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The results from the published studies on the association between hypoxia-inducible factor-1(Hif-1/HIF-1) polymor-
phisms and cancer risk are conflicting. The common 1790G/A rs11549467) genetic polymorphism has been reported to be
functional and may contribute to genetic susceptibility to cancers. However, the association between 1790G/A (rs11549467) 
and cancer risk remains inconclusive.

To better understand the role of 1790G/A (rs11549467) polymorphism in cancer, we conducted this comprehensive meta-
analysis encompassing 6337 cases and 9302 controls.

Overall, the 1790G/A (rs11549467) genetic polymorphism was associated with higher cancer risk. In the stratified analysis,
significant associations were found between the Hif-1/HIF-1 1790G/A polymorphism and lung cancer, pancreatic cancer and
oral squamous cell carcinoma. We also observed that the AA genotype might modulate lung cancer (OR=5.42[2.75-10.70]), 
pancreatic cancer (OR=9.30[1.12-77.61]) and oral squamous cell carcinoma (OSCC) (OR=13.32[1.57-112.75]) risk comparing 
with the GG genotype. Moreover, a significantly increased cancer risk was found in homozygote comparison (AA vs. GG)
and recessive genetic model (AA vs. AG/GG) among Caucasian population. When stratified by study design, significantly
elevated susceptibility to cancer was found among hospital-based studies.

These findings suggested that the 1790G/A (rs11549467) genetic polymorphism may contribute to the susceptibility of
cancers except gynecologic cancer, especially in homozygote comparison and recessive genetic model among Caucasian 
population, and this SNP was significantly associated with the lung cancer, pancreatic cancer and oral squamous cell carci-
noma (OSCC). The phenomenon also indicates that the SNP functions as a recessive mutation needs to be verified or linked
with functional studies.
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Cancer is one of the leading causes of death in the world. It 
has become a worldwide public health problem[1]. The exact
mechanism of carcinogenesis is not yet fully elucidated[2]. 
Recently, it has become clear that genetic variation contributes 
to the development and progression of cancer[2,3]. However, 
due to various reasons, including considerable heterogeneity of 
the disease, the identification of susceptibility genes is difficult
and most associations have not been replicated.

One of the most important features of tumors is hypoxia. 
Intratumoral hypoxia occurs when cells are located further 
from a functional blood vessel than is required for adequate 
diffusion of oxygen, resulting in rapid tumor cell proliferation

and developing abnormal blood vessels[4]. Hypoxia condi-
tions in tumor tissues induce a molecular response, which 
drives the activation of transcription factors. Among these, 
hypoxia-inducible factor-1(Hif-1/HIF-1) plays an essential 
role in adaptive responses to reduced oxygen levels[5,6].

Hif-1/HIF-1 is a dimeric protein complex, consisting of 
α and β subunits. The activity of Hif-1/HIF-1 is regulated
predominantly through the stability of the subunit [7]. Koshiji 
et al. demonstrated that Hif-1/HIF-1 (PASD8) inhibits the 
DNA mismatch repair system (MSH2 and MSH6), which is 
responsible for genetic instability [8]. Other researchers have 
also reported that hypoxia down regulates the expression of 
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DNA double-stranded break repair genes [9,10] [11,12]. These
data support the concept that defective DNA repair pathways 
cause genomic instability within the tumor microenvironment. 
PASD8 (Hif-1/HIF-1) is overexpressed in >90% of colon, lung 
and prostate cancers, whereas no expression was detected in 
corresponding normal tissues [13], indicating a role of Hif-1/
HIF-1 in cancer. It is over expressed in several human cancers, 
such as head-neck, colon, breast, stomach, pancreas, prostate, 
kidney, esophagus, endometrial, and non-small-cell lung can-
cer [14-19]. The target genes of Hif-1/HIF-1 are particularly
relevant to cancer, encoding angiogenic factors, proliferation/
survival factors, glucose transporters and glycolytic enzymes 
[20]. As such, variability in this protein is likely to influence
individual risk to this pathology.

A number of investigators have studied the possible asso-
ciation between the Hif-1/HIF-1 polymorphisms and cancer 
risk, but the results have been conflicting [21-38]. Thus, the
association between the Hif-1/HIF-1 polymorphisms and can-
cers requires further investigation. In an attempt to clarify this 
inconsistency, we have combined all the published studies of 
hospital and population up to August.2013 in a meta-analysis 
to give a comprehensive picture of the role of Hif-1/HIF-1α 
gene using multiple research methods and models.

In this study, a comprehensive meta-analysis was per-
formed on previous reports to investigate the association of 
Hif-1/HIF-1α 1790G/A (rs11549467) polymorphisms with 
all cancers, different kinds of cancers, and different kinds of
populations.

Materials and methods

Search strategy and data extraction. In this meta-analy-
sis, a comprehensive literature research of the US National 
Library of Medicine’s PubMed database, ISI Web of Knowl-
edge, Medline, Embase and Google Scholar Search (update to 
August,2013) was conducted using the search terms including 
“Hif-1/HIF-1α” or “hypoxia-inducible factor-1” or “1790G/A” 
or “rs11549467” or “A588T (Ala588Thr, G1790A, rs11549467)”
, ”polymorphisms” or “variation” or “mutation” or “SNP” , 
“tumour” or “tumor” or “cancer” or “neoplasm” or “phyma” 
or “oncoma” or “knub” or “carcinoma” or “malignancy”, and 
the combined phrases in order to obtain all genetic studies 
on the relationship of 1790G/A polymorphism and cancers. 
We also used a hand search of references of original studies 
or reviewed articles on this topic to identify additional stud-
ies. Eligible studies were selected according to the following 
explicit inclusion criteria: (1) a case control study on the as-
sociation between 1790G/A polymorphism and cancer risk, 
(2)detailed number of different genotypes for estimating an
odds ratio (OR) with 95% confidence interval (CI), (3) when
several publications reported on the same population data, 
the largest or most complete study was chosen, (4) cases with 
carcinomas were diagnosed by histopathology, (5) animal 
studies, case reports, review articles, abstracts, editorials, re-
ports with incomplete data, and studies based on pedigree data 
were excluded(Fig. 1). For each eligible study, the following 
information was recorded: the first author’s name, the year of

Figure 1. Flow diagram of study identification.
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publication, patients, ethnicity, genotyping methods, sources 
of control, racial descent of the study population, genotype 
and allele distributions and main results of each study.

Statistical analysis. The strength of relationship between
1790G/A polymorphism and cancer was assessed by us-
ing crude OR with 95% CI. We examined the association 
between the 1790G/A polymorphism and cancer risk using 
the following genetic models: homozygote comparison (AA 
vs. GG), heterozygote comparison (AG vs. GG), dominant 
genetic model (AA/AG vs. GG), recessive genetic model (AA 
vs. AG/GG) and additive model (A vs. G). Firstly, we checked 
the Hardy-Weinberg equilibrium (HWE) in controls for each 
study. Then we performed Q-test for evaluating the heteroge-
neity [39]. Fixed effects model was used to pool the data when
the P-value of Q-test ≥0.05; otherwise, random effects model
was selected [40]. I2 was also used to assess the heterogeneity 
in this meta-analysis. If I2> 50%,the heterogeneity exists[41]. 
We also performed sensitivity analysis and subgroup analysis 
to explore the reason of heterogeneity. Both funnel plot and 
Egger’s test were used to assess the publication bias (P<0.05 
was representative of statistical significance)[42]. All statisti-
cal analysis were performed using STATA 12.0 software and
Review Manager 5.2.

Results

Eligible studies. Overall,26 relevant studies involving 
6337 cases and 9302 controls were selected in this meta-
analysis[21,26,27,29,30,32,43-62]. The main characteristics
of these studies were shown in Table 1. Genotype and allele 
distributions of 1790G/A polymorphism among cancer 
cases and controls and P value of HWE in controls were 
shown in Table 1 and 2. All studies were case-control stud-
ies, including three oral squamous cell carcinoma (OSCC) 
studies [46,51,59], three prostate cancer studies[29,44,60], 
three renal cell carcinoma studies[21,49,57], three breast 
cancer studies[30,32,50], two gynecologic carcinoma 
studies[27,53], two colorectal studies[26,62], two pancreatic 
cancer studies[55,58], three lung cancer studies[47,54,56] 
and the others(including head and neck squamous cell 
carcinoma(HNSCC)[43], transitional cell carcinoma of 
the bladder[45], hepatocellular carcinoma[52], gastric 
cancer[52], glottic cancer[61]). Cancers were histological 
or pathological in most studies. There were fourteen studi
es[32,43,45,46,48,50,52-57,60,61] of Asian descent, twelve 
studies[21,26,27,29,30,44,47,49,51,58,61,62] of Caucasian 
descent. Population-based controls were carried out in 9 

Table1. Main characteristics of included studies in the meta-analysis.

Studies(cancer type) Country Ethnicity Genotype assay Source of control Case/control p

Tanimoto 2003 HNSCC Japan Asian PCR-Sequencing Population 55/110 0.655 
Munoz-Guerra 2009 OSCC Spain Caucasian PCR-RFLP Hospital 64/139 0.693 
Li 2007 prostate cancer USA Caucasian PCR-RFLP Population 1066/1264 0.810 
Orr-Urtreger 2007 prostate cancer Israel Caucasian PCR-RFLP Population 200/300 0.954 
Clifford 2001 renal cell carcinoma UK Caucasian PCR-Sequencing Hospital 48/144 0.866 
Apaydin 2008 breast cancer Turkey Caucasian PCR-RFLP Population 102/102 0.840 
Kim 2008 breast cancer Korea Asian PCR-Sequencing Hospital 90/102 0.060 
Konac 2007 gynecologic cancer Turkey Caucasian PCR-RFLP Hospital 102/107 —
Fransen 2006 colorectal cancer Sweden Caucasian PCR-RFLP Hospital 198/256 0.775 
Naidu 2009 breast cancer Malaysia Asian PCR-RFLP Hospital 410/275 0.180 
Ruiz-Tovar 2012 pancreatic cancer Spain Caucasian PCR-RFLP Hospital 59/152 0.675 
Kuo 2012 non–small-cell lung cancer China Asian PCR-RFLP Hospital 285/300 0.154 
Wang 2011 pancreatic cancer China Asian PCR-Sequencing Hospital 263/271 0.486 
Hsiao 2010 hepatocellular carcinoma China Asian PCR-RFLP Hospital 102/347 0.701 
Chen 2009 OSCC China Asian PCR-RFLP Population 174/347 0.701 
Konac 2009 lung cancer Turkey Caucasian PCR-RFLP Hospital 141/156 0.936 
Li 2009 gastric cancer China Asian PCR-LDR Hospital 87/106 0.764 
Nadaoka 2008 bladder cnacer Japan Asian PCR-RFLP Hospital 219/461 0.330 
Kim 2011 cervical cancer Korea Asian SNaPShot Hospital 199/214 0.136 
Qin 2012 renal cell carcinoma China Asian Taqman Hospital 620/623 0.420 
Morris 2009 renal cell carcinoma Poland Caucasian Taqman Population 325/309 0.662 
Putra 2011 lung cancer Japan Asian PCR-Sequencing Hospital 83/110 0.655 
Knechtel 2010 colorectal cancer Austria Caucasian Taqman Population 367/2156 0.405 
Li 2012 prostate cancer China Asian Taqman Population 662/716 0.554 
Mera-Menendez 2013 glottic cancer Spain Caucasian PCR-RFLP Population 111/139 0.693 
Shieh 2010 OSCC China Asian PCR-Sequencing Hospital 305/96 0.711 
p Value of Hardy-Weinberg equilibrium in controls.
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Table 2. Distribution of 1790G/A(rs11549467) polymorphism and the main results of eligible studies.

Stuies(cancer type) Case Control OR(95% CI)

(AA/AG/GG) (AA/AG/GG) AA vs.GG AG vs.GG AA/AG vs.GG AA vs.AG/GG A vs.G

Tanimoto 2003 HNSCC 55
(0/4/51)

110
(0/9/101) — 0.88

(0.26-3.00)
0.88

(0.26-3.00) — 0.88
(0.27-2.94)

Munoz-Guerra 2009 OSCC 64
(3/21/40)

139
(0/9/130)

22.56
(1.14-445.89)

7.58
(3.22-17.88)

8.67
(3.73-20.16)

15.88
(0.81-312.08)

7.99
(3.63-17.58)

Li 2007 prostate cancer 1066
(0/13/1053)

1264
(0/17/1247) — 0.91

(0.44-1.87)
0.91

(0.44-1.87) — 0.91
(0.44-1.87)

Orr-Urtreger 2007 prostate 
cancer

200
(0/2/198)

300
(0/2/298) — 1.51

(0.21-10.77)
1.51

(0.21-10.77) — 1.50
(0.21-10.71)

Clifford 2001 renal cell
carcinoma

48
(0/1/47)

144
(0/4/140) — 0.74

(0.08-6.83)
0.74

(0.08-6.83) — 0.75
(0.08-6.77)

Apaydin 2008 breast cancer 102
(0/0/102)

102
(0/4/98) — 0.11

(0.01-2.01)
0.11

(0.01-2.01) — 0.11
(0.01-2.04)

Kim 2008 breast cancer 90
(0/3/87)

102
(1/7/94)

0.36
(0.01-8.95)

0.46
(0.11-1.85)

0.41
(0.10-1.58)

0.37
(0.02-9.29)

0.37
(0.10-1.38)

Konac 2007 gynecologic 
cancer

102
(0/2/47)

107
(0/0/107) — 5.35

(0.25-112.76)
5.35

(0.25-112.76) — 5.30
(0.25-110.99)

Fransen 2006 colorectal 
cancer

198
(0/9/189)

256
(0/9/247) — 1.31

(0.51-3.36)
1.31

(0.51-3.36) — 1.30
(0.51-3.31)

Naidu 2009 breast cancer 410
(6/72/332)

275
(2/41/232)

2.10
(0.42-10.48)

1.23
(0.81-1.86)

1.27
(0.84-1.91)

2.03
(0.41-10.12)

1.28
(0.88-1.87)

Ruiz-Tovar 2012 pancreatic 
cancer

59
(3/2/54)

152
(0/10/142)

18.30
(0.93-360.19)

0.53
(0.11-2.48)

1.31
(0.43-4.02)

18.89
(0.96-371.56)

2.14
(0.82-5.56)

Kuo 2012 non–small-cell 
lung cancer

285
(41/94/150)

300
(11/74/215)

5.34
(2.66-10.73)

1.82
(1.26-2.63)

2.28
(1.62-3.21)

4.41
(2.22-8.78)

2.35
(1.77-3.11)

Wang 2011 pancreatic 
cancer

263
(1/64/198)

271
(0/22/249)

3.77
(0.15-93.07)

3.66
(2.18-6.15)

3.72
(2.21-6.24)

3.10
(0.13-76.51)

3.39
(2.06-5.58)

Hsiao 2010 hepatocellular 
carcinoma

102
(0/15/87)

347
(0/14/333) — 4.10

(1.91-8.82)
4.10

(1.91-8.82) — 3.85
(1.83-8.13)

Chen 2009 OSCC 174
(1/20/153)

347
(0/14/333)

6.52
(0.26-160.91)

3.11
(1.53-6.32)

3.26
(1.62-6.59)

6.01
(0.24-148.26)

3.28
(1.83-8.13)

Konac 2009 lung cancer 141
(0/1/140)

156
(0/2/154) — 0.55

(0.05-6.13)
0.55

(0.05-6.13) — 0.55
(0.05-6.12)

Li 2009 gastric cancer 87
(0/13/74)

106
(0/6/100) — 2.93

(1.06-8.06)
2.93

(1.06-8.06) — 2.77
(1.03-7.45)

Nadaoka 2008 bladder 
cancer

219
(0/15/204)

461
(0/40/421) — 0.77

(0.42-1.43)
0.77

(0.42-1.43) — 0.78
(0.43-1.43)

Kim 2011 cervical cancer 199
(0/12/187)

214
(1/13/200)

0.36
(0.01-8.80)

0.99
(0.44-2.22)

0.92
(0.41-2.03)

0.36
(0.01-8.81)

0.86
(0.40-1.85)

Qin 2012 renal cell 
carcinoma 620(0/45/575) 623

(0/39/584) — 1.17
(0.75-1.83)

1.17
(0.75-1.83) — 1.17

(0.75-1.80)
Morris 2009 renal cell 
carcinoma

325
(2/10/313)

309
(0/15/294)

4.70
(0.22-98.24)

0.63
(0.28-1.42)

0.75
(0.35-1.63)

4.78
(0.23-100.04)

0.88
(0.42-1.85)

Putra 2011 lung cancer 83
(2/9/72)

110
(0/9/101)

7.00
(0.33-148.00)

1.40
(0.53-3.71)

1.71
(0.68-4.35)

6.78
(0.32-143.12)

1.99
(0.83-4.78)

Knechtel 2010 colorectal 
cancer

367
(0/11/356)

2156
(0/76/2080) — 0.85

(0.44-1.61)
0.85

(0.44-1.61) — 0.85
(0.45-1.60)

Li 2012 prostate cancer 662
(1/47/614)

716
(0/31/685)

3.35
(0.14-82.30)

1.69
(1.06-2.70)

1.73
(1.09-2.75)

3.25
(0.13-79.90)

1.74
(1.10-2.74)

Mera-Menendez 2013 
glottic cancer

111
(0/4/107)

139
(0/9/130) — 0.54

(1.16-1.80)
0.54

(0.16-1.80) — 0.55
(0.17-1.80)

Shieh 2010 OSCC 305
(0/24/281)

96
(0/7/89) — 1.09

(0.45-2.61)
1.09

(0.45-2.61) — 1.08
(0.46-2.55)
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studies, while hospital-based controls were carried out in 17 
studies. All studies were reported in English. The genotyping
methods contained the classic polymerase chain reaction-
restriction fragment length polymorphism ( PCR-RFLP) 
assay, PCR-sequencing, PCR-LDR, SnaPShot and Taqman. 
The genotype distributions of controls were all in agreement
with HWE except for one studie not estimable [27].

Meta-analysis. Overall, as shown in Table 3, we ob-
served that the 1790G/A(rs11549467) polymorphism 
increased the cancer risk in the homozygote (AA vs. 
GG, OR=4.37[2.61-7.33]) (Fig.2), heterozygote model 
(AG vs. GG, OR=1.39[1.06-1.82]) (Fig.3), dominant ge-
netic model (OR=1.46[1.11-1.92]) (Fig.4), recessive model 
(OR=3.87[2.32-6.46]) (Fig.5) and additive model (A vs. G, 
OR=1.49[1.15-1.95]) (Fig.6) when all the eligible studies 
were pooled into the meta-analysis. In the heterozygote 
comparison, dominant genetic and additive models, all the 
P values of Q-test were lower than 0.05 and I2 values were 
higher than 50%. So we performed the sensitivity analysis by 
deleting one single study from overall pooled analysis each 
time to check the influence of the removed data. However,
the results revealed that no extreme sensitive study changed 
the between-study heterogeneities. 

We then evaluated the effects of the 1790G/A(rs11549467)
polymorphism according to specific cancer types, differ-
ent ethnicities, different detection method and different
sources of control. As shown in Table 3, we found that 

1790G/A(rs11549467) polymorphism elevated oral squamous 
cell carcinoma (OSCC) risk and lung cancer risk in all the 
five models (AA vs. GG, AG vs. GG, AA/AG vs. GG, AA vs.
AG/GG, A vs. G). For oral squamous cell carcinoma (OSCC), 
the ORs[95%CI] were 13.32[1.57-112.75], 2.96[1.05-8.31], 
3.15[1.05-9.47], 10.70[1.25-91.51] and 3.09[1.07-8.93] respec-
tively; for lung cancer, the ORs[95%CI] were 5.42[2.75-10.70], 
1.72[1.22-2.42], 2.14[1.56-2.94], 4.52[2.31-8.83] and 2.26[1.74-
2.95] respectively. For pancreatic cancer, significant association
was found in the following models: AA vs. GG: OR=9.30[1.12-
77.61]; AG vs. GG: OR=2.90[1.82-4.62]; AA vs. AG/GG: 
OR=8.65[1.04-71.65]; A vs. G: OR=3.12[2.01-4.84]. We also 
found significant association between 1790G/A (rs11549467)
polymorphism and hepatocellular and gastric cancer in hetero-
zygote, recessive and additive model. In the stratified analysis
by ethnicity, significantly increased risks were found in Asian
in all genetic models tested (Table 3). For Caucasian, significant
associations were observed in homozygote comparison (AA 
vs. GG, OR=12.40[2.19-70.22]) and recessive model (AA vs. 
AG/GG, OR=11.37[2.02-63.93]). According to the source of 
controls, signification effects in all genetic models were ob-
served in hospital-based studies; while in population-based 
studies, significant association was not observed in any genetic
model. According to the detection method, signification ef-
fects in most genetic models were observed in PCR-RFLP 
subgroup; while in other subgroup, significant association was
not observed in any genetic model.

Figure 2. The forest plot of AA vs. GG of 1790G/A polymorphism and overall cancer risk(fixed model).
The overall OR is shown. The OR of each study is marked with a grey square. The %weight of OR is indicated by a shadow. The overall OR is indicated
by blue diamond.



3451790G/A POLYMORPHISM AND CANCER RISK 

Ta
bl

e 
3.

 R
es

ul
ts

 o
f m

et
a-

an
al

ys
is 

fo
r 1

79
0G

/A
(r

s1
15

49
46

7)
 p

ol
ym

or
ph

ism
 a

nd
 c

an
ce

r r
isk

.

St
ud

y 
G

ro
up

s
N

O
.o

f 
C

as
e

C
on

tr
ol

A
A

 v
s.G

G
A

G
 v

s.G
G

A
A

/A
G

 v
s.G

G
A

A
 v

s.A
G

/G
G

A
 v

s.G

stu
di

es
(A

A
/A

G
/G

G
)

(A
A

/A
G

/G
G

)
O

R(
95

%
 C

I)
Pa

;P
b;

I2 (%
)

O
R(

95
%

 C
I)

Pa
;P

b;
I2 (%

)
O

R(
95

%
 C

I)
Pa

;P
b;

I2 (%
)

O
R(

95
%

 C
I)

Pa
;P

b;
I2 (%

)
O

R(
95

%
 C

I)
Pa

;P
b;

I2 (%
)

A
ll 

po
pu

la
tio

n
26

63
37

 
(6

0/
51

3/
57

64
)

93
02

 
(1

5/
48

3/
88

04
)

4.
37

(2
.6

1-
7.

33
)

0.
00

0;
0.

53
5;

0,
0%

1.
39

 
(1

.0
6-

1.
82

)
0.

01
7;

0.
00

0;
63

.8
%

1.
46

 
(1

.1
1-

1.
92

)
0.

00
7;

0.
00

0;
66

.7
%

3.
87

(2
.3

2-
6.

46
)

0.
00

0;
0.

71
4;

0.
0%

1.
49

(1
.1

5-
1.

95
)

0.
00

3;
0.

00
0;

67
.9

%

Et
hn

ic
ity

A
sia

n
14

35
54

 
(5

2/
43

7/
30

65
)

40
78

 
(1

5/
32

6/
37

37
)

3.
82

(2
.2

1-
6.

61
)

0.
00

0;
0.

55
6;

0.
0%

1.
59

 
(1

.1
9-

2.
13

)
0.

00
2;

0.
00

1;
63

.6
%

1.
64

 
(1

.2
1-

2.
22

)
0.

00
1;

0.
00

0;
68

.1
%

3.
37

(1
.9

6-
5.

80
)

0.
00

0;
0.

66
1;

0.
0%

1.
63

(1
.2

1-
2.

19
)

0.
00

1;
0.

00
0;

69
.9

%

C
au

ca
sia

n
12

27
83

 
(8

/7
6/

26
99

)
52

24
 

(0
/1

57
/5

06
7)

12
.4

0
(2

.1
9-

70
.2

2)
0.

00
4;

0.
73

7;
0.

0%
1.

04
 

(0
.5

8-
1.

84
)

0.
90

0;
0.

00
3;

61
.5

%
1.

16
 

(0
.6

6-
2.

05
)

0.
61

2;
0.

00
2;

63
.5

%
11

.3
7

(2
.0

2-
63

.9
3)

0.
00

6;
0.

79
0;

0.
0%

1.
24

(0
.7

1-
2.

19
)

0.
44

7;
0.

00
1;

65
.1

%

So
ur

ce
 o

f c
on

tro
l

Po
pu

la
tio

n
9

30
62

 
(4

/1
11

/2
94

7)
54

43
 

(0
/1

77
/5

26
6)

4.
65

(0
.7

5-
28

.8
2)

0.
09

9;
0.

95
9;

0.
0%

1.
07

 
(0

.6
9-

1.
67

)
0.

76
4;

0.
02

3;
55

.1
%

1.
11

 
(0

.7
1-

1.
73

)
0.

64
8;

0.
02

3;
55

.1
%

4.
53

(0
.7

3-
28

.0
4)

0.
10

4;
0.

96
4;

0.
0%

1.
14

(0
.7

4-
1.

76
)

0.
54

2;
0.

02
5;

54
.4

%

H
os

pi
ta

l
17

32
75

 
(5

6/
40

2/
28

17
)

38
59

 
(1

5/
30

6/
35

38
)

4.
35

(2
.5

4-
7.

45
)

0.
00

0;
0.

33
8;

11
.8

%
1.

59
 

(1
.1

3-
2.

22
)

0.
00

7;
0.

00
0;

66
.7

%
1.

68
 

(1
.2

0-
2.

37
)

0.
00

3;
0.

00
0;

69
.8

%
3.

81
(2

.2
3-

6.
51

)
0.

00
0;

0.
42

7;
0.

2%
1.

71
(1

.2
3-

2.
38

)
0.

00
1;

0.
00

0;
71

.1
%

D
et

ec
tio

n 
m

et
ho

d 

PC
R-

Se
qu

en
ci

ng
6

84
4 

(3
/1

05
/7

36
)

83
3 

(1
/5

8/
77

4)
2.

21
(0

.4
8-

10
.1

6)
0.

30
9;

0.
39

1;
0.

0%
1.

29
 

(0
.6

3-
2.

63
)

0.
89

3;
0.

02
4;

61
.3

%
1.

30
 

(0
.6

3-
2.

70
)

0.
47

6;
0.

00
9;

67
.1

%
2.

11
(0

.4
5-

9.
88

)
0.

34
2;

0.
42

0;
0.

0%
1.

30
(0

.6
5-

2.
63

)
0.

45
9;

0.
01

0;
66

.7
%

PC
R-

RF
LP

14
32

33
 

(5
4/

27
0/

29
09

)
43

45
 

(1
3/

24
5/

40
87

)
5.

37
(2

.9
6-

9.
75

)
0.

00
0;

0.
58

0;
0.

0%
1.

51
 

(0
.9

9-
2.

31
)

0.
00

7;
0.

00
0;

67
.3

%
1.

65
 

(1
.0

8-
2.

53
)

0.
02

2;
0.

00
0;

71
.4

%
4.

59
(2

.5
5-

8.
27

)
0.

00
0;

0.
63

3;
0.

0%
1.

72
(1

.1
4-

2.
58

)
0.

00
9;

0.
00

0;
72

.5
%

PC
R-

LD
R

1
87

 
(0

/1
3/

74
)

10
6 

(0
/6

/1
00

)
—

—
2.

93
 

(1
.0

6-
8.

06
)

0.
89

3;
0.

02
4;

61
.3

%
2.

93
 

(1
.0

6-
8.

06
)

0.
03

8;
-;-

—
—

2.
77

(1
.0

3-
7.

45
)

0.
04

3;
-;-

SN
aP

Sh
ot

1
19

9 
(0

/1
2/

18
7)

21
4 

(1
/1

3/
20

0)
0.

36
(0

.0
1-

8.
80

)
0.

52
8;

-;-
0.

99
 

(0
.4

4-
2.

22
)

0.
00

7;
0.

00
0;

67
.3

%
0.

92
 

(0
.4

1-
2.

03
)

0.
83

1;
-;-

0.
36

(0
.0

1-
8.

81
)

0.
52

9;
-;-

0.
86

(0
.4

0-
1.

85
)

0.
69

3;
-;-

Ta
qm

an
4

19
74

 
(3

/1
13

/1
85

8)
38

04
 

(0
/1

61
/3

64
3)

4.
05

(0
.4

5-
36

.5
3)

0.
21

3;
0.

88
0;

0.
0%

1.
10

 
(0

.7
5-

1.
63

)
0.

89
3;

0.
02

4;
61

.3
%

1.
19

(0
.8

0-
1.

64
)

0.
44

4;
0.

17
8;

38
.9

%
4.

04
(0

.4
5-

36
.3

7)
0.

21
3;

0.
86

3;
0.

0%
1.

22
(0

.9
4-

1.
58

)
0.

30
1;

0.
22

8;
30

.7
%

C
an

ce
r t

yp
e

H
N

SC
C

1
55

 
(0

/4
/5

1)
11

0 
(0

/9
/1

01
)

—
—

0.
88

 
(0

.2
6-

3.
00

)
0.

83
8;

-;-
0.

88
(0

.2
6-

3.
00

)
0.

83
8;

-;-
—

—
0.

88
(0

.2
7-

2.
94

)
0.

84
1;

-;-

O
SC

C
3

54
3 

(4
/6

5/
47

4)
58

2 
(0

/3
0/

55
2)

13
.3

2
(1

.5
7-

11
2.

75
)

0.
01

7;
0.

57
7;

0.
0%

2.
96

 
(1

.0
5-

8.
31

)
0.

03
9;

0.
00

8;
79

.4
%

3.
15

(1
.0

5-
9.

47
)

0.
04

1;
0.

00
4;

82
.2

%
10

.7
0

(1
.2

5-
91

.5
1)

0.
03

0;
0.

66
1;

0.
0%

3.
09

(1
.0

7-
8.

93
)

0.
03

8;
0.

00
3;

82
.3

%

Pr
os

ta
te

 
3

19
28

 
(1

/6
2/

18
65

)
22

80
 

(0
/5

0/
22

30
)

3.
35

(0
.1

4-
82

.3
0)

0.
46

0;
-;-

1.
41

 
(0

.9
7-

2.
07

)
0.

08
2;

0.
36

5;
0.

7%
1.

44
(0

.9
8-

2.
10

)
0.

10
4;

0.
34

0;
7.

2%
3.

25
(0

.1
3-

79
.9

0)
0.

47
1;

-;-
1.

45
(1

.0
0-

2.
11

)
0.

10
9;

0.
33

0;
9.

9%

RC
C

3
99

3 
(2

/5
6/

93
5)

10
76

 
(0

/5
8/

10
18

)
4.

70
(0

.2
2-

98
.2

4)
0.

31
9;

-;-
1.

00
 

(0
.6

9-
1.

47
)

0.
97

5;
0.

40
2;

0.
0%

1.
04

(0
.7

1-
1.

51
)

0.
84

1;
0.

59
5;

0.
0%

4.
78

(0
.2

3-
10

0.
04

)
0.

31
3;

-;-
1.

07
(0

.7
4-

1.
55

)
0.

70
6;

0.
77

7;
0.

0%

Br
ea

st
3

60
2 

(6
/7

5/
52

1)
47

9 
(3

/5
2/

42
4)

1.
44

(0
.3

8-
5.

44
)

0.
59

5;
0.

33
6;

0.
0%

0.
68

 
(0

.2
3-

2.
05

)
0.

49
8;

0.
12

0;
52

.8
%

0.
63

(0
.1

9-
2.

10
)

0.
45

1;
0.

08
1;

60
.2

%
1.

41
(0

.3
7-

5.
37

)
0.

61
3;

0.
35

6;
0.

0%
0.

59
(0

.1
7-

2.
10

)
0.

41
9;

0.
05

8;
65

.0
%

G
yn

ec
ol

og
ic

 c
2

30
1 

(0
/1

4/
28

7)
32

1 
(1

/1
3/

30
7)

0.
36

(0
.0

1-
8.

80
)

0.
52

8;
-;-

1.
16

 
(0

.5
4-

2.
48

)
0.

74
4;

0.
29

1;
10

.4
%

1.
08

(0
.5

1-
2.

28
)

0.
79

1;
0.

27
0;

18
.0

%
0.

36
(0

.0
1-

8.
81

)
0.

52
9;

-;-
1.

00
(0

.4
8-

2.
08

)
0.

83
1;

0.
25

2;
23

.8
%

C
ol

or
ec

ta
l

2
56

5 
(0

/2
0/

54
5)

24
12

 
(0

/8
5/

23
27

)
—

—
0.

97
 

(0
.5

7-
1.

63
)

0.
91

2;
0.

45
4;

0.
0%

0.
97

(0
.5

7-
1.

63
)

0.
91

2;
0.

45
4;

0.
0%

—
—

0.
97

(0
.5

8-
1.

62
)

0.
91

4;
0.

45
9;

0.
0%

Pa
nc

re
at

ic
2

32
2 

(4
/6

6/
25

2)
42

3 
(0

/3
2/

39
1)

9.
30

(1
.1

2-
77

.6
1)

0.
03

9;
0.

47
8;

0.
0%

2.
90

 
(1

.8
2-

4.
62

)
0.

62
5;

0.
02

0;
81

.6
%

2.
50

(0
.9

3-
6.

73
)

0.
07

0;
0.

09
8;

63
.4

%
8.

65
(1

.0
4-

71
.6

5)
0.

04
5;

0.
41

8;
0.

0%
3.

12
(2

.0
1-

4.
84

)
0.

00
0;

0.
40

0;
0.

0%

Lu
ng

3
50

9 
(4

3/
10

4/
36

2)
56

6 
(1

1/
85

/4
70

)
5.

42
(2

.7
5-

10
.7

0)
0.

00
0;

0.
86

6;
0.

0%
1.

72
 

(1
.2

2-
2.

41
)

0.
00

2;
0.

57
1;

0.
0%

2.
14

(1
.5

6-
2.

94
)

0.
00

0;
0.

45
8;

0.
0%

4.
52

(2
.3

1-
8.

83
)

0.
00

0;
0.

78
8;

0.
0%

2.
26

(1
.7

4-
2.

95
)

0.
00

0;
0.

48
1;

0.
0%

H
ep

at
oc

el
lu

la
r

1
10

2 
(0

/1
5/

87
)

34
7 

(0
/1

4/
33

3)
—

—
4.

10
 

(1
.9

1-
8.

82
)

0.
00

0;
-;-

4.
10

( 
1.

91
-8

.8
2)

0.
00

6;
-;-

—
—

3.
85

 
(1

.8
3-

8.
13

)
0.

00
0;

-;-

G
as

tr
ic

1
87

 
(0

/1
3/

74
)

10
6 

(0
/6

/1
00

)
—

—
2.

93
 

(1
.0

6-
8.

06
)

0.
03

8;
-;-

2.
93

 
(1

.0
6-

8.
06

)
0.

03
8;

-;-
—

—
2.

77
 

(1
.0

3-
7.

45
)

0.
04

3;
-;-

Bl
ad

de
r

1
21

9 
(0

/1
5/

20
4)

46
1 

(0
/4

0/
42

1)
—

—
0.

77
 

(0
.4

2-
1.

43
)

0.
41

5;
-;-

0.
77

 
(0

.4
2-

1.
43

)
0.

41
5;

-;-
—

—
0.

78
 

(0
.4

3-
1.

43
)

0.
42

5;
-;-

G
lo

tti
c

1
11

1 
(0

/4
/9

7)
13

9 
(0

/9
/1

30
)

—
—

0.
54

 
(0

.1
6-

1.
80

)
0.

31
6;

-;-
0.

54
 

(0
.1

6-
1.

80
)

0.
31

6;
-;-

—
—

0.
55

 
(0

.1
7-

1.
80

)
0.

32
3;

-;-

a,
P 

va
lu

e 
fo

r Z
 te

st
. b

,P
 v

al
ue

 fo
r Q

 te
st

 fo
r b

et
w

ee
n-

st
ud

y 
he

te
ro

ge
ne

ity
. c

,O
va

ri
an

,c
er

vi
ca

l a
nd

 e
nd

om
et

ri
al

 c
an

ce
r.



346 P. LIU, H. SHI, Y. YANG, R. LIU, C. HUANG, H. SHU, J. LI, Q. CHEN, Y. YANG, M. CAI

Figure 3. The forest plot of AG vs. GG of 1790G/A polymorphism and overall cancer risk(random model).
The overall OR is shown. The OR of each study is marked with a grey square. The %weight of OR is indicated by a shadow. The overall OR is indicated
by blue diamond.

Figure 4. The forest plot of AA/AG vs. GG of 1790G/A polymorphism and overall cancer risk(random model).
The overall OR is shown. The OR of each study is marked with a grey square. The %weight of OR is indicated by a shadow. The overall OR is indicated
by blue diamond.
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Publication bias. Both Begg’s funnel plot and Egger’s test 
were performed to assess the publication bias. The shape of
the funnel plots did not reveal any evidence of obvious asym-
metry in the overall meta-analysis. Then, Egger’s test was used
to provide statistical evidence of funnel plot symmetry. The
results still did not present any obvious evidence of publication 
bias (AA vs.GG. P=0.533; AG vs. GG. P=0.271; AA/AG vs.GG, 
P=0.243; AA vs. AG/GG, P=0.658; A vs. G. P=0.183).

Discussion

This meta-analysis of 26 studies involving 6337 cases and
9302 controls was conducted in order to yield a valid conclu-
sion concerning the potential association between 1790G/A 
(rs11549467) polymorphism and cancer risk. HIF-1 plays 
a major role in cancer progression and metastasis through 
activation of various genes that are linked to regulation of 
angiogenesis, cell survival, and energy metabolism [63,64]. 
The Hif-1/HIF-1 was previously found to be implicated in
the development and progression of cancer [63,64]. In 2009, 
Zhao T et al. [65] have done a meta-analysis on the rela-
tionship between Hif-1/HIF-1 and cancers, but their study 
only referred to the case-control studies before 2009. The
polymorphisms analyzed in the present study consist of G to 
A nucleotide substitutions at positions 1790 of the exon 12 of 
the Hif-1/HIF-1. Because a study by Tanimoto [64] showed 

both of the substitutions displayed an increased transactiva-
tion capacity of Hif-1/HIF-1α in vitro, the presence of the 
variant alleles might be associated with increased cancer 
susceptibility. However, studies focusing on the association 
of the Hif-1/HIF-1 polymorphism with cancer susceptibil-
ity had controversial conclusions[21,26,27,29,30,32,43-59]. 
The lack of concordance across many of these studies reflects
limitation in the studies, such as small sample sizes, ethnic dif-
ference and research methodology and so on. Meta-analysis 
is a powerful tool for summarizing the results from different
studies by producing a single estimate of the major effect with
enhanced precision.

In our analysis, there was significant association between
this polymorphism and oral squamous cell carcinoma (OSCC) 
risk under the homozygote model. Patients carrying the 
A allele at position 1790 of the exon 12 of the Hif-1/HIF-1 had 
more cancer risk than did patients homozygous for the G allele. 
Besides, for oral squamous cell carcinoma (OSCC), pancreatic 
cancer and lung cancer, the associations were more significant
in the recessive model than in the dominant model. These
results suggested that homozygous AA had stronger effects
on an individual’s phenotype than heterozygous AG. So indi-
viduals with AA genotype could have higher risk of the three 
cancer type than that with AG genotype. The pooled effects
for homozygote comparison and dominant model compari-
son suggested a significant association between the 1790G/A

Figure 5. The forest plot of AA vs. AG/GG of 1790G/A polymorphism and overall cancer risk(fixed model).
The overall OR is shown. The OR of each study is marked with a grey square. The %weight of OR is indicated by a shadow. The overall OR is indicated
by blue diamond.
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(rs11549467) polymorphism and a decreased gynecologic 
cancer risk. Furthermore, We found that Caucasian with AA 
genotype had higher risk of cancer compared to Asian under 
the homozygote and recessive models. Inconsistency between 
the two ethnicities can be explained by the possibility that 
different ethnic groups live with multiple life styles and envi-
ronmental factors. And different populations carry different
genotype and/or allele frequencies of this locus polymorphism 
which may lead to various degrees of cancer susceptibility. 
In our meta-analysis, we also observed inconsistent results 
between hospital-based studies and population-based stud-
ies. Our results show that controls in hospital-based studies 
are more representative of general population than controls 
from population-based studies. Several factors such as envi-
ronmental factors and genetic backgrounds might contribute 
to the discrepancy.

There were some limitations in our meta-analysis. First,
sample size in any given cancer was not sufficiently large, which
could increase the probability of false positive or false negative 
results. It might be difficult to get a concrete conclusion if the
number of included studies in subgroup was few. Besides, studies 
involved in different ethnicities were warranted to estimate the
effects of this functional polymorphism on cancer risk. Second,
due to the original data of the eligible studies was unavailable, it 
was difficult for us to evaluate the roles of some special environ-
mental factors and lifestyles such as diet, alcohol consumption, 

and smoking status in developing cancer. Third, the influence
of bias in the present analysis could not be completely excluded 
because positive results are supposed to be published much more 
quickly than articles with “negatives” results.

Conclusions

Our meta-analysis suggested that the Hif-1/HIF-1 1790G/
A(rs11549467) genetic polymorphism may contribute to the 
susceptibility of cancers except gynecologic cancer, especially 
in homozygote comparison (AA vs. GG) and recessive genetic 
model (AA vs. AG/GG) among Caucasian population, and 
this SNP was significantly associated with the lung cancer,
pancreatic cancer and oral squamous cell carcinoma (OSCC). 
The phenomenon also indicates that the SNP functions as
a recessive mutation, which needs to be verified or linked with
functional studies. Large well designed epidemiological studies 
are needed to validate our findings.
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