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Intracellular distribution of 3,6-bis(3-alkylguanidino)acridines determines 
their cytotoxicity
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Cytotoxicity of two derivatives of 3,6-bis(3-alkylguanidino)acridines (GNDAs; pentyl- and hexyl-GNDA) was determined 
against three cell lines: a murine immortalized fibroblast cell line NIH-3T3, a human ovarian carcinoma cell line A2780, and 
a human neuroblastoma cell line SH-SY5Y. We found out that these GNDAs were cytotoxic against A2780 and NIH-3T3 cells 
but they showed only a marginal cytotoxicity against neuroblastoma cells SH-SY5Y. To explain differences in cytotoxicity, 
intracellular distribution of GNDAs was monitored. GNDAs were accumulated in A2780 and NIH-3T3 cells in the nuclei 
(fluorescence microscopy). In contrast to these cell lines, in SH-SY5Y cells, GNDAs were localized outside of the nuclei, at 
the plasma membrane and surroundings, extending also to the cytosol. This distribution of GNDAs was confirmed by an 
ImageStream Flow Cytometer. Acetylcholinesterase (AChE) activity in the SH-SY5Y cells decreased upon incubation with 
GNDAs. Kinetic studies showed that GNDAs were able to inhibit AChE by the same mode as tacrine (9-amino-1,2,3,4-
tetrahydroacridine), a known inhibitor of AChE. A low cytotocity of GNDAs against SH-SY5Y cells could be caused by their 
affinity to AChE (the enzyme is localized mainly at the plasma membrane). The interaction of GNDAs with AChE may affect 
their intracellular distribution and consequently the cytotoxicity.
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DNA represents an important target for some of the 
established and new anticancer drugs [1-6]. Among these, 
derivatives of acridine have shown a high anticancer activity. 
Amsacrine and its analogues belong among the most tested 
acridine drugs used in antitumor therapy [7-9]. Cytotoxicity 
of these drugs is associated with their DNA binding activity, 
whereby most of them act as inhibitors of topoisomerases or 
DNA intercalators [10]. The search for novel anticancer drugs 
encouraged the preparation of many sets of new acridine de-
rivatives [11-15]. A number of novel acridine derivatives have 
been prepared in our laboratory and their interaction with 
DNA and in vitro anticancer activity have been studied [9, 10]. 
Recently, Plsikova et al. [16] studied 3,6-bis(3-alkylguanidino)
acridines (GNDAs), the new guanidine derivatives based 
on proflavine, which possess symmetrical, extending alkyl 
chains (alkyl-GNDA, Fig. 1). These substances have a strong 
DNA binding activity and these with penty- and hexyl- alkyl 

chains also a high cytotoxicity, leading to apoptosis of HL-60 
leukemia cells [16]. 

The purpose of this study was to investigate cytotoxicity of 
the GNDAs to other neoplastic cell lines and the factors which 
could influence effects of these compounds. In particular, an 
intracellular distribution of GNDAs in the cells was a main 
object of our interest.

Materials and methods 

Chemicals. All chemicals and reagents were purchased and 
used without further purification. Na2HPO4.12H2O, KH2PO4, 
and NaCl were obtained from Lachema (Czech Republic), 
FBS (fetal bovine serum), DMEM (Dulbecco‘s Modified 
Eagle‘s Medium), HAM F12 (Ham’s Nutrient Mixture F12), 
RPMI 1640, propidium iodide, PBS (Phosphate Buffered 
Saline), trypsin, DMSO (dimethyl sulfoxide), tacrine, and 
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MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyl tetrazolium 
bromide) from Sigma-Aldrich Chemie (Germany), parafor-
maldehyde from Merck KGaA (Germany), and Triton x-100 
(100%) from Serva (Germany).

3,6-Bis(3-alkylguanidino)acridine hydrochlorides (Fig. 
1, GNDAs) were synthesized in the Department of Organic 
Chemistry, Faculty of Science, University in Kosice as hydro-
chloride salts [16].

Cell cultures and treatments. The murine immortalized 
fibroblast cell line NIH-3T3 was obtained from the American 
Type Culture Collection, Rockville, MD (USA). The cells were 
routinely cultured in DMEM supplemented with 10% FBS, 
2 mM L-glutamine, penicillin (100 U/mL), and streptomycin 
(100 μg/mL). The human ovarian carcinoma cells A2780 were 
grown in the RPMI 1640 medium supplemented with 10% 
FBS, penicillin (100 U/mL), streptomycin (100 μg/mL), and 
with (2 mM) L-glutamine. The human neuroblastoma cell 
line SH-SY5Y was routinely cultured in a DMEM : Ham F12 
medium (1:1) supplemented with 10% fetal bovine serum 
(FBS), streptomycin (100 µg/mL), penicillin (100 U/mL), 1% 
L-glutamine, and 0.1% non-essential amino acids (all obtained 
from Sigma-Aldrich Chemie). 

The cells were seeded into the tissue culture flasks (75 mL) 
containing the supplemented medium and kept in a humidi-
fied atmosphere of 5% CO2 and 95% air at 37 °C. 

Cytotoxic studies. To evaluate the cytotoxic effect of 
GNDAs, the cells were seeded in 96-well plates (2.5 × 104 cells/
well, MTT assay) and treated with different concentrations of 
GNDAs for 24, 48, or 72 h. All experiments were carried out 
24 h (NIH-3T3 and A2780 cells) or 48 h (SH-SY5Y cells) after 
the cells were seeded. Control experiments with equivalent 
volumes of DMSO were carried out. 

MTT assay. A cell viability in the presence or absence 
of the experimental agent was determined using a MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-dimethyl tetrazolium bro-
mide) microculture tetrazolium assay as described previously 
[17]. After 48 h exposure to the compound, MTT (50 µl, 1 mg/
mL) was added to each well. After 3 h, the cell cultures were 
centrifuged, the supernatant discarded, and the resulting pel-
lets thoroughly extracted into 200 µL of DMSO. Absorption at 
540 nm was recorded using a MicroPlate Reader (Labsystem 
Multiscan, Multisoft, Finland).

Intracellular accumulation of GNDA. To investigate the 
intracellular distribution of GNDAs, the cells were seeded 
onto a cover slip in 40 mm Petri dishes. The NIH-3T3, 
A2780 (1.5×105/mL) and SH-SY5Y (2.5×105/mL) cells were 
treated with 5 µM hexyl-GNDA for 30 min or 48 h, then 
washed with sterile PBS, and observed using a fluorescence 
microscope (Axio Zeiss Imager A1, camera AxioCamMrc, 
Germany).

Analysis of localization of hexyl-GNDA in the cell 
nucleus. SH-SY5Y cells were treated with 10 μM GNDAs 
(1 h or 48 h, 37 °C) and then the cells were incubated with 
100 nM Syto62Red (35 min, 37°C), a nucleic acids dye. After 
incubation, the cells were rinsed twice in PBS and immedi-

ately visualized using an Amnis ImageStream Imaging Flow 
Cytometer: hexyl-GNDA (channel 8), Syto62Red (chan-
nel 11), VIS (channel 1). Bright Detail Similarity Features 
were calculated for double positive, single, and focused cell 
population.

Preparation of human erythrocytes AChEE. Erythrocytes 
were isolated from a fresh blood of healthy donors of both sexes 
(provided by the Hematologic Clinics Ruzinov in Bratislava). 
The blood was centrifuged (2500×g, 10 min), the erythrocyte 
sediment was washed, suspended in the solution (165 mM 
NaCl), centrifuged at 2500×g for 10 min, and the washing 
was repeated until the supernatant became completely clear. 
Distilled water was added in the ratio 1:5 and the mixture was 
incubated (25 °C, 90 min). The suspension was centrifuged 
at 12000×g (4 °C, 25 min). The sediment was washed three 
times with distilled water and centrifuged after each washing 
under the same conditions as above. The Sörensen solution 
(2 mL, 0.1 M, pH 7.2), 1 mL of 1 mM EDTA, and 1% Triton-x 
100 were added to the sediment. After 5 min centrifugation 
at 20800×g, the sediment was removed and the supernatant 
was stored at -20 °C as a source membrane bound AChEE for 
further use up to 2 weeks [18].

AChE activity. Activity of AChE was determined by an 
Ellman’s method [19] modified by Alhomida et al. [20]. Hy-
drolysis of acetylthiocholine (ATCh) was monitored at 436 nm 
by formation of a 5-thio-2-nitrobenzoate anion resulting from 
the reaction of 5,5´-dithio-bis(2-nitrobenzonic acid) (DTNB) 
with thiocholine that is released from enzymatic hydrolysis of 
ATCh. The hydrolysis rate was measured in 2 mL assay solu-
tions with 100 mM phosphate buffer, pH 7.4, 0.1 mM ATCh, 
and 0.5 mM DTNB at 37 °C. Isolated AChEE or cell lysate 
(the SH-SY5Y cells were harvested with a plastic spatula and 
disintegrated by sonication in 300 µL PBS) was added to the 
reaction mixture and pre-incubated with DTNB for 5 min at 
37 °C. Before measuring an absorbance change (a Specord 250 
spectrophotometer, Analytic Jena, Germany), the ATCh was 
added. The hydrolysis of ATCh was monitored for 10 min and 
the enzyme activity was calculated from a slope of the obtained 
linear dependence.

The activities were calculated using a molar absorption 
coefficient of 11280 M-1cm-1 [21]. Data were normalized to 
the amount of protein. Results were presented as a percent-
age of the activity in untreated cells (as 100%). The protein 
content was determined according to a method of Bradford 
[22].

To study an effect of GNDAs or tacrine on the AChE 
activity, the enzyme suspension (AChEE or cell lysate) was 
pre-incubated with GNDAs or tacrine for 5 min prior to ad-
dition of the substrate. To determine that effect in SH-SY5Y 
cells (the cells were seeded in 75 mm Petri dishes, 2×106 cells/
dish), the cells were incubated with the substances for 48 h, 
then were scraped and collected in the phosphate buffer, pH 
7.4 (2 mL), after that, the cells were disrupted by freezing and 
thawing and the cell lysate was and kept on ice and used for 
determination of the AChE activity.
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Kinetic studies. Kinetic studies were performed using 
an isolated AChEE. Enzyme activities were determined at 
37 oC with growing acetylthiocholine concentrations (0.02 – 
0.1 mM) in the presence or absence of inhibitors (0.5 – 1.5 µM). 
Lineweaver-Burk plots were used to reveal a mechanism of 
inhibition. Replots of the slopes versus the inhibitor concentra-
tions gave estimates of Ki. Graphs were plotted in an Origin 
Pro 8 program. 

Statistical analysis. Results were calculated as a mean 
± standard deviation (S.D.) of at least three independent 
experiments. Statistical significance was determined by the 

Student´s t test and p ≤ 0.05 was taken as the limit of statisti-
cal significance.

Figure 1. Chemical structures of tested 3,6-bis(3-alkylguanidino)acridine 
hydrochlorides.

Table 1. Cytotoxicity of GNDAs against A2780, NIH-3T3 and SH-SY5Y 
cells

Cell line Compound c [µM] Viability[%]a

24 h 48 h 72 h

A2780

Pentyl-GNDA 10 62±9.8 76±10.3 66±12.3
50 51±10.5 57±9.5 39±8.7

Hexyl-GNDA 10 46±9.8 60±10.8 60±11.3
50 37±12.7 38±8.6 39±9.6

NIH-3T3

Pentyl-GNDA 10 58.3±14.2 57±11.4 46±10.0
50 35.3±8.5 46±9.3 40±9.8

Hexyl-GNDA 10 64±12.6 54±11.0 26±8.0
50 25.5±14.8 8± 5.7 6±5.0

SH-SY5Y

Pentyl-GNDA 10 88.0±13.2 84.2±15.4 84.9±10.5
50 84.0±8.7 80.7±10.8 77.7±9.4

Hexyl-GNDA 10 84.8±9.7 80.7±14.2 86.2±9.8
50 79.5±9.0 74.9±9.1 74.9±7.7

a The results are presented as a mean ± SD (n = 3).

Figure 2. Intracellular accumulation of hexyl-GNDA in NIH-3T3 (A) and A2780 (B) cells visualized by fluorescence microscopy. The cells were incubated 
with hexyl-GNDA (5 µM) for 30 min and then washed with PBS. Images were obtained by the fluorescence microscope Axio Zeiss Imager A1, camera 
AxioCam MRc, magnification 630x or 400x. The cells were visualized using a filter with an emission wavelength of 420 nm. Representative images are 
shown from three independent experiments.
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Figure 3. Intracellular distribution of hexyl-GNDA in SH-SY5Y cells. The cells were incubated with the hexyl-GNDA for 30 min (A) or 48 h (B), and 
then washed with PBS. The images were obtained using the same instrument as above in magnification 400x. 

Results 

Cytotoxicity. We explored the toxicity of two GNDA 
derivatives, pentyl-GNDA and hexyl-GNDA, against the 
A2780, NIH-3T3 and SH-SY5Y cells. As can be seen in Table 
1, GNDAs markedly decreased viability of A2780 and NIH-
3T3 cells. For example the hexyl-GNDA derivative reduced 
the viability of these cells by 40 and 74%, respectively, after 
72 h treatment in 10 µM concentration. However, the toxic-
ity of the both GNDAs against SH-SY5Y cells in the same 
conditions was very low, when the viability decreased only 
by 15%. 

Intracellular distribution. The cytotoxicity of GNDAs 
against NIH-3T3 and A2780 cells was much higher than 
against the neuroblastoma cells SH-SY5Y. Such differences in 
toxicity may result from a different intracellular distribution 
of GNDAs. As the both tested analogs showed the same distri-
bution in all cell lines, we will further show the hexyl-GNDA 
as an example. As shown in Fig. 2 (A, B), the hexyl-GNDA 
was accumulated in the nucleus and cytosol of the NIH-3T3 
or A2780 cells after 30 min incubation. However, in the SH-
SY5Y cells, we did not observe any nuclear accumulation of 
GNDAs after short-time (30 min) incubation (Fig. 3A). We 
checked also their long-term (48 h) distribution in SH-SY5Y 
cells by fluorescence microscopy, but with the same negative 

result (Fig. 3B). The cellular sequestration of the hexyl-GNDA 
on microphotographs (Fig. 3) shows a strong fluorescence 
signal observed at the plasma membrane of SH-SY5Y cells 
and surroundings, extending also to the cytosol, but remaining 
outside of the nucleus.

To confirm localization of the GNDAs outside of the nu-
cleus, an Image stream imaging technique for colocalisation 
using the Syto62Red nucleic acid dye was applied. As shown in 
Fig. 4, the fluorescence of hexyl-GNDA and Syto62Red were 
not overlaid even after long-term incubation. The values of 
Bright Detail Similarity R3 Feature were below 1.0 and 1.7 after 
1 h and 48 h incubation, respectively (Fig. 4). The obtained 
results proved that hexyl-GNDA were not present in the nuclei 
of SH-SY5Y cells.

Interaction with AChE in SH-SY5Y. Intracellular locali-
zation of the hexyl-GNDA outside of the nucleus (Fig. 3 and 
4) indicates that this substance has a high affinity to other 
targets in the SH-SY5Y cells. Considering localization of 
the GNDA at the plasma membrane, proteins of the plasma 
membrane could interact with these substances. Based on the 
literature reports [23] we supposed that acetylcholinesterase 
(EC 3.1.1.7; AChE) among others could be a cellular target of 
GNDAs in the SH-SY5Y cells, therefore effects of GNDAs on 
the enzyme activity in SH-SY5Y cells were investigated and 
compared to a tacrine (9-amino-1,2,3,4-tetrahydroacridine) 
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Figure 4. Colocalization of fluorescence of the hexyl-GNDA and Syto62Red nucleic acid dye. SH-SY5Y cells were incubated with the hexyl-GNDA (10 µM, 
green) for 1 h (A) or 48 h (B). After labeling with Syto62Red (100 nM), the cells were analyzed using an Amnis ImageStream Imaging Flow Cytometer. 
The parameter reflecting the colocalization of two probes, Bright Detail Similarity R3 Feature, was calculated. The resulting values around 1 mean no 
colocalization, the values close to 3 mean a perfect colocalization. Representative images are shown from three independent experiments. 

standard, a known inhibitor of acetylcholinesterase [24]. 
After short 5 min incubation of the cell lysate with GNDAs 
(0.5 µM), a remaining 52 – 72% antiAChE activity was found 
(Fig. 5). Tacrine proved to be a more potent AChE inhibi-
tor (only 30% remaining enzyme activity) than GNDAs but 
its inhibitory effect significantly decreased after extended 
48 h incubation. Such a recovery of the AChE activity has 

not been observed after 48 h incubation of the cells with 
GNDAs.

Mechanism of the ACHE inhibition. To compare inhibi-
tory effects of GNDAs and tacrine, kinetic data were analyzed 
using a double-reciprocal Lineweaver-Burk plot. Human 
erythrocyte acetylcholinesterase (AChEE) was used and 
a dose-dependent inhibition of the enzyme with GNDAs was 
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estimated first. The concentration-response curves showed 
that these compounds inhibited AChE in a dose-dependent 
manner. Determined IC50 values proved that GNDA deriva-
tives were less potent than tacrine (Table 2).

As can be seen in Fig. 6A, the double-reciprocal Lineweaver-
Burk plot revealed that both slopes and intercepts increased 
with a higher pentyl-GNDA concentration, demonstrating 
thus a mixed-type competitive and non-competitive inhibi-
tion. The inhibition constant Ki = 0.4 μM was obtained from 
a secondary plot of the slope versus the concentration of 
pentyl-GNDA (Fig. 6A; inset). Tacrine behaved as a mixed-
type inhibitor (Fig. 6B) as indicated in articles [25, 26].

Discussion

Most of acridine compounds are cytotoxic and their toxicity 
is caused by their DNA binding activity and some of them thus 
can serve as probes for mutagenesis examination [15, 27-32]. 
In spite of that, cytotoxicity of some acridines may not be 
connected with their interaction with nuclear DNA but they 
could induce an ER stress or oxidative stress in cells. Such types 
of acridines were prepared in our laboratory [33-35]. It was 
proven that 3,6-bis((1-n-alkyl-5-oxo-imidazolidin-2-yliden)
imino)acridine hydrochlorides were localized in mitochondria 
[36]. Likewise, unusual non-nuclear accumulation of 3-amino-
4-hydroxymethyl-acridine derivative in the form of aggregates 
in the cytoplasm accompanied by its localization also in lyso-
somes was found out by Peixoto et al. in 2009 [37].

Recently Plsikova et al. [16] has documented that novel 
derivatives of acridine, 3,6-bis(3-alkylguanidino)acridines 

Figure 5. The effect of GNDAs on AChE activity in SH-SY5Y cells. SH-SY5Y cells were incubated with 0.5 µM GNDAs or 0.5 µM tacrine for 48 h 
(non-cytotoxic concentrations), then the cells were harvested and ACHE activity was determined in the cell lysate as described in Methods. The 
inhibition effect was evaluated after short-time incubation; the substances were incubated with the cell lysate (1x106 cells/0.1 mL) for 5 min and the 
enzyme activity was assayed. The results are presented as the mean ± SD (n = 3), statistical significance p < 0.001(***) for particular experimental 
group compared to untreated control.

Table 2. In vitro inhibition effects of GNDAs and tacrine on AChEE

Compound IC50 [µM]a

pentyl-GNDA 0.60±0.09
hexyl-GNDA 1.60±0.19
tacrine 0.23±0.02

a The results are presented as a mean ± SD (n = 3).

are effective DNA-intercalating agents, whose cytotoxic ac-
tion is dependent mainly on their intracellular accumulation 
in nuclei of leukemia HL-60 cells. We have proceeded further 
with investigation of the cytotoxicity of GNDAs. Surprisingly, 
considerable cytotoxicity of the pentyl- and hexyl-GNDA (the 
most cytotoxic were GNDAs derivatives against HL-60 cells) 
was confirmed only against A2780 and NIH-3T3 cells, but 
not against SH-SY5Y neuroblastoma cells. It was shown that 
derivatives of GNDA were localized in nuclei of the A2780 
and NIH3-T3 cells. But, the presence of the GNDA derivative 
in nuclei of SH-SY5Y cells was not proved. We have observed 
that GNDAs were accumulated at the plasma membrane of 
SH-SY5Y cells and surroundings. 

We have searched for a potential cellular target for GNDAs 
in the SH-SY5Y cell line that is being used as a cellular model 
of cholinergic phenotype [38] with expression of acetylcho-
linesterase [39-41]. AChE is responsible for the termination 
of cholinergic transmission (breakdown of acetylcholine) [42, 
43]. Two isoforms of AChE are synthesized in neuroblastoma 
cells, AChE-T (AChE-T, a tailed form of AChE) is linked to the 
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cellular membrane and its soluble splice variant, AChE-R, is 
realeased into the cell media [44-49]. Thus acetylcholinesterase 
has been proposed as a potential target. 

Our study of the interaction between GNDAs and AChE 
confirmed that these derivatives of acridine were able to inhibit 
the AChE activity in SH-SY5Y cells. Kinetic analysis (AChE 

from human erythrocytes was used for this study) revealed 
that GNDAs were acting as the mixed-type AChE inhibi-
tors as well as tacrine (9-amino-1,2,3,4-tetrahydroacridine), 
a known inhibitor of AChE that was the first AChEI introduced 
in the therapy of the Alzheimer’s disease [50, 51]. The effect 
of GNDAs on AChE in the SH-SY5Y cells was not the same 

Figure 6. The inhibition of acetylcholinesterase by pentyl-GNDA and tacrine. Lineweaver–Burk plots representing reciprocals of initial enzyme velocity 
versus ATCh concentration in the absence and presence of different concentrations of pentyl-GNDA (A) and tacrine (B). Inset: Secondary replots of 
Lineweaver–Burk plot slope versus tacrine or GNDA concentrations. The data are expressed as the mean ± SD (n = 3).
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as the action of tacrine. Although tacrine was more potent 
AChE inhibitor than GNDAs, its effect on AChE activity in 
the SH-SY5Y cells was only temporal. The inhibition of AChE 
by tacrine is known to elicit a feedback process that leads to 
expression of AChE [52-54]. The effect of GNDAs had longer 
duration and the AChE activity in SH-SY5Y cells remained 
reduced also after 48 h.

Our results showed that explored 3,6-bis(3-alkylguanidino)
acridines, the substances with high affinity to DNA, were 
cytotoxic against the cells A2780 and NIH-3T3. But, their 
cytotoxicity against neuroblastoma SH-Y5Y cells was very 
low probably due to their interaction with AChE, which in-
fluenced their intracellular distribution, preventing GNDAs 
to reach the nucleus.
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