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EXPERIMENTAL STUDY

Investigation of the effects of propofol and vitamin C 
administration on erythrocyte deformability in rats with 
streptozotocin-induced diabetes mellitus
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Abstract: Purpose: In the current study we aim to investigate the effects of vitamin C and profol on red blood 
cell deformability in diabetic rats 
Materials and methods: Twenty- eight Wistar Albino rats were included in the study after streptozocin (60 mg/
kg) treatment for 4 weeks of observation for diabetes presence. Twenty-eight rats were allocated to 4 groups. 
In group DP (n = 7) 150 mg.kg-1 of propofol was injected intraperitoneally. In group DP-vit C (n = 7) rats 100 
mg/kg of vitamin C (Ascorbic acid, Redoxon® 1000 mg/5 mL - Roche) were applied one hour before adminis-
trating 150 mg.kg-1 of propofol, while rats in control group (n = 7), and diabetic control group (n = 7) received 
intraperitoneally physiological saline. Deformability measurements were achieved by using erythrocyte suspen-
sions with hematocrit level of 5 % in PBS buffer. 
Results: Erythrocyte deformability was signifi cantly higher in diabetic control group than in control and vitamin C 
plus propofol groups (p = 0.00, p = 0.025, respectively). Erythrocyte deformability indexes were found similar in 
control group and vitamin C plus propofol group (p = 0.949). Relative resistance was increased in diabetic rat model. 
Conclusions: Erythrocyte deformability was damaged in rats with diabetes. This injury might lead to further 
problems in microcirculation. Application of propofol did not alter red cell deformability in diabetic rats. Vitamin 
C supplementation seems to reverse those negative effects and variations in erythrocyte deformability (Fig. 2, 
Ref. 57). Text in PDF www.elis.sk.
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In the recent two or three decades, the prevalence of diabetes 
mellitus (DM) has rapidly increased throughout the world, the 
estimation being that it will increase by 200 % in the next several 
decades (1–5). As a result, physicians will be encountered with 
an increasing population of diabetic patients undergoing anesthe-
sia and surgery with serious complications, such as hypertension, 
ischemic heart disease in association with signifi cant increases in 
length of stay and mortality rates in hospital, as well as nephropa-
thy, and autonomic neuropathy (1–3). 

In vitro and in vivo studies suggest that lipid peroxidation is 
associated with diabetic complications and that this plays an im-
portant role in the pathogenesis of diabetic complications. So it 
is very important to control the lipid peroxydation. A variety of 
endogenoous and exogenous antioxidant mechanisms serve to 
control this peroxidative process (6–11). 

Ascorbic acid plays a role in reducing compounds such as 
cytochrome a and c, nitrate, molecular oxygen and it is a water 
soluble molecule that has the ability of reacting with free radicals 
in aqeous medium (12). 

Several studies showed decreased basal vitamin C levels in 
diabetic patients compared with healty volunteers (13). Hemorhe-
ological parameters which include hematocrit, plasma proteins, 
erythrocyte aggregation, and erythrocyte deformability in DM, 
are often disturbed (14). 

General anesthesia agents are known to affect cardiovascular 
functions and microcirculation dynamics (15). However, whether 
these agents change plasma rheology and/or anesthesia may result 
in deterioration of tissue perfusion remains controversial. Changes 
in plasma viscosity have been listed among the factors associated 
with anesthesia procedures responsible for deterioration of tissue 
and organ perfusion (16, 17). After surgical procedures performed 
using general anesthesia, erythrocyte deformability and increased 
aggregation may be observed (17). 

Propofol (2,6-diisopropylphenol) is an intravenous anesthetic 
agent that is commonly used in daily clinical practice for sedation 
and general anaesthesia which can scavenge free radicals because 
it has a chemical structure similar to antioxidants (18). Its car-
diovascular side effects have been described in various studies. 
It can decrease the peripheral vascular resistance (19), decrease 
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jugular venous oxygen saturation (20), induce haemolysis (21), 
and cause the so-called propofol infusion syndrome, an often fatal 
cardiac failure (22). 

The effect of propofol on insulin secretion is not known. It is 
well known that diabetic patients have a reduced ability to clear 
lipids from the circulation (23). Alterations in the pharmacokinetics 
or pharmacodynamics of propofol in rats with DM were reported 
in an experimental study (24). There is no data showing whether 
administration of propofol can alter lipid clearance from the cir-
culation. An experimental study showed that propofol impairs 
diastolic left ventricular fi lling in experimental models and pro-
duces negative lusitropic effects in diabetic cardiomyocytes (25).

In earlier studies with various methodologies, propofol has 
been shown to cause OS (oxidative stress), not to affect OS, or 
to have antioxidant effect (26–29). In in vitro studies, it has been 
shown to inhibit lipid peroxidation induced by oxidative stress 
in the liver microsomes, mitochondria, and brain synaptosomes 
(30). The products that arise due to lipid peroxidation associated 
with increased oxidative stress signifi cantly affect membrane per-
meability and microviscosity, thus diminishing the deformability 
capacity and survival of the erythrocytes (31). 

We hypothesized that propofol and vitamin C and/or the emul-
sifi er might do this through a direct action on the biophysical or 
functional properties of the blood constituents such as the diabetic 
rat red blood cell (RBC) deformability. 

In this study, the effects of propofol anesthesia and administra-
tion of vitamin C before application of propofol on the red blood 
cell deformability of diabetes male rats were evaluated.

Materıals and methods

Animals and experimental protocol
This study was conducted in the Physiology Laboratory of 

Kirikkale University upon the consent of the Experimental Animals 
Ethics Committee of Kirikkale University. All of the procedures 
were performed according to the accepted standards of the Guide 
for the Care and Use of Laboratory Animals. 

In the study, 28 male Wistar Albino rats weighing between 
250 and 300 g, raised under the same environmental conditions, 
were used. The rats were kept under 20–21 °C at cycles of 12-hour 
daylight and 12-hour darkness and had free access to food until 2 
hours before the anesthesia procedure. The animals were randomly 
separated into four groups, each containing 7 rats.

Diabetes was induced by a single intraperitoneal injection of 
streptozotocin (Sigma Chemical, St. Louis, MO, USA) at a dose of 
60 mg.kg-1 body weight. The blood glucose levels were measured 
at 72 h following this injection. Rats were classifi ed as diabetic 
if their fasting blood glucose (FBG) levels exceeded 250 mg.dl-1, 
and only animals with FBGs of > 250 mg.dl-1 were included in the 
diabetic groups (dia betes only, diabetes plus propofol and diabetes 
plus vitamin C after propofol). The rats were kept alive 4 weeks 
after streptozotocin injection to allow development of chronic dia-
betes before they were exposed to propofol (32).

Rats were anesthetized with intraperitoneal ketamine 100 
mg.kg-1. The chest and abdomen were shaved and each animal was 

fi xed in a supine position on the operating table. The abdomen was 
cleaned with 1 % polyvinyl iodine and when dry, the operating 
fi eld was covered with a sterile drape and median laparotomy was 
performed. Twenty-six rats were allocated to 4 groups. In group 
DP (n = 6) 150 mg.kg-1 of propofol (Propofol 1 % Fresenius 20 
mL) was injected intraperitoneally. In group DP plus vitamin C 
(n = 7) rats were given 100 mg.kg-1 of vitamin C (Ascorbic acid, 
Redoxon® 1000 mg/5 mL, Roche) 30 minutes before adminis-
trating 150 mg.kg-1 of propofol, while rats in control (n = 7) and 
diabetic control groups (n = 6) received intraperitoneally physi-
ological saline. 

Thirty minutes after propofol administration, all rats received 
ketamin 100 mg.kg-1 intraperitoneally and were euthanized to col-
lect blood samples from vessels in the abdominal cavity. Heparin-
ized total blood samples were used to prepare erythrocyte packs. 
Deformability measurements were done by erythrocyte suspen-
sions with 5 % htc in phosphate buffered saline buffer. 

Deformability measurements
Blood samples were taken very crefully and measurement 

process was as fast as possible to avoid hemolysis of erythrocytes. 
The collected blood was centrifuged at 1000 rpm for ten minutes. 
Serum and buffy coat on erythrocytes were removed. Isotonic PBS 
buffer was added to collapsing erythrocytes and this was centri-
fuged at 1000 rpm for ten minutes. Liquid on the upper surface 
was removed. Finally, pure red cell packs were obtained from the 
washing process which was repeated three times. Erythrocytes 
packs were mixed with PBS buffer to generate a suspension with 
the value of 5 % Htc. Those erythrocyte suspensions were used for 
the measurement of deformability. Collection and deformability 
measurements of erythrocytes were done at 22 °C. 

The constant-current fi ltrometre system was used for measure-
ment of erythrocytes deformability. Samples to be measured were 
prepared as 10 ml of erythrocytes suspension and PBS buffer. The 
fl ow rate was held constant at 1.5 ml/min with an infusion pump. A 
28 mm nucleoporin polycabonate fi tler with a 5 μm pore diameter 
was prefered. Consisting pressure changes while the erythroctes 
were passing through from the fi lter were detected by the pressure 
transducer and the data was transferred to computer with the help 
of MP 30 data equation systems (Biopac Systems Inc, Commat, 
USA). The necessary calculations were performed with related 
computer programs by measuring the pressure changes at various 
times. Pressure calibration of the system was performed each time 
before measuring the samples. First the buffer(PT) and then the 
erythrocytes (PE) were passed through from the fi ltration system 
and the changes in pressure were measured. The relative refractory 
period value(Rrel) was calculated by relating the pressure value 
of erythroctes suspension to pressure value of buffer. Increasing 
in Rrel as the deformability index was interpreted as adversely 
affecting the ability of erythrocytes deformability (33, 34).

Statistical analysis
Statistical Package for the Social Sciences (SPSS, Chicago, IL, 

USA) 17.0 program was used for statistical analysis. Variations in 
blood glucose level and erythrocyte deformability were assessed by 
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using Kruskal-Wallis test. Bonferroni adjusted Mann-Whitney U 
test was used after signifi cant Kruskal-Wallis to determine which 
group differs from the other. Results were expressed as mean± 
standard deviation (Mean ± SD). Statistical signifi cance was set 
at a p value <0.05. 

Results 

During the study period 2 of the diabetic rats died (1 in Group 
DC, 1 in Group DP). 

Blood glucose measurements were 83.7 ± 9.1, 374.5± 68.6, 
375.3 ± 86.7, 368.5 ± 71.3 mg /dL for Group C, DC, DP and DP 
plus vitamin C, respectively (Fig. 1). Serum glucose was detected 
to be signifi cantly lower in Group C when compared to Groups 
DC, DP and DP plus vitamin C (p = 0.001, p = 0.002, p = 0.001, 
respectively). 

Erythrocyte deformability was signifi cantly higher in diabetic 
control group when compared with the control group and group 
propofol plus vitamin C (p = 0.002, p = 0.025 respectively). 
Erythrocyte deformability index was similar in control group and 
group propofol plus vitamin C (p = 0.949). Also erythrocyte de-
formability index was found similar in diabetic control group and 
diabetic propofol group (p = 0.650). However, relative resistance 
was increased in diabetic group (Fig. 2). 

Conclusion 

Hemorheological parameters, such as; hematocrit, plasma pro-
teins, erythrocyte aggregation, and erythrocyte deformability are 
often disturbed in DM (35). Altered erythrocyte deformability not 
only changes the oxygen delivery capacity of the erythrocytes but 
also the survival of the circulating erythrocytes (36–38). 

Additionally, it has been suggested that the impaired perfu-
sion at the tissue level observed as a complication of diabetes 
mellitus is primarily due to the reduced erythrocyte deformabi-
lity (39,40). Besides, metabolic changes and tissue perfusion due 
to cardiovascular problems may lead to inadequate recovery in 
plasma viscosity (41).

Barnes et al (42) showed that erythrocyte deformability was lo-
wer in the 14 diabetes patients with the most extensive microangi-

opathy than in 22 diabetes patients with slight or no complications 
or in controls. They suggested that hyperviscosity and reduced eryt-
hrocyte deformability might be important and potentially treatable 
factors in the etiology or progression of microcirculatory disease 
in diabetes. Similar to the previous studies, we also found that 
erythrocyte deformability was decreased in diabetes induced rats.

There are various procedures to measure erythrocyte deforma-
bility. The two of the prominent techniques for this measurement 
are measuring either change in optical diffraction pattern (ektacyto-
metry) of erythrocytes or erythrocyte fi ltration through membrane. 
In the fi rst technique the diffraction pattern of erythrocytes changes 
from circular to elliptic form during stationary fl ow conditions in 
rheoscope or microchannel (43). The erythrocyte fi ltration through 
membrane technique is based on the measurement of passage time 
of erythrocyte suspension through microscope membrane, which 
is reciprocal to the erythrocyte deformability (43). For better cor-
relation of this measurement the applied pressure should be com-
parable to that in microcirculation, below 10 Pa. As erythrocytes 
fl owing under low pressure may block the membrane pores, a low 
hematocrit (less than 10 %) is preferable. The initial fl ow method, 
which minimizes the infl uence of gravitational fi eld by operating 
within the specifi ed range of applied pressure, has been used to 
measure erythrocyte deformability under varied conditions (43, 
44). The deformability is also measured from the change in eryt-
hrocyte count before and after fi ltration through a membrane under 
gravitational fi eld (44). Another historical measurement is deter-
mining the volume of RBCs (VRBC) fi ltered per minute through 
approximately 5 μm pore-size fi lters. The VRBC was found to be 
signifi cantly reduced in diabetes patients compared with healthy 
controls (14). 

In our study we used constant fl ow fi ltration technique for de-
termining erythrocyte deformability. The fi ltration technique mea-
surement shows that the erythrocyte deformability is signifi cantly 
decreased (44–47). Similar decrease in deformability by ektacy-
tometry (48) and transparent microchannels were observed (49). 

Erythrocytes are very sensitive to oxidative injury (50). To 
defend themselves against oxidative stress (OS), erythrocytes 
are equipped with an effective and complex antioxidant system, 
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including protective enzymes and biological antioxidants such as 
superoxide dismutase, catalase, glutathione peroxidase, glutathi-
one, vitamin C, and vitamin E (51).

Among the potential antioxidants in foods, vitamin C and vi-
tamin E are the principal dietary antioxidants that protect eryth-
rocytes from damage caused by reactive oxygen species. Non-en-
zymatic antioxidants such as vitamin E, vitamin C and L-carnitine 
act towards reducing the OS (52).

Inhalation and intravenous anesthetic agents are known to af-
fect cardiovascular functions and microcirculation and ongoing 
studies are investigating the issue. Yesilkaya et al (53) have found 
that halothane and pentobarbital impair erythrocyte deformability. 

Yerer et al (54) investigated the effects of desfl urane on eryth-
rocyte deformability and found that it impaired the deformability 
in young and old rats. Aydogan et al (55) showed negative effects 
of sevofl urane on the deformability of the old rats. 

Kim et al (56) showed that verapamil and ascorbic acid have 
protective effect against tert-butyl hydroperoxide induced oxida-
tive stress. They found that ascorbic acid reverses the effects of 
tert-butyl hydroperoxide and improves deformability of erythro-
cytes to the values of non tert-butyl hydroperoxide treated groups’. 
In addition our previous studies results showed that high dose of 
Dexmedetomidine impaired erythrocyte deformability and ad-
ministration of vitamin C given 1 hour before dexmedetomidine 
reversed these negative effects and improved erythrocyte defor-
mability (57). 

Our results showed that diabetes mellitus impairs erythrocyte 
deformability and administration of vitamin C given 30 minutes 
before propofol reverses this negative effects and improves eryth-
rocyte deformability. 

Dikmen et al (29) have reported that at clinical doses, propofol 
andremifentanil have no effect on oxidative stress, and sevofl urane 
can protect erythrocytes against oxidative stress. 

In our previous study (33), propofol was found to impair the 
erythrocyte deformability in both genders, but it was more pro-
nounced in the male rats. This may be accounted for to general 
protective effects of estrogen in female rats.

Erythrocyte deformability was impaired in diabetic rats. The-
se impairments may cause further problems in microcirculations. 
Additionally, administration of propofol in diabetic rats was ob-
served to have no protective effect on eiythrocyte deformability 
index. It was observed that administration of vitamin C reversed 
the negative effect on eiythrocyte deformability However, our 
early results should be confi rmed by further detailed clinical and 
experimental studies on the issue. 
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