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Methamphetamines (MAP) like crystal meth (MDA 3.4 
methylendioxyamphetamine) and ecstasy (MDMA, 3.4 
methylendioxymethamphetamine) are a group of neuro-
toxic drugs often used as a recreational drug and poten-
tially to treat some neurological disorders. For instance, 
MDMA has been used as a therapeutic drug for posttrau-
matic stress disorder (PTSD) (Parrott 2014) as well as for 
attention deficit hyperactivity disorder (ADHD), although
it has been declared as non-safe treatment due to its neu-
rotoxicity and its addictive effect in human (Rusyniak
2013; Parrott 2014). Furthermore, addictive use of MAP 
derivatives has been shown to cause impaired learning 
and memory as well as other mental disorders (Schroder 
et al. 2003). In addition, an increased risk of Parkinson’s 
disease (Bognar et al. 2013) has been documented in MPA 
users (Callaghan et al. 2012). Neurotoxicity of MPAs was 
explained by alteration of NMDA receptors and dopamine 
signaling pathways (Simoes et al. 2007; Ares-Santos et al. 
2013). In addition, ecstasy binds to serotonin transporters 
and causes depletion of serotonin from its storage as well 
as release of dopamine and other neurotransmitters (White 
et al. 1996; Kish et al. 2010). Considerable efforts were 
made to characterize the influence of MAP derivatives 

on hippocampal structures in the brain, but little is known 
about the alterations in the sensory system, especially the 
piriform cortex, the area that is mostly known to sense 
odors (White et al. 1996). 

In this issue of General Physiology and Biophysics, 
Hori et al. (pp. 5–12) treated rats chronically with MPA 
and investigated via electrophysiological recordings the 
influence of MPA on piriform cortex neurons, especially
focusing on NMDA and AMPA receptors activity. The
group observed the typical sniffing behavior and increase
of movement in chronically-treated rats, the same behavior 
that is often observed in humans using MPA over a long
period of time. These changes in behavior come with
alterations of the morphology of dentrites of pyramidal 
cells. MPA-treated rats showed blebbing of the dentrites 
visible after staining with Lucifer yellow, to better identify
the soma and dentrites of neurons. Blebbing of the cell 
typically occurs during apoptosis where the cytoskeleton 
breaks up causing an outward bulge of the cell membrane 
(Vermeulen et al. 2005). Blebbing can also play a role in 
other cellular processes like necrosis (Wyllie et al. 1980), 
chemical or physical stress, cell locomotion or division 
(Norman et al. 2010). 

In addition, the authors observed a significant altera-
tion of the electrical properties of the pyramidale neurons 
characterized by decrease of the membrane potential and 
input resistance of the cells. In order to further investigate 
the influence of MPA on neuronal network excitability and
plasticity, transient post tetanic potentiation (PTP) and 
long-term potentiation (LTP) were analyzed (Gasparova 
et al. 2014). While PTP remains unaltered, LTP was sig-
nificantly decreased in MPA-treated animals. In addition,
ionotrophic application of AMPA and NMDA indicates an 
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altered AMPA/NMDA receptors activity in MPA-treated 
rats. Considering that NMDA and AMPA receptors repre-
sent the molecular substrate of LTP, it is likely that alteration 
of NMDA/AMPA response contributes to the alteration 
of LTP induced by MPA treatment.

Glutamatergic NMDA and AMPA receptors represent 
essential component of synaptic plasticity and long-term 
potentiation and depression (Luscher and Malenka 2012; 
Mokrushin and Pavlinova 2013). The observation that chronic
treatment with MPA alters NMDA/AMPA response certainly 
represents an interesting molecular substrate for MPA-de-
pendent alteration of cognitive functions. In addition, it is 
well accepted that alteration of NMDA and AMPA receptors 
significantly contribute to neurodegenerative disorders like
Parkinson’s and Alzheimer’s diseases (You et al. 2012; Proft and
Weiss 2014). Interestingly, a MPA-induced animal model for 
Parkinson’s disease (Proft et al. 2011; Curtin et al. 2014; Tai et
al. 2014) has been described. Moreover, a binding of MPA to 
α-synuclein has been reported and causes missfolding of α-
synuclein, a key protein in Parkinson’s disease (Tavassoly and 
Lee 2012). It is possible that missfolded α-synuclein could alter 
gluramatergic NMDA-dependent signaling pathway like it has 
been shown for missfolded amyloid (Proft and Weiss 2012;
Stys et al. 2012; You et al. 2012). 

Overall the results described in the paper by Hori et al. 
represent an interesting molecular substrate of how drug 
abuse might cause neurodegenerative disorders and a better 
understanding of the interaction of those drugs with key 
neuronal proteins will certainly highlight not only the 
molecular mechanism of drug-induced cognitive disorders 
but also potentially translate to a better basic understanding 
of those diseases. 
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