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Abstract: Objectives: The study was aimed at establishing an effective molecular-genetic method for detecting 
polymorphisms in genes CYP2C9 and VKORC1, which affect the pharmacogenetics of warfarin, and at deter-
mining their prevalence in Slovak population. 
Background: Warfarin, derivative of coumarin, belongs to the most commonly prescribed oral anticoagulants 
with narrow therapeutic index. An insuffi cient dose of warfarin can result in failure to produce the antithrom-
botic effect, whereas an overdose increases the risk of bleeding. It was proven that genetic variability in two 
genes, CYP2C9 a VKORC1, has a signifi cant infl uence on the individual’s response to the dosage of warfarin. 
Methods: In a control group of 112 randomly selected individuals, we tested the frequency of selected single 
nucleotide polymorphisms including CYP2C9*2 (430C>T), CYP2C9*3 (1075A>C), VKORC1*2 (1173C>T) by 
allele-specifi c Real-Time PCR and VKORC1*2 (-1639G>A) by using PCR-RFLP.
Results: Due to the combination of frequent alleles CYP2C9*2, CYP2C9*3 and VKORC1*2 in Slovak popula-
tion we determine that 25% of population need a standard 5-mg daily dose of warfarin, while 44%, 23%, and 
8% need 4 mg, 3 mg and 2 mg of warfarin per day.
Conclusion: Slovak population is in Hardy-Weinberg equilibrium and frequencies of SNPs were in accordance 
with other published results in European populations (Tab. 5. Fig. 3, Ref. 51). Text in PDF www.elis.sk.
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Warfarin as well as other 4-hydroxycoumarin derivates is used 
as an oral anticoagulant. It functions as an antagonist of vitamin 
K, which is a necessary factor of the blood clotting cascade (1). 
Nowadays it is one of the drugs most commonly used in preven-
tion or therapy of some disorders. High risk of embolisms, heart 
attack, atrial fi brillation, some of inherited blood coagulation dis-
eases, and conditions after surgery (e.g. heart valve) are treated 
with warfarin. Also, it is used as a prevention treatment in patients 
at high risk of stroke or in relapse of deep vein thrombosis (2). The 
essential anticoagulant effect of warfarin is induced by the inhi-
bition of vitamin K epoxide reductase (VKOR), which leads to a 
decrease in vitamin K-dependent coagulation protein synthesis (3). 
The commercially used warfarin is a racemic mixture of S- and 

R-enantiomers. These isoforms have mutually different metabolic 
effects. S-warfarin is about fi ve times more active than R-warfarin 
(4). After oral intake, warfarin is transported to the liver, where R 
enantiomer is metabolized by cytochromes (CYP1A1, CYP1A2 
and CYP3A4) and more effective S enantiomer is metabolized by 
cytochrome P450 (CYP2C9) (5). Gamma-glutamyl carboxylase 
(GGCX) participates in the activation of the hypofunctional pro-
thrombin clotting factors II, VII, IX, X to its active form (6). A 
reduced form of vitamin K infl uenced by VKOR takes part in the 
clotting process (Fig. 1). VKOR infl uences both warfarin enantio-
mers, which leads into a decrease in their effi ciency (7). 

The enzyme activity affecting the metabolism of warfarin 
can be expressed at different phenotypes levels, usually called 
as NM – normal metabolizers, IM – intermediate metabolizers, 
and PM – poor metabolizers. The time required to achieve stable 
concentration of warfarin in serum varies also in dependence on 
the genotype of each patients (8).

According to up-to-date knowledge, warfarin metabolism is 
mainly infl uenced by genetic factors such as polymorphisms af-
fecting CYP2C9 enzyme activity and pharmacokinetics (4) and 
pharmacodynamics of VKORC1 (9). 

CYP2C9 is located on chromosome 10 and consists of 9 exons 
and 8 introns. The CYP2C9 gene is highly polymorphic. Two al-
lelic variants, CYP2C9*2 (430C>T, rs1799853) and CYP2C9*3 
(1075A>C, rs1057910) differing from the wild-type CYP2C9*1 
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by a single point mutation, have been associated with reduced 
metabolic clearance of CYP2C9 substrates (such as warfarin 
and phenytoin) as compared to the wild-type. Thus a standard 
dose may result in raised serum drug levels (10). CYP2C9*2 is 
located in exon 3 and the incidence of allele T in Caucasians is 
10–20 %. CYP2C9*3 is located in exon 7 and the incidence of 
allele C in Caucasians is 8 % (11). Both of these allelic variants 
are less frequent in Asian and Afro-American people (12). Poly-
morphic forms of enzymes lead to a decrease in hydroxylation 
of S-warfarin in vitro and patients with this genotype belong to 
the PM phenotype. In the early stages of therapy, PM phenotypes 
are at risk of increased bleeding after warfarin treatment. These 
individuals require lower doses of warfarin to achieve the de-
sired anticoagulant effect compared to patients with at least one 
CYP2C9*1 (WT) haplotype (13). The enzyme activity is reduced 
to 12 % (CYP2C9*2) and 5 % (CYP2C9*3), respectively to WT 
(14). Studies show that CYP2C9 genotype is responsible for 12 % 
of interindividual variability in response to warfarin therapy (12). 

VKORC1 is located on chromosome 16 and consists of 3 exons 
and 2 introns (1). Common polymorphisms in the regulatory region 
of VKORC1 gene correlate strongly with warfarin response across 
the normal dosing range (15). Polymorphisms in VKORC1 gene 
signifi cantly change the pharmacodynamics and dosage adequacy 
of warfarin (16). The most frequent and most deeply studied poly-
morphisms are VKORC1 -1639G>A and 1173C>T. These SNPs, 
in the promotor and fi rst intron of VKORC1 gene infl uence the en-
zymatic activity of VKOR (17) which is an enzyme in vitamin K 

cycles and the pharmacological target of coumarins (18). VKORC1 
1173C>T, rs9934438 is in almost complete linkage disequilibrium 
with the polymorphism of VKORC1 -1639G>A, rs9923231 where 
both associate with increased sensitivity to warfarin (16). These 
SNPs are responsible for 30 % of interindividual variability in 
warfarin treatment (7). Haplotype VKORC1*2 is present in 42 % 
of Europeans (19) and is relatively rare in Asian population (20).

The management of warfarin therapy is challenging because 
on the one hand there is a large variability in dose requirements 
(0.5–60 mg per day) necessary for effective therapy and on the 
other hand there is the risk of life-threatening bleeding (21). The 
range of warfarin doses for individual genotypes is based on nu-
merous conducted studies. To determine the warfarin dose, we 
have to take into account age, race, weight, height, sex, other 
medications, as well as polymorphisms in genes CYP2C9 and 
VKORC1 (22). The prediction of dosing based on genotypes is 
presented in Table 1 (23). 

Material and methods 

The control group consists of 112 individuals, all healthy 
subjects of Caucasian origin. Participants signed an informed 
consent before the study. They were randomly selected and never 
treated with warfarin. Blood samples for DNA extraction were 
collected in 3-mL tubes containing potassium EDTA. DNA was 
extracted from 200 μl whole blood by using DNA NucleoSpin 
Blood Kit (Macherey-Nagel). The frequencies of selected single 

Fig. 1. Mechanism of action of warfarin and roles of CYP2C9 and VKORC1 in modulating anticoagulation. Warfarin exerts its pharmacologi-
cal effect by inhibiting VKORC1. VKORC1 is the vitamin K cycle enzyme controlling regeneration of reduced vitamin K, an essential cofactor 
that drives formation of the clotting factors. CYP2C9 is the major P450 enzyme that metabolizes S-warfarin to inactive metabolites. CYP2C9 
– Cytochrome P4502C9; VKORC1 – vitamin K epoxide reductase complex 1, GGCX – gammaglutamyl carboxylase.
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nucleotide polymorphisms CYP2C9*2 (430C>T), CYP2C9*3 
(1075A>C), VKORC1*2 (1173C>T) were tested in a control group 
(112 randomly selected individuals) by allele-specifi c Real-Time 
PCR. The reaction was performed in 10-μl volumes containing 
approximately 100 ng of DNA. The assay for identifi cation of 
CYP2C9 and VKORC1 alleles were obtained from Applied Bio-
systems: C__25625805_10 for CYP2C9*2 (430C>T) rs1799853, 
C__27104892_10 for CYP2C9*3 (1075A>C) rs1057910 and 
C__30204875_10 for VKORC1*2 (1173C>T) rs9934438. The 
amplifi cation of PCR consisted of an initial denaturation step at 
95 °C for 10 min followed by 45 amplifi cation cycles (95 °C for 
15 sec and 60 °C for 60 sec). The frequencies of SNP VKORC1*2 

(-1639G>A) rs9923231was tested in a control group (112 ran-
domly selected individuals) by using PCR-RFLP. The PCR reac-
tion was performed in 20 μl volumes containing approximately 
100 ng of DNA, 2xPCR Master Mix (Fermantas), 0.5 μM of each 
primer (Forward 5´ GCCAGCAGGAGAGGGAAATA 3´ and 
Rewerse 5´AGTTTGGACTACAGGTGCCT 3´). The amplifi ca-
tion of PCR consisted of an initial denaturation step at 95 °C for 
2 min followed by 35 amplifi cation cycles (95 °C for 15 sec, 59 
°C for 30 sec, 72 °C for 60 sec) and fi nal polymerization step at 
72 °C for 7 min. After PCR reaction, all PCR products were di-
gested by restriction enzyme HpaII (Fermentas) which cuts when 
-1639G>A polymorphisms is not present, and visualized by aga-
rose gel electrophoresis. 

To fi nd out if the Slovak population is in to the Hardy-Wein-
berg equilibrium the results were evaluated by chi-square test. 
Allele’s frequencies of different populations were determined and 
compared using Z-test.

Results

We determine the genotypes of CYP2C9*2 (430C>T) 
rs1799853, CYP2C9*3 (1075A>C) rs1057910 and VKORC1*2 
(1173C>T) rs9934438 by allele-specifi c Real-Time PCR (Fig 2) 
and VKORC1*2 (-1639G>A) rs9923231 by PCR-RFLP (Fig. 3). 
The frequency rate of selected polymorphisms in genes CYP2C9 
and VKORC1 infl uencing the pharmacogenetics of warfarin was 
tested in the control group of 112 randomly selected individuals. 

VKORC1 genotype
CYP2C9 genotype

*1/*1 *1/*2 *1/*3 *2/*2 *2/*3 *3/*3
*1/*1 5 – 7 mg 5 – 7 mg 3 – 4 mg 3 – 4 mg 3 – 4 mg 0.5 – 2 mg
*1/*2 5 – 7 mg 3 – 4 mg 3 – 4 mg 3 – 4 mg 0.5 – 2 mg 0.5 – 2 mg
*2/*2 3 – 4 mg 3 – 4 mg 0.5 – 2 mg 0.5 – 2 mg 0.5 – 2 mg 0.5 – 2 mg
The range of expected warfarin dosage based only on polymorphisms in genes CYP2C9 (CYP2C9*2, 430C>T, rs1799853 and CYP2C9*3, 1075A>C, rs1057910) and VKORC1 
(VKORC1*2, -1639G>A, rs9923231) and their combination (23). To determine the warfarin dose, we have to take into account age, race, weight, height, sex and other 
medications.

Tab. 1. Infl uence of genotype effect on warfarin dose per day.

Fig. 2. Schematic pictures of Allele-specifi c Real-Time PCR of polymorphisms in genes CYP2C9 (430C>T, rs1799853 and 1075A>C, rs1057910) 
and VKORC1 (1173C>T, rs9934438) (a – Wild-type allele, b – mutant allele).

A – Wild type B – Heterozygous C – Mutant

Fig. 3. PCR-RFLP of VKORC1 -1639G>A, rs9923231 by HpaII. 1 – 
Wild-Type with GG genotyp (168 + 122 bp), 2 – Heterozygot with GA 
genotyp (290 + 168 + 122 bp), 3 – Mutant with AA genotyp (290 bp), 
4 – Undigested control (290 bp), 5 – Negative control, 6 – Molecule 
marker - O´GeneRuler Low Range DNA Ladder (700, 500, 400, 300, 
200, 150, 100, 75, 50 and 25 bp).

a

a

b

b

b

a
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We defi ned the haplotypes (Tab. 2) and genotypes (Tab. 3) frequen-
cies. To detect signifi cant differences in the frequency of alleles 
between Slovak and other populations (Tabs 4 and 5) we used a 
statistical test method Z. 

Discussion 

The implementation of molecular-genetic diagnostic methods 
in pharmacology has brought forward the fact that the drugs with 
a narrow therapeutic index are now safer for setting up a proper 
dose in view of individual genome variations and individualized 
therapy. Warfarin belongs to this group of drugs, and their effect 
is infl uenced by polymorphisms in genes CYP2C9 and VKORC1. 
Detection of genotype before initiating the therapy could help 
avoid complications right at the beginning but also during long-
term treatment.

It is estimated that seven million people are treated with war-
farin worldwide. In Europe, it is approximately two million pa-
tients. However, more than 20 % of them are hospitalized in the 
fi rst six months because of bleeding complications caused by 
anticoagulant treatment (9). The pharmacogenetics of warfarin is 
signifi cantly infl uenced by genetic factors such as the prevalence 
of polymorphisms in genes CYP2C9 and VKORC1. 

*1⁄*1 *1⁄*2 *2⁄*2 *1⁄*3 *2⁄*3 *3⁄*3
CYP2C9 77 16 2 14 3 0
VKORC1 41 58 13 − − −

Tab. 2. Haplotype frequency of CYP2C9 a VKORC1 in the control 
group of 112 randomly selected subjects.

Gene and 
substitution

CYP2C9
430C>T

CYP2C9
1075A>C

VKORC1
-1639G>A

VKORC1 
1173C>T

Wild-Type CC - 91
(81.25%)

AA - 95
(84.82%)

GG - 41
(36.61%)

CC - 41 
(36.61%)

Heterozygous CT - 19
(16.96%)

AC - 17
(15.18%)

GA - 58
(51.79%)

CT - 58 
(51.79%)

Mutant TT - 2
(1.79%)

CC - 0
(0.00%)

AA - 13
(11.61%)

TT - 13 
(11.61%)

Tab. 3. Genotype frequency of CYP2C9 a VKORC1 in the control group 
of 112 randomly selected subjects.

Population n
% p

References
CYP2C9*2 CYP2C9*3 CYP2C9*2 CYP2C9*3

Slovakia 112 10 8
British 948 13 7 0.32 0.71 (22)
American 935 11 6 0.74 0.46 (27) 
Italian 365 13 11 0.37 0.32 (7) 
Taiwanese 37 0 3 0.00 0.19 (28)
Malaysian 27 0 11 0.00 0.65 (29)
Israel 384 13 8 0.37 1.00 (30) 
Canadian 189 11 8 0.78 1.00 (31)
Japanese 828 0 2 0.00 0.02 (32)
Russian 62 9 5 0.83 0.43 (33)
Uruguayan 53 13 11 0.58 0.55 (34)
French 126 12 9 0.62 0.78 (35)
Croatian 181 17 7 0.08 0.75 (36)
Singapore 59 0 3 0.00 0.14 (37)
Swedish 1487 11 7 0.73 0.71 (38)
Chinese 178 0 4 0.00 0.18 (39)
Brazilian 103 1 1 0.00 0.01 (40)
Turkish 205 13 10 0.42 0.55 (41)
Holland 1525 13 6 0.31 0.45 (42)
Frequencies of polymorphisms in gene CYP2C9 (CYP2C9*2 and CYP2C9*3) and comparison of our results with frequencies in other populations. Statistic evaluation of 
results at signifi cance level of p<0.05. Signifi cant differences between Slovak and other populations are underlined.

Tab. 4. Percentage frequencies of polymorphisms CYP2C9*2 and CYP2C9*3 in different population.

Population n
% p

References
VKORC1*2 VKORC1*2

Slovak 112 38
British 297 47 0.10 (22)
Americans 1119 37 0.84 (43)
Afro-Americans 378 10 0.00 (43)
Italian 147 40 0.74 (7)
Canadian 126 39 0.87 (44)
Japanese 828 91 0.00 (32)
French 563 42 0.43 (45)
Swedish 181 39 0.86 (38)
Chinese 273 92 0.00 (17)
Turkish 205 50 0.04 (41)
Holland 1756 39 0.83 (42)
European-Americans 216 50 0.44 (46)
Ethiopian 154 20 0.00 (47)
Lithuanian 67 35 0.04 (48)
Iranian 126 55 0.43 (49)
Caucasians 92 49 0.14 (17)
Greek 98 48 0.77 (50)
Romanian 332 42 0.13 (51)
Frequencies of polymorphisms in gene VKORC1 (VKORC1*2) and comparison 
of our results with frequencies in other populations. Statistic evaluation of results 
at signifi cance level of p<0.05. Signifi cant differences between Slovak and other 
populations are underlined.

Tab. 5. Percentage frequencies of polymorphisms VKORC1*2 in dif-
ferent population.
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We determined the SNPs genotype CYP2C9*2, CYP2C9*3 
and VKORC1*2 of 112 individuals by using allele-specifi c Real-
Time PCR and PCR-RFLP. Frequencies of alleles with polymor-
phisms found in the current study are 10 % (CYP2C9*2), 8 % 
(CYP2C9*3) and 38 % (VKORC1*2). Similar results were de-
scribed by Takahashi et al 2006 (24), who determined the frequen-
cy of the same alleles was 14 %, 11 % and 42 % in 115 subjects 
of Caucasian population. Polymorphisms in genes CYP2C9 and 
VKORC1 play an important role in the dosage of warfarin. Based 
on the results mentioned above, 25 % of Slovak population was 
found to need a standard dose of warfarin (5 mg per day). Taking 
into account a combination of the most severe polymorphisms 
CYP2C9*2, CYP2C9*3 and VKORC1*2, 44 %, 23 % and 8 % 
of individuals need 4 mg, 3 mg and 2 mg of warfarin per day, re-
spectively based on the general therapeutic scheme implemented 
by Kitzmiller et al 2011 (23). Despite large advances in the pre-
diction of stable warfarin dose, approximately 50 % of the dose 
variability remains unexplained. Inter- and intraindividual vari-
ability is a big challenge in warfarin treatment. The anticoagulant 
effects of warfarin are modifi ed also by diet and foods contain-
ing vitamin K, although the dietary infl uences tend to be of more 
short-term character (25).

VKORC1*3 haplotype (3730G>A, rs7294) was also defi ned 
and is present in 38 % of Europeans (13). It causes an increase in 
the dosage of warfarin (AA) up to 30 % compared with WT (7). 
The frequency of this allele in the Slovak population is 41 % (26).

Slovak population is in Hardy-Weinberg equilibrium. The fre-
quencies of selected SNPs correlate with other European popula-
tions (7, 22, 33, 35, 36, 38, 42) and thus with Caucasians (17). This 
type of study was done for the fi rst time in Slovakia. 

Knowledge of the genotype of individuals allows physicians 
to adequately set up the warfarin dosage and avoid undesirable 
complications and life-threatening conditions, especially at the 
beginning of the warfarin therapy. The pharmacogenetic test is 
useful also for patients who are treated with warfarin in long term 
and suffer from serious side effects. FDA (Food and Drug Asso-
ciation) recommends genotype testing before the start of therapy. 
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