EXPERIMENTAL STUDY

Hepatocyte apoptotic index and p53 expression in obstructive jaundice rats

Kosar NM¹, Tosun M², Polat C³, Kahraman A⁴, Arikan Y⁵

Afyon Kocatepe University, Faculty of Medicine, Department of Surgery, Afyonkarahisar, Turkey.
coskunpolat2001@yahoo.com

Abstract: Objective: Obstructive jaundice is a serious disease. It can deteriorate critical functions in the liver. Material and method: A total of 20 male Wistar-Albino rats were randomly allocated into two groups consisting of ten in each as follows: Group I (Control) was subjected to a sham operation isolating the bile duct. Group II (Study) was subjected to acute cholestasis induced by bile duct ligation with 4/0 silk suture from two different places and full fold cut between ligatures. On the 7th day, group II rats were re-operated for liver sampling and sacrifice-aimed histological analysis through the old incision with anaesthesia. Hepatic tissues were histologically and immunohistochemically processed. The number of apoptotic and p53(+) cells were measured. Results: On the 7th day, the averages of direct and indirect bilirubin values in Group II rats were found to be 6.99 and 11.70 mg/dl, respectively. They were observed to be statistically significant. In the immunohistochemical evaluation p53 expression in hepatocytes was assessed, p53-positive hepatocytes were determined to exist quite widely in the tissue samples taken from the livers of rats in the study group. Nevertheless, no cells exhibiting p53 expression were found in the tissue samples of the control group. Conclusion: Apoptosis is a closed box and it might make it possible to stop the many disease processes or accelerate the healing. If the principal effective mechanism in the liver under a certain stress factor is apoptosis, it is definite that it will make a difference in the treatment approach. Consequently, we can say that both apoptotic index and p53 expression increase in the rats’ liver with biliary obstruction (Fig. 4, Ref. 51). Text in PDF www.elis.sk.
Key words: apoptosis, p53, biliary obstruction.

Biliary obstruction is a frequently seen serious surgical pathology which may occur due to extrahepatic or intrahepatic causes. Despite significant advances in diagnostic and treatment procedures especially in the last decade, this pathology remains with high morbidity and mortality rates. Biliary obstruction is reported to be responsible for morbidity and mortality rates of numerous complications, including cardiovascular dysfunction, renal failure, gastrointestinal hemorrhage, coagulopathy and sepsis due to obstructive jaundice (1, 2).

Apoptosis is a programmed mechanism of cell death caused by various physiological and pathological conditions in DNA dependent cells (3). Especially skin, intestinal and immune-system cells, many tissues require apoptosis for a regular regeneration (4–8). In apoptosis hepatocytes extend the cell cycle by activating the p53 gene in their own nuclei and try to resolve the DNA damage in order to decrease or eliminate the impact of the cellular damage (9–11). DNA damage in the cell can be completely resolved through p53 or in the case of a great damage, apoptotic signaling mechanisms can be activated, forcing the cells to self-destruction (12). Increase in the number of apoptotic cells in this process creates a protective effect in the body. If the cell does not die with apoptosis, then the damage to DNA becomes permanent and several changes in the cell end up in cancer development, presenting with various clinical pictures (13,14).P53 functions through its direct or indirect interactions in the cellular processes such as the control of gene transcription, DNA repair, cell cycle control, genomic stability, chromosome segregation, senescence, angiogenesis, apoptosis and tumor suppression (15).

Apoptosis and p53 expression have been studied in a few physiological and pathological situations (16–8). To our knowledge, apoptosis response and p53 expression in the septicemia process which significantly affects the morbidity and mortality in obstructive jaundice are not clear.

Therefore, in this study we aimed to histologically define the liver level of apoptosis in rats with experimentally induced biliary obstruction.

Materials and methods

Animals

A total of 20 male, Wistar-Albino rats weighing 270–320 g which has been obtained from Suleyman Demirel University.
Experimental Investigation Center, Isparta, were used in the present study. They were kept at temperatures between 20 and 25 °C, with relative humidity between 40 % and 70 %, and 12-hour light and dark cycles, with standard rat food and water ad libitum. Adequate hydration was ensured for all animals. At the beginning of the experiment, each rat was given a number from 1 to 20. The rats were chosen randomly and put into separate cages for each group.

Experimental design

The design was randomised controlled trial with blind outcome assessment and the study was performed in accordance with National Institutes of Health and approved by Kocatepe University Animal Ethics Committee.

Anesthesia

All rats were anaesthetised at the beginning of the experimental procedures with an intramuscular injection of ketamine (5 mg/kg, ketamin hydrochloride, Ketalar®; Eczacibasi-Werner Lambert, Istanbul, Turkey). Additional anaesthetic doses were given when required during the course of the procedure (1 mg/kg, intramuscular).

Surgical procedure

After achieving anesthesia, the animals were placed in a supine position with limbs attached to the operation table. After shaving the abdomen with safety razor and disinfecting with povidone iodine solution (Batticon; Trommsdorff-Adeka Ilae Sanayi, Samsun, Turkey) a 3 cm midline incision was made from xiphoides to pubis. The rats were randomised to two groups, each consisting of eight rats:

Group I (control) was subjected to a sham operation. Group II (study group), extra hepatic cholestasis was induced by double ligation and section of the common bile duct with 4/0 silk suture (Dogsan, Istanbul, Turkey) a 3 cm midline incision was made from xiphoides to pubis.

The p53(+) and apoptotic cells in the liver stroma were counted in 10 different places at X 20 objective magnification by the light microscope (10 sections from each rat were used). UTHSCSA Image Tool Image Analysis Programme was used for the cell count.

Immunohistochemistry

For detecting p53(+) cells, the slides were deparaffinised in a 65 °C incubator. They were then rehydrated by decreasing alcohol series. For antigen retrieval, microwave treatment was used in 10 mM citrate buffer (Labvision Corp.) with pH 6.0. After the retrieval process, 10 % H2O2 (Sigma, St Louis, MO) was used for inactivation of endogenous peroxidase in the specimens. Specimens were then reacted with rabbit polyclonal antibody against human p53 protein (Labvision Corp.) The primary antibody and HRP (Horse Radish Peroxidase) detection system (Labvision Corp.) The secondary antibody and AEC substrate system (Labvision Corp.) for chromogen. Mayers haematoxylin (Sigma) was used for counter staining. All the slides were dehydrated and mounted with aqueous mounting solution (Labvision Corp.) and evaluated under a light microscope (Nikon Eclipse E600, Japan).

For detecting apoptosis, a TUNNEL-based commercial apoptosis kit (Fragel DNA fragmentation kit, Calbichem, Darmstadt, Germany) was used. Positive control slides supported by the manufacturer were used for the control (19).

Biochemical analysis in all groups was performed in the blood on the seventh day. Values were expressed as mean ± standard deviation (SD). For statistical analysis, SPSS for Windows 15.0 program was used. Mann–Whitney U test was used for the statistical comparison of the groups’ bilirubin values. A value of p < 0.05 was accepted as statistically significant. Statistical analysis of immunosupressive evaluation was not performed, because the number of immunosupressive cells in group I (control) was 0.

Results:

Biochemical analysis in the group II was performed on the 7th day. The averages of direct and indirect bilirubin values in the Group II were found as 6.99/11.70 mg/dl, respectively. They were observed to be statistically significant with respect to the control group (p = 0.001).

In the light microscopic evaluation of apoptotic cells in the liver, apoptotic cells were observed to widely exist in the liver tissue and it was determined that they exhibited dense accumulation in some regions (Fig. 1). Nevertheless, no apoptotic cell was seen in the liver tissue of the rats in the control group (Fig. 2).

In the immunohistochemical evaluation of p53 expression in hepatocytes, p53 (+) hepatocytes were determined to exist quite widely in the tissue samples taken from the livers of rats in the study group (Fig. 3). However, no cells exhibiting p53 expression were found in the tissue samples of the control group (Fig. 4).

Discussion

Obstructive jaundice may occur due to numerous causes. This may contribute to development of many pathophysiological processes, resulting in significant rates of complications, morbidity and mortality. There are different approaches used for its treatment. Hepatectomy is one of the most preferred methods. In the rats with obstructive jaundice undergoing hepatectomy, postoperative liver regeneration was found similar to that of the sham group, while the rates of morbidity and mortality were higher (20, 21).
Many factors have been accused for the increase in morbidity and mortality in obstructive jaundice, including hypotension, impaired nutritional status, depressed immune system, hepatic dysfunction and bile salts in circulation (22–24). Furthermore, impairment of wound healing, development of portal and systemic endotoxemia, decreased reticuloendothelial cell functions, reduced T cell response, depression in non-specific cellular immune response, decreased bacterial clearance and increased bacterial translocation are also accused (25, 26). In addition, role of the problems occurring in immunosuppression resulting from the damage to functional cells has been also described (27, 28).

It was noteworthy in our study that the possibility of significant apoptosis and p53 expression might explain these rates of morbidity and mortality. That is why we believe that triggering of the apoptosis process was crucial in the obstruction icterus rather than prominent necrosis formation. Despite similar rates of regeneration in both groups, it is yet to be explained whether the high mortality rate in the study group resulted from a difference between the groups in the triggered apoptosis process or was caused by a difference at the genetic level. This is why we aimed to study p53 expression also.

Obstructive jaundice is reported not only to cause weakening of the hepatic cell functions, but also to produce a depression in Kupffer cell activity, which is a part of immune system, eventually resulting in hepatic damage and portal hypertension (29, 30). In our study, we also investigated the association with the source of depression in Kupffer cell activity, which is thought to increase morbidity and mortality with the apoptotic process of the icteric situation in the liver. We wanted to pay the way for giving time to the physician by slowing the process with a medical intervention in this pathway triggered during the icterus, if we could define to which extend the apoptosis was affected.

Different stimuli such as severe hypoxia, DNA damage, heat shock protein, metabolic changes and certain cytokines activate different tumor suppressor gene types and those will stabilize the genome (31). Today, p53 protein was demonstrated to be the major tumor suppressor gene. P53 protein expression was found with very low levels in the normal, non-stressed cells, but p53 protein becomes stabilized after stress situations and accumulates in the nucleus to maintain the genomic stability. If this process fails to block DNA damage, p53 protein stimulates apoptosis which is defined as the pattern of changes at molecular and morphological
level known as the “programmed cell death” (32–35). Looking at the basis of hepatocyte damage and progression of the liver disease, we encounter with the studies advocating the role of direct chemical damage to hepatocyte by toxic hydrophobic bile salts (36–38). These studies report that retention of the biliary components and high biliary pressures also play important roles in obstructive jaundice. Hepatic levels of toxic bile salts, chenodeoxycholic acid and deoxycholic were found to be directly associated with the degree of liver damage (39, 40). Again a diffuse necrosis is not remarkable in cholestatic liver disease and apoptosis response is reported to be more important than cholestatic necrosis in the hepatocyte death process (41). Events occurring in the bile salts toxicity typically include the swelling of hepatocytes, impairment of the membrane integrity and dissolution of the intracellular components. It is reported that toxic bile acids themselves can also directly lead to apoptosis out of these reactions (42). In our study, we found a marked increase in the number of apoptotic cells that was not seen in the controls. We believe that this was caused by bacterial translocation resulting from the accumulation of toxic hydrophobic bile salts in hepatocyte with endotoxins in the circulation.

Similar to our study, Sheen-Chen et al also reported that ductal proliferation was significantly increased with the apoptosis response in the subjects undergoing hepatic duct ligation (43). Again, Parks et al reported that intestinal mucosa exposed to atrophy, density and thickness of the villi were decreased and the rate of apoptosis was significantly increased in distal ileal cells (44).

Apoptosis causes the activation of fas pathway as well as triggers the activation of caspases, which are intracellular enzymes (45). Apoptosis induced by the bile salts causes the activation and translocation of protein kinase C, resulting in an increase of the intracellular magnesium level (46, 47). Thus, Mg-dependent endonucleases lead to DNA division. Therefore, apoptotic cell death is thought to play a central role in many physiological and pathophysiological processes (48, 49). Considering increased apoptosis and p53 expression, we can say that apoptosis and p53 have a central role in the existing pathophysiology.

Distribution of the mature cell types in the epithelium occurs on different stages such as proliferation and differentiation of the cells and programmed cell death. This balance may alter with the epithelial damage and some cells which are affected more easily from the programmed cell death can be repaired by the other cells voluntarily contributing to tissue regeneration (50, 51). This means another effective point in the programming of apoptosis to be hidden in the genetic coding. Therefore, we also studied p53 gene, which is associated with apoptosis. In our study, no p53 expression was detected in the control group, while we showed a marked p53 response in the study group.

In summary, the present study demonstrated that a serious cellular damage occurs in the hepatocyte with biliary obstruction, and the hepatocytes extend their cell cycle by activating the p53 gene in their own nuclei and try to resolve the DNA damage.

References


Received September 8, 2012. Accepted April 8, 2014.