-tk) efficiently phosphorylates
prodrug ganciclovir to its monophosphate, which is further 
phospohorylated by cellular enzymes to GCV-triphosphate 
(GCV-TP). Unlike in the cytosine deaminase/5-FC system 
where 5-FU being small molecule easily passively diffuses to

cells, cytotoxic GCVtriphosphate is a large molecule. Major 
mechanism responsible for the GCV-TP transfer into neigh-
boring cells is gap junctions’ formation between the cells in 
close contact.

It has been demonstrated that AT-MSCs expressing HSVtk 
are able to exert a cytotoxic effect on human glioblastoma
cells in vitro and that formation of gap junctions is crucial 
for induction of the bystander cytotoxic effect on tumor cells
[22]. A preclinical study confirming the feasibility of this ap-
proach on glioma in vivo has been demonstrated using neural 
stem cells (NSCs) as a HSVtk-delivery vehicle [23]. However, 
MSCs transduced with HSVtk is a more feasible and practi-
cal approach for clinical application than the method using 
NSCs [24]. There are several recent reports demonstrating
the efficacy of BM-MSCs expressing HSVtk for tumor therapy
[25]. Overexpression of connexin 43 together with HSVtk was 
shown to enhance the bystander effect of ganciclovir suicide
gene therapy by restoration of gap junctions [26]. Mori et al. 
confirmed the tumor retarding effect of HSVtk-expressing
BM-MSCs on rats bearing intracranial murine gliomas [27]. 
BM-MSCs transduced with a baculoviral vector harboring 
HSVtk were recruited to tumors after systemic injection. The
strong expression of transgenes in MSCs transduced by bacu-
lovirus vectors might be an advantage over retrovirus vectors 
typically used in this system [28]. 

Stem cell driven rabbit carboxylesterase/CPT-11 system. 
Genetically modified human AT-MSCs expressing rabbit
carboxylesterase enzyme, which can efficiently convert the
prodrug CPT-11 (irinotecan-7-ethyl-10-[4-(1-piperidino)-
1-piperidino]carbonyloxycamptothecin) into the active drug 
SN-38 (7-ethyl-10-hydroxycamptothecin), were tested against 
brainstem glioma tumor which does not have response to any 
effective therapy. The transduced AT-MSCs revealed some
therapeutic potential against the rat diffuse pontine glioma
model [29].

Stem cells driven therapeutic cytokines and proapo-
topic genes. Mesenchymal stem cells can be genetically 
engineered to express therapeutic cytokines interleukin-18, 
interleukin 2 [30 – 32], and interferon gamma [33] to aug-
ment the immune response to the tumor. In vivo efficacy
animal experiments showed that intratumoral injection of 
umbilical cord blood derived MSCs engineered to express 
interleukin-12 (UCB-MSC-IL12M) significantly inhibited
tumor growth and prolonged the survival of glioma-bearing 
mice compared with control mice. Interestingly, after treat-
ment tumor-free mice were resistant to tumor re-challenge, 
which was closely associated with tumor-specific long-term
T-cell immunity [34]. 

Human bone marrow-derived mesenchymal stromal cells 
expressing proapoptotic agent S-TRAIL were shown to be 
a cellular delivery vehicle for human glioma therapy [35] or 
metastatic pancreatic carcinoma cells [36]. Recently, Kauer 
et al [37] simulating the clinical scenario of GBM treatment 
have shown that after surgical debulking of human GBM
tumors in mice, when stem cells encapsulated in biodegrad-
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able, synthetic extracellular matrix (sECM) were inoculated 
in the resection cavity, tumor regrowth was delayed. In addi-
tion, therapeutic stem cells engineered to express secretable 
apoptosis inducing ligand S-TRAIL encapsulated in sECM 
eradicated residual tumor cells, which resulted in increased 
survival.

Conclusions

Mesenchymal stem cells, engineered to express suicide 
genes, and preferentially migrating and targeted to tumor 
cells, are the most attractive candidates for stem cell driven 
cancer therapy for clinical applications. Therapeutic stem
cells must be selected for 100 percent transgene transduced 
cells to avoid potential tumor growth support from naïve 
MSCs. Their non- immunogenic nature and self-elimination
of therapeutic stem cells due to suicide gene presence is an 
advantage. Despite very promising results from experimental 
studies of glioblastoma treatment with mesenchymal stem 
cells transduced with yeast fusion cytosine deaminase: uracil 
phosphoribosyltransferase [21], it is not realistic to expect 
that patients with relapsed tumors after standard therapies
represent good candidates for successful curative glioblas-
toma therapy. However, treatment with therapeutic stem 
cells could prolong the period of remission. Considering 
the complexity of glioblastoma growth and consequences 
of standard toxic therapies (radiotherapy and concomitant 
chemotherapy) for relapsed patient, the stem cell driven 
therapy might be curative when will be used in patients 
with neurosurgical tumor extirpation. It is likely that the 
combination of stem cell directed prodrug gene therapy 
with immnostimulation via inoculation of MSCs genetically 
modified with potent cytokines or proapototic gene products
is the way to augment therapeutic MSCs effect. The efficacy
and safety of such combinations should be tested. It would be 
interesting to discover whether encapsulated mesenchymal 
stem cells transfected with tumor antigens could serve as 
a tumor vaccine in similar way to dendritic cell vaccines.
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