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Regulation of epidermal growth factor receptor signaling by plasmid-based 
MicroRNA-7 inhibits human malignant gliomas growth and metastasis in 
vivo
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MicroRNAs are endogenous, non-coding RNAs of approximately 20-22 nucleotides that regulate genes expression 
by binding to the 3’ untranslated region (UTR) of targets mRNAs and play critical roles in cancer pathways. Malig-
nant glioma is the most common and highly lethal central nervous system tumor for which little effective treatment 
is available over several decades. The purpose of this study was to explore the therapeutic potential of plasmid-based 
microRNA-7 (miR-7) for gliomas in vivo. Enhancing miR-7 levels in vitro could significantly induce cell apoptosis, and 
inhibit cell proliferation, cell migration and invasion. Western blotting analysis was performed, which indicated that 
miR-7 directly inhibited epidermal growth factor receptor (EGFR) and further antagonized the downstream protein 
kinases including ERK, Akt and Stat3. Furthermore, systemic administration of miR-7 encapsulated in cationic lipo-
some resulted in glioma xenografts growth arrest and the metastatic nodules decrease effectively in a sequence-specific 
manner. In this study, miR-7 was applied in glioma treatment for the first time in vivo. Our findings suggested that the 
plasmid-mediated gene therapy with miR-7 appeared to be a promising candidate for the development of new antitumor 
and anti-metastasis treatment for human glioma.
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Malignant glioma is the most common and lethal primary 
brain tumors in adults. The deadly nature of malignant gliomas
resides in their explosive cell proliferation, intense resistance to 
cell apoptosis and widespread infiltration throughout the brain.
Despite multimodal therapies such as surgery, radiotherapy and 
chemotherapy, the median survival of glioblastoma (GBM) is 
less than 1 year [1]. Novel therapeutic approaches are needed 
to improve long-term survival for this cancer. Recent advances 
in our understanding of the altered genes and pathways in 
malignant gliomas offer the opportunities for new therapeutic
strategy based on targeting essential molecular mechanisms.

MicroRNAs (miRNAs) are small, non-protein-coding, 
single-stranded RNAs that regulate target genes expression 
post-transcriptionally in normal tissues and cancers. miR-
NAs bind to the 3’ UTR of target gene and lead repression or 
degradation of the transcript through imperfect or complete 

complementarity. The partial complementarity allows miR-
NAs to target 3’ UTR of multiple genes [2-4], and growing 
evidences indicate that miRNAs are involved in a range of 
processes including cellular development, apoptosis and dis-
ease in human [5-8]. A recent study demonstrates that more 
than 50% of miRNA genes are present in cancer associated 
genomic regions or fragile sites [9], suggesting that miRNAs 
may play important roles in cancer pathogenesis, diagnosis 
and progression [10-12]. 

The EGFR, a member of the erbB receptor family which
widely express in all tissues and regulate the normal cellular 
processes, is frequently amplified in a variety of human malig-
nancies, especially glioblastoma multiforme [13-16]. In GBM 
patients, EGFR amplification was a significant predictor for
poor survival prognosis [17], thus EGFR and its downstream 
members are ideal therapeutic targets. 
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MiR-7 is an intronic miRNA that resides in the first intron
of heterogeneous ribonucleoprotein K gene on chromosome 
9 and conserved across all species. In previous reports, it has 
been reported that IGF1R (insulin-like growth factor 1 recep-
tor) is targeted by miR-7 in tongue squamous cell carcinoma 
cells which in turn resulted in a reduction of cell proliferation 
and an enhanced apoptotic rate. And PAK1, a serine/threonine 
kinase that plays a pivotal role in cell migration and inva-
sion, is also targeted by miR-7. The recent findings show the
relationships between miR-7 and the proto-oncogenes (e.g. 
PAK1, RAF1 and EGFR) suggest that miR-7 plays major roles 
in tumorigenesis [18-21].

It is well known that the mature miR-7 expression dra-
matically decreased in glioma compared with adjacent normal 
brain tissues [21, 22], Excitingly, the EGFR expression was 
negatively regulated by miR-7 [21], and deficiency of miR-7
function in glioma cells cause downstream molecules switch 
on or off, which in turn affects glioma cells vitality and disease
process. 

To date, most researches have been done to explore the 
functional roles for miR-7 in various cells in vitro, few are but 
focused on its treatment value in vivo. In our current study, 
we firstly presented the demonstration that systemic delivery
of plasmid-mediated miR-7 encapsulated in cationic liposome 
significantly inhibited glioma cell growth and metastasis in 
vivo. These findings suggested that miR-7 should be a potential
approach for human malignant glioma therapy by targeting 
EGFR signaling. 

Materials and methods

Plasmid construction. A 150-base-pair genomic fragment 
spanning the hsa-miR-7 was inserted into pGenesil-2.1 expres-
sion vector (Genesil Biotechnology Company, Wuhan, China) 
at its BamHI / HindIII sites to express miR-7. All the sequences 
were confirmed by DNA sequencing. The empty expression
plasmid named KB was designated as control. Plasmids were 
prepared using Endo-free Plasmid Giga kit (Qiagen, German-
town, MD, USA) according to the manufacturer’s direction. 

Cell culture and transfection. Human glioma cell lines 
U-87MG and U-118MG were acquired from the American 
Type Culture Collection (ATCC, Rockville, MD, USA), and 
U251 was obtained from Institute of Biochemistry and Cell 
Biology, Chinese Academy of Sciences. Cells were cultured in 
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% FBS at 37˚C under 5% CO2 in atmosphere. Plasmids 
miR-7 and KB (2 μg each) were transfected into cells seeded 
in six-well plates by Fugene HD Transfection Reagent (Roche 
Applied Science, Indianapolis, IN, USA) following the manu-
facturer’s instruction. 

In vitro proliferation analysis. Cell proliferation was 
analyzed by colony formation assay and cell cycle analysis. 
For colony formation assay, cells transfected with miR-7, KB 
or untreated were trypsinized and seeded at 500 cells/well in 
six-well plates. For 8-11 days later, cells were stained with crys-

tal violet and aggregation of more than 50 cells was regarded 
as colony. For cell cycle analysis, cells were synchronised for 
24h by thymine (Sigma, St Louis, MO, USA) and then treated 
with blank, KB or miR-7. 48h later, cells were harvested and 
cell cycle analysis was done by FCM using propidium iodide 
(PI) staining method. 

In vitro apoptosis analysis. Cell apoptosis in vitro was ana-
lyzed by flow cytometric analysis and Hoechst 33258 staining.
48h after transfection, for flow cytometric analysis, cells were
collected and suspended in 1 mL PI/RNase/PBS (100 μg/ml 
propidium iodide and 10 μg/ml RNase A). The DNA content
was analyzed by flow cytometry (Beckman Coulter, Fullerton, 
CA, USA) and cells stayed in sub-G1 phase were regarded as 
apoptotic cells. For Hoechst 33258 staining, cells were stained 
with Hoechst 33258 (Sigma, St Louis, MO, USA) staining 
solution as instructed by the manufacturer and analyzed by 
fluorescence microscopy.

Cell migration analysis (Wound healing analysis). 24h 
after transfection, monolayer cells which were grown to 70-
80% confluence in six-well plates were scratched by a plastic
pipette and cultured with fresh DMEM medium containing 
5% FBS. Images were taken by an inverted microscope for 0h 
and 24h, and the percentage of inhibition was expressed using 
untreated cells as 100%. 

Cell invasion analysis. The transwell filters (Millipore, Bill-
erica, MA, USA) were coated with Matrigel (BD Biosciences, 
Franklin Lakes, NJ, USA) (60-80μl, 1:8 dilution with serum-
free DMEM) and incubated at 37 ˚C for 1h. When matrigel 
became solidified, the top chambers were seeded with 200μl
serum-free DMEM and transfected tumor cells (2×105 per 
well), the bottom chambers were filled with DMEM medium
containing 20% FBS and various growth factors. 24h later, 
non-invaded cells on the upper side of the membrane were 
scraped off with a cotton swab and migrated cells were stained
with 0.05% crystal violet. The invaded cells were counted and
photographed under a light microscope. 

Western blotting analysis. Cells transfected for 48h 
were lysed on ice for 30 min by RIPA Lysis Buffer (Be-
yotime Biotechnology, China). For tissue samples, the 
frozen tissue was powdered in liquid nitrogen and lysed 
in RIPA lysis buffer. Equal doses protein from each sample 
were applied to SDS-PAGE gels and probed with specific 
antibodies including EGFR, MMP-2, MMP-9, Survivin, 
PCNA, phospho-Stat3 (Ser727), Stat3, phospho-ERK1/2 
(Thr202/Tyr204), ERK1/2, phospho-Akt (Ser473), Akt (Cell 
Signaling Technology, Boston, MA, USA) and GAPDH 
(Sigma, St Louis, MO, USA). 

Cationic liposome and liposome-DNA complex prepa-
ration. Cationic liposome for treatment in vivo was prepared 
by using DOTAP (Alabaster, AL, USA): cholesterol (Sigma-
Aldrich, St. Louis, MO) at 1: 1 molar ratio hydrated in 5% 
dextrose solution and sequentially extruded through a 100 nm 
polycarbonate filter [23]. For in vivo administration, liposomes 
and plasmids were diluted in 5% glucose and gently mixed 
with a liposome/ DNA weight ratio of 5:1 (5 µg plasmid/25 µg 
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liposome/100 µl total volume per mouse). The resulting com-
plexes were incubated at room temperature for 30 min before 
intravenous injection in vivo.

Animal experiments. All animal protocols were approved 
by the Institutional Animal Care and Treatment Committee 
of Sichuan University (Chengdu, Sichuan, China). U-87MG 
(5×106 cells) and U251 (3×106 cells) in 0.1 ml serum-free 
DMEM medium were inoculated subcutaneous into the 
right flank of each female athymic mouse (3-4 weeks old),
respectively. When the size of tumor reached around 100 
mm3, the animals were randomly divided into three groups 
(5 mice per group): 5% GS, KB and miR-7. Tumor-bearing 
mice were treated intravenously through the tail vein every 
two days for 4 weeks (U-87MG) or 5 weeks (U251), and the 
tumor volume was measured with a caliper every 3 days 
and calculated according to the formula: Tumor volume = 

length×width2/2. Animals were sacrificed three days after
the last injection, and solid tumor tissues were removed 
and weighed. Part of the tumor tissues was fixed in 4%
paraformaldehyde and embedded in paraffin, and the rest
was immediately frozen. 

Since U251 xenograft model can spontaneous formed
pulmonary and lymph node metastasis after 4-5 weeks in-
oculation, lungs and lymph node tissues of the animals were 
excised. Tumor metastases on lung surfaces were counted 
under a dissecting microscope and photographed after be fixed
in 4% paraformaldehyde solution, subsequently the lung and 
lymph node tissues were paraffin embedded and sectioned for
further pathologic analysis. 

Detection of apoptosis. Cell apoptosis in situ was deter-
mined using TUNEL assay kit (Promega, San Luis Obispo, CA, 
USA) according to the manufacturer’s protocol. The number

Figure 1. Transfection with miR-7 inhibited glioma cell proliferation and induced cell apoptosis. 48h after transfection with miR-7, KB or untreated,
colony formation assay in U251 and U-118MG cells (A), cell cycle analysis in U251 cells (B), quantitative assessment of apoptotic cells by flow cytometric
in U251, U-118MG and U-87MG cells (C), and morphological changes examination by Hoechst 33258 staining (original magnification, × 200) in U251,
U-118MG and U-87MG cells (D) were performed. Columns, mean; bars, SD (n =3; ANOVA; **, P < 0.01 versus controls).
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of TUNEL-positive cells which represented apoptotic cells 
were counted under a fluorescence microscopy (× 200) in
six randomly selected fields. The apoptotic index was defined
as follows: apoptotic index (%) = 100 × apoptotic cells/total 
tumor cells.

Quantitative real time PCR. As described previously 
[24], total RNA was extracted from glioma cancer cells and 
xenograft tumors using Trizol reagent (Invitrogen, Carlsbad,
CA, USA), and quantitative real time PCR (qRT-PCR) analysis 
was performed to detect the expression of candidate miRNAs 
with the TaqMan MicroRNA assays kit (Applied Biosystems, 
Foster City, CA, USA).

Statistical analysis. All statistical analyses were performed 
using SPSS 13.0. Data were expressed as the mean ± SD and 
were analyzed statistically using one-way ANOVA. Differences
were considered statistically significant if P < 0.05.

Results

Effect of miR-7 on human glioma cell lines. To detect the 
functional effects of miR-7 on human glioma cell viability in 
vitro, cell proliferation analysis, flow cytometric analysis, cell
migration and invasion analysis was performed. According to 

the results of sequent experiments, a decrease in the number 
of cell colonies, an increased percentage of cells in G0 / G1 
phase (Fig. 1A, 1B), an elevation of sub-G1 phase cell popula-
tion (Fig. 1C), a reduced area of cell migration and depressed 
cell invasion ability (Fig. 2A, 2B) were distinctly observed in 
group treated with miR-7. Hoechst 33258 staining was also 
performed to assess cell apoptosis by morphological changes. 
More condensed nucleus which were characteristic of apop-
tosis, were captured by fluorescence microscope in miR-7
treated group (Fig. 1D), whereas there were no significant
changes in control groups. These results indicated that glioma
cells transfected with miR-7 in vitro could evidently inhibit 
cell growth, cell migration, invasion, meanwhile induce cell 
apoptosis.

Regulation of miR-7 on EGFR signaling pathways. EGFR 
overexpression leads to the activation of various downstream 
signaling effectors that are responsible for important cellular
processes, such as proliferation, apoptosis, cell migration 
and invasion. To investigate whether miR-7 inhibited EGFR 
and its downstream signaling members, we screened some 
essential kinases involved in EGFR signaling pathway, and 
the results were consistent with the effect discussed above.
MiR-7 significantly suppressed the phosphorylation of Akt,

Figure 2. Transfection with miR-7 inhibited glioma cell migration and invasion. A, photomicrographs of wound healing analysis for 0h and 24h with 
migrating U251 cells are shown. Plots showed the percentage of cell migration inhibition in U251 and U-118MG glioma cell lines treated with miR-7, 
KB or untreated (n =3; ANOVA; **, P < 0.01 versus controls). B. photomicrographs of a sample transwell membrane with invading U-118MG cells are 
shown. Plots showing mean number of invading cells in U-118MG and U251 glioma cell lines treated with miR-7, KB or untreated (n =3; ANOVA; **, 
P < 0.01 versus controls). 
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ERK and Stat3, as well as MMP-2, MMP-9, Survivin and 
PCNA (Fig. 3A, 3B), which suggested that miR-7 exerted its 
antitumor function by direct targeting EGFR on the surface 
of glioma cells and further antagonizing EGFR-mediated 
downstream signaling cascade (Fig. 3C).

Effect of miR-7 on tumor progression in vivo. To fur-
ther investigate the effects of miR-7 on tumor progression
in vivo, subcutaneous xenografts of glioma were established
and treated as described in the Materials and Methods. 
Compared with control groups, primary tumor growth were 
sharply suppressed and mean tumor weight were evidently 
reduced in miR-7 group (Fig. 4A, 4B; P < 0.01); conversely, 
no significant differences were observed between the two
control groups (P > 0.05). Moreover, to explore the effects
of miR-7 on cells apoptosis in vivo, TUNEL analysis was car-
ried out in tumor sections. In coincidence with the results 
in vitro, TUNEL-positive nuclei (with green staining) were 
increased significantly in mice treated with miR-7 (Fig. 4C, 
P < 0.01).

Furthermore, to verify the antitumor effects caused by
miR-7 treatment, we detected the mature miR-7 in glioma 
subcutaneous xenografts by qRT-PCR. Compared with control
groups, the expression of miR-7 sharply increased in group 
treated with miR-7 (Fig. 5B, P < 0.05), whereas there were no 
significant differences between the two control groups (P > 
0.05). And the results were consistent with the detection in 
vitro (Fig. 5A). Meanwhile, the EGFR and PCNA expression 
in tumors treated with miR-7 were obviously down-regulated 
(Fig. 5C, D). 

In addition, to evaluate potential drug toxicity on mice dur-
ing the treatment, we continuously evaluated relevant indexes 
such as weight, appetite, diarrhea and behavior. No significant
side reactions were found in gross measures. Moreover, no 
pathological changes in heart, liver, spleen, lungs, or kidneys 
of treated mice were detected by microscopic examination 
(data not shown).

Effect of miR-7 on U251 lung and lymph node metastases. 
Untreatable metastasis was the main cause of mortality in pa-

Figure 3. miR-7 inhibited EGFR activity and its downstream signaling effectors. A, immunoblots of phospho-ERK1/2 (Thr202/Tyr204), ERK1/2,
phospho-Akt (Ser473), Akt, EGFR proteins in U-87MG cells 48h after transfection with miR-7, KB or untreated. GAPDH serves as loading controls. B,
immunoblots of MMP-2, MMP-9, Survivin, PCNA, phospho-Stat3 (Ser727) and Stat3 proteins in U251 cells 48h after transfection with miR-7, KB or
untreated. GAPDH serves as loading controls. C, diagram of signaling pathway for miR-7 regulate cell vitality.
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tients with cancer. As in our model, we used the U251 human 
metastatic glioma cells, which had a high metastatic potential 
and can metastasize to the lung approximately 4 weeks after
inoculation [25]. Meanwhile, we found the lymph nodes were 
swollen. When the tumor xenografts volume reached 3,000
mm3 in our present study, mice were sacrificed and the meta-
static nodules on lung surface were counted under a dissecting 
microscope. A dramatic decrease in the number of tumor me-
tastases was observed in miR-7 treated group compared with 
others groups (Fig. 6A, C; P < 0.01). H&E staining of lung and 
lymph node tissue sections also showed that the miR-7 group 

had much fewer and smaller metastases than controls (Fig. 6B, 
D; P < 0.01). 

Discussion

Cancer cells frequently contain multiple genetic and 
epigenetic abnormalities. Malignant tumors are generally 
heterogeneous and caused by the accumulation of genetic 
alterations in oncogenes and tumor suppressor genes. Despite 
this complexity, numerous studies indicate that the tumor 
progression can also be driven by the activity of specific

Figure 4. miR-7 inhibited glioma subcutaneous xenografts growth and induced cells apoptosis in vivo. Tumor volume and weights in U-87MG (A) or 
U251 (B) xenografts were significantly reduced (n=5 per group, P < 0.01) in miR-7 group compared with control groups. C, induction of apoptosis in 
tumor tissues was indicated by TUNEL assay (original magnification, × 200).

app:ds:subcutaneous
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oncogene [26, 27]. Over the years, based on many molecular 
genetic and histopathological researches, it is known that 
GBM is a highly malignant tumor with remarkable genomic 
heterogeneity, and the EGFR is one of the most deregulated 
components of human GBM [28, 29]. Consequently, it pro-
moted the development of new anti-EGFR therapeutics such 
as monoclonal antibodies and tyrosine kinase inhibitors. 
However, the clinical efficacy of EGFR inhibitor is ultimately
limited by the development of acquired drug resistance [30, 
31]. Recently, many miRNAs are considered to function as 
tumor suppressors or oncogenes in human tumors (10, 32, 
33). Factually, it is the promising strategy of using miRNAs 
for anticancer therapy. Here, we have demonstrated miR-7 as 
a key tumor suppressor in glioma that functions as a negative 
regulator of EGFR signaling.

In previous reports, miR-7 has been characterized as 
tumor suppressors in many human cancer cells and plays 
important roles in cell proliferation, apoptosis and migra-
tion in vitro [21, 34]. In our present study, we performed 
mainly further investigation on the therapeutic effect of 
miR-7 for human glioma in vivo. We used a plasmid-me-
diated miRNA expression system to express the miR-7 
and quantitatively analyzed the anti-tumor effects in vivo. 
Systematic delivery of miR-7/liposome complex to subcu-
taneous glioma xenografts induced significant suppression 
on primary tumor growth (approximately 40% in tumor 

volume and tumor weight) and metastatic nodules (60% 
suppression ratio in lung metastases and 80% suppression 
ratio in lymph node metastases, respectively). These data 
provided convincing evidences that miR-7 could inhibit 
glioma xenografts growth and metastasis in vivo and sug-
gested miR-7 might offer a clinically feasible approach for 
glioma therapy.

Mechanisms of the potent antitumor and anti-metastasis 
efficacy remain to be fully elucidated. Overexpression of
EGFR in human malignancies induces cascades of down-
stream signaling, such as activation of MAPK/ERK, PI3K/Akt 
and Jak/Stat, which mediate cell survival, proliferation, 
apoptosis, invasion, tumor progression and metastasis [13, 
33, 34]. MiR-7 targets several proto-oncogenes, including 
RAF1, IGF1R and PAK1 (18-20). Thus, it is likely that miR-
7 contributes to tumor progression through multiple genes 
of multiple pathways. However, our present study demon-
strated that miR-7-mediated down-regulation of EGFR led 
a reduction in cell proliferation, invasion and an enhanced 
apoptotic rate. 

Delivery is still the therapeutic bottleneck in vivo. In this 
study, we selected the delivery system of DNA-Cationic lipo-
some complexes. The selection of cationic liposome rooted
mainly in the parameters of biodegradation, biodistribution, 
and toxicity [23]. And the validity of DNA-Cationic liposome 
complexes delivery was supported by previous studies using 

Figure 5. The antitumor effects were caused by miR-7. The miR-7 relative quantification of each group in U251 cells were detected by qRT-PCR in vitro 
(A) and in vivo (B), miR-7 expression was sharply increased in miR-7 treated group. C and D, expression of EGFR and PCNA were evidently decreased 
in tumors treated with miR-7 analyzing by western blot (n =3; ANOVA; **, P < 0.01 versus controls).
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cationic liposome to deliver tumor suppressor genes and inhibit 
tumor growh [36]. Furthermore, FUS1-Cationic liposome com-
plex had been advanced into phase I clinical trial for treatment 
of NSCLC [37]. Therefore, the safe and efficient delivery of the
cationic liposome vector appeared to be attractive.

In summary, to our knowledge, it is the first demonstration
that plasmid-based miR-7 could safely and efficiently suppress
glioma xenograft growth and metastases in vivo. The results are
encouraging since we regard miR-7 as considerable therapeutic 
potential suppressor gene for glioma therapy.
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