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Cholinergic properties of new 7-methoxytacrine-donepezil derivatives
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Abstract. Organophosphorus nerve agents inhibit acetylcholinesterase (AChE) which causes the 
breakdown of the transmitter acetylcholine (ACh) in the synaptic cleft. Overstimulation of cholinergic 
receptors (muscarinic and nicotinic) by excessive amounts of ACh causes several health problems and 
may even cause death. Reversible AChE inhibitors play an important role in prophylaxis against nerve 
agents. The presented study investigated whether 7-methoxytacrine (7-MEOTA) and 7-MEOTA-
donepezil derivatives can act as central and peripheral reversible AChE inhibitors and simultaneously 
antagonize muscarinic and nicotinic receptors. The possible mechanism of action was studied on cell 
cultures (patch clamp technique, calcium mobilization assay) and on isolated smooth muscle tissue 
(contraction study). Furthermore, the kinetics of the compounds was also examined. CNS availability 
was predicted by determining the passive blood-brain barrier penetration estimated via a modified 
PAMPA assay. In conclusion, this study provides promising evidence that the new synthesized 7-ME-
OTA-donepezil derivatives have the desired anticholinergic effect; they can inhibit AChE, and nicotinic 
and muscarinic receptors in the micromolar range. Furthermore, they seem to penetrate readily into 
the CNS. However, their real potency and benefit must be verified by in vivo experiments. 
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Introduction

As recently evidenced in Syria, organophosphorus nerve 
agents such as sarin, soman or VX can still be a life-threat 

for the general public. They cause inhibition of acetylcho-
linesterase (AChE, 3.1.1.7), which is the enzyme responsible 
for the decomposition of the transmitter acetylcholine (ACh) 
in the synaptic cleft. AChE inhibition causes accumulation 
of ACh in the synaptic cleft and thereby overstimulation 
of nicotinic (nAChR) and muscarinic (mAChR) receptors. 
Muscarinic symptoms (blurred vision, hypersecretion in 
the airways, sweating, bronchoconstriction, gut hypermo-
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tility, etc.) and nicotinic symptoms (weakness and muscle 
fasciculation, tachycardia and hypertension) arise within 
a few minutes after intoxication. Effects in the CNS are usu-
ally non-specific and include headache, anxiety, confusion 
etc. (Bajgar 2005).

Besides treatment involving the combined administra-
tion of atropine and oxime reactivators (Kassa et al. 2002), 
prophylaxis against nerve agents is another approach. 
Reversible AChE inhibitors play the most important role 
in this approach. In general, the carbamate pyridostigmine 
(bromide) is the most common agent used by army person-
nel worldwide. The armed forces of the Czech Republic use 
PANPAL, containing pyridostigmine in combination with 
two anticholinergics – benactyzine and trihexyphenidyl. 
The latter two compounds prevent the adverse effects 
caused by pyridostigmine and protect the central nervous 
system from the cholinergic crisis. The latter protective 
effect is not exerted by pyridostigmine because of its poor 
penetration of the blood-brain barrier (BBB). The focus 
is on a new approach inspired by the PANPAL strategy, 
where two drugs with an “opposite” mechanism of action 
on the cholinergic system are combined. With these ideas 
in mind, we designed a prophylactic agent which should 
be able to act as a central and peripheral reversible AChE 
inhibitor and simultaneously antagonize muscarinic and 
nicotinic receptors. 

Specifically, 7-methoxytacrine (7-MEOTA) was designed 
and approved for military use against incapacitating agents 
based on cholinergic overstimulation (BZ compound). 
7-MEOTA is a pharmacologically equivalent but less toxic 
analogue of the parent tacrine. It also possesses a centrally-
acting reversible AChE inhibition profile (Dejmek 1990) 
with complex cholinergic properties (Soukup et al. 2013). 
The novel series of compounds are based on 7-MEOTA and 
another potent AChE inhibitor (AChEI), donepezil, which 
also exerts low antimuscarinic and antinicotinic properties 
(Ago et al. 2011). 

Recently, binary compounds with antimuscarinic and 
anticholinesterase effects have been synthesized (Leader et 
al. 2002). Some of them provided better in vivo protection 
than pyridostigmine alone (Meshulam et al. 2001). From 
this point of view, 7-MEOTA-donepezil-like hybrids rep-
resent an interesting group of modulators whose advanced 
cholinergic properties are of a high interest not only due to 
their prophylactic potential but also due to a unique com-
bination of two such pharmacophores in a single molecule 
(Korabecny et al. 2014). The structure of these derivatives 
is detailed in Figure 1.

The aim of the presented study was to clarify the mecha-
nism of action of 7-MEOTA on the cholinergic system. Three 
selected donepezil-like hybrids were selected and their effects 
were studied on AChE and muscarinic and nicotinic recep-
tors. Furthermore, in order to predict their bioavailability in 

the CNS, the passive blood-brain penetration of the novel 
compounds was evaluated.

Materials and Methods

Chemicals

All assayed inhibitors were synthesized at the Department 
of Toxicology, Faculty of Military Health Science, University 
of Defence, Hradec Kralove, Czech Republic (Korabecny et 
al. 2014). Purity (>99%) was assessed using TLC and HPLC 
methods as described before (Jun 2007, 2008). Phosphate 
buffer, human recombinant AChE (hrAChE), DTNB (5,5´-
dithiobis (2-nitrobenzoic) acid), acetylthiocholine (ATCh), 
D-MEM (Dulbecco’s modified Eagle’s medium), nicotine, 
ACh (acetylcholine), oxotremorine-M (Oxo-M), BQCA 
(benzylquinolone carboxylic acid), atropine, geneticin, 
Hank´s balanced salt solution (HBSS buffer), dimethylsul-
foxide (DMSO), dodecane and donepezil were purchased 
from Sigma – Aldrich (Prague, Czech Republic). NaCl, 
KCl, CaCl2, KH2PO4, MgSO4, NaHCO3 and glucose used 
for Krebs solution, and ATP (adenosine-5’-triphosphate) 
and metacholine (MCh) were from Sigma Chemicals (Co, 
St. Luis, MO, USA). Probenecid and Fluo-4 NW reagents 
were from Invitrogen (Carlsbad, CA). Porcine polar brain 
lipid (PBL) was purchased from Avanti Polar Lipids, Inc. 
(Alabaster, AL).

AChE kinetic study

The activities of hrAChE were evaluated by the adopted 
spectrophotometric Ellman’s method. ATCh (various con-
centrations) was used as a substrate and DTNB (2.5 × 10–3 
mol/l) was used as the chromogen. Based on previous experi-
ments a wavelength of 412 nm was used. The absorbance was 
determined using a Helios Alpha (Thermo Scientific, Great 
Britain) spectrophotometer. The in vitro measurements 
were completed according to the following protocol: 650 µl 
of phosphate buffer (0.1 mol/l, pH 7.4) was pipetted into the 
cuvette. Subsequently, 25 μl of hrAChE, 200 μl DTNB and 
25 μl of the selected AChEI in concentrations from 10–8 to 
10–3 mol/l were added. This mixture was then incubated for 
5 min at laboratory temperature (22 ± 2°C). The enzymatic 
reaction was started by adding ATCh (100 μl, various con-
centrations). The mixture was gently shaken and measured 
in duplicates. The values of the controls, in which phosphate 
buffer replaced the 25 μl of inhibitor, were subtracted from 
the experimental values. 

The results were analyzed by GraphPad Prism 5.0 (San 
Diego, CA). The constants were calculated from enzyme 
kinetics using Lineweaver-Burk plot and a double recip-
rocal plot. The AChE dissociation constant for enzyme-
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inhibitor complex (Ki) was calculated using the following 
equation:
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where Ki1 is dissociation constant for enzyme-inhibitor 
complex; [E], concentration of AChE; [I], concentration 
of inhibitor; [EI], enzyme-inhibitor complex concentra-
tion.

Patch clamp study

Cell culturing

Experiments were performed on the TE671 cell line (kindly 
provided by Dr. Jan Říčný), which is a medulloblastoma/
rhabdomyosarcoma cell line endogenously expressing hu-
man embryonic muscle type receptor α1β1γδ (Schoepfer 
1988). Cells were cultivated at 37°C under 5% CO2 atmos-
phere in Dulbecco’s Modified Eagle’s Medium (D-MEM), 
which was supplemented with 10% fetal calf serum. Nicotine 

(100 µmol/l) was added to the cultivation medium 2–5 days 
before measurement to increase expression of nAChRs (Ke 
et al. 1998).

Experimental assay

The direct effects of AChEIs were measured according to 
the previous protocol (Soukup et al. 2011). Cells were held 
at –40 mV during the recordings. Fire-polished glass micro-
pipettes with an outer diameter of approximately three μm 
were filled with a solution of the following composition (in 
mmol/l): CsF 110, CsCl 30, MgCl2 7, Na2ATP 5, EGTA 2, 
HEPES-CsOH 10, pH 7.4. The resulting resistances of the 
microelectrodes were between 3 and 5 MΩ. The cell bath 
solution contained (in mmol/l): NaCl 160, KCl 2.5, CaCl2 
1, MgCl2 2, HEPES-NaOH 10, glucose 10, pH 7.3. Solu-
tions of the tested compounds were applied using a rapid 
perfusion system (Mayer et al. 1989) consisting of an ar-
ray of ten parallel quartz-glass tubes, each approximately 
400 μm in diameter. Tubes were positioned in the vicinity 
of the recorded cells and the flow of various solutions was 

Figure 1. General structure of 7-MEOTA-donepezil like hybrids and derivatives 1, 2 and 3 used in this study.
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switched on/off under microcomputer control (Dittert et 
al. 1998). A complete change of the solution around the 
cell could be achieved in 30 to 60 ms. For signal recording 
and data evaluation, an Axon Instruments Digidata 1320A 
digitizer and pClamp9 software package were used (Axon 
Instruments, Foster City, CA). Data were low-pass filtered 
at 1 kHz and digitized at 2 kHz. 

ACh (100 µmol/l) was used in the assay as control. Any 
tested compound was pre-applied (5 s) and then co-applied 
with ACh (100 µmol/l). The relative inhibition rate was 
determined as the ratio of the amplitude of the response 
to the agonist under the inhibitor to the arithmetic aver-
age of two adjacent experimental responses to the controls. 
At least a 30 s wash out period was applied between each 
measurement, so that the cell was washed by the extracel-
lular solution and desensitized receptors were restored to 
the active state. 

Concentration-response curves were fitted to the Hill 
equation: 
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where Ca is the agonist concentration, Ymax is the extrapolat-
ed maximal value of the response to a saturating concentra-
tion of the agonist, I(Ca) is the relative value of the membrane 
current, EC50 is the agonist concentration inducing 50% 
of the maximal response, and H is the Hill coefficient.

Inhibition curves were fitted to the simple inhibition 
curve:
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where YL is the current response amplitude after agonist 
and lobeline application, Ycont is the control response to the 
agonist, IC50 is the inhibitor concentration that inhibits 50% 
of the control response, H is the Hill coefficient for inhibition 
and L is the concentration of inhibitor.

Calcium mobilization assay

Cell culturing

Chinese hamster ovary cells (CHO-M1WT2, CRL-1984) 
stably expressing human recombinant M1 mAChR (70 fmol/
mg) were obtained from ATCC. Cells were cultured in 
Ham´s F-12 medium supplemented with fetal bovine serum 
(10%) and geneticin (50 ng/ml). Cells were maintained at 
37°C in an atmosphere of 5% CO2. 

Fluo-4 NW Assay

Cells were plated out at a density of ≈ 70,000 cells per well in 
100 µl of medium, in a black-walled, clear-bottomed 96-well 

plate (Biotech, Czech Republic), and were grown overnight 
at 37°C in an atmosphere of 5% CO2. The next day, the me-
dium was removed leaving the cells adhering to the bottom. 
100 μl of Fluo-4NW solution was added. Fluo-4NW solution 
was prepared according to manufacturer’s protocol – 10 ml 
of Hank´s balanced salt solution (HBSS buffer) and 100 μl 
of probenecid solution were added to the dye mixture. Cells 
were incubated with the dye for 30 min at 37°C/5% CO2 in 
the dark and 30 min at room temperature. 

The tested compounds were dissolved in DMSO and 
diluted 150 times with distilled water on the day of experi-
ment, and stock concentrations were prepared in the HBSS 
buffer. Stock solution was pipetted to a well to achieve the 
final concentration. The final concentration of DMSO in the 
well did not exceed 0.3% (v/v).

The effect of the novel compounds was compared to 
BQCA, a positive allosteric modulator standard. Cells were 
pre-incubated with the tested compound (10 μl/well) for 
10 minutes and then EC20 of oxo-M (30 nmol/l) was applied. 
Since the compounds inhibited the EC20 Oxo-M response, 
their inhibitory potency was measured at EC80 oxo-M 
(1 µmol/l). Ca2+ influx was measured by plate reader Synergy 
HT (Biotek, USA) at an excitation and emission wavelength 
of 485/20 nm and 528/20 nm, respectively. All measurements 
were made at room temperature ≈ 21°C.

Responses were quantified as the maximum response 
expressed as a percentage of the average baseline values and 
normalized to the control. The first and last wells received 
oxo-M (1 µmol/l or 30 nmol/l) and served as controls. The 
mean was considered to be a 100% response in order to 
minimize time-dependent errors (fading of responses), 
which were observed in the longer-lasting experiments. 
Data were fitted using a standard four-parameter equation 
GraphPad Prism 5.0 (San Diego, CA) to generate graphs, 
IC50 and SEM. 

Contraction study

Tissue preparation

Male Wistar rats (bodyweight 250–320 g) were anaesthetized 
with pentobarbitone (45 mg/kg; i.p.). Thereafter, the urinary 
bladders were removed and two urinary strips (6 × 2 mm) 
were dissected. Strips were mounted into organ baths (25 ml) 
between two electrodes where one of the holders was fixed 
and the other moveable. The organ bath was filled with 
Krebs solution (NaCl 118, KCl 4.6, CaCl2 1.25, KH2PO4 
1.15, MgSO4 2.26, NaHCO3 25 and glucose 5.5 in mmol/l) 
aerated with a mixture of 5% CO2 and 95% O2 and main-
tained at constant temperature (37°C) by a thermo-regulated 
water circuit. Strips were left 45 minutes in a solution with 
a stable tension of about 5 mN and repeatedly pre-stretched 
as needed. 
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Experimental protocol

The strips were left to equilibrate for 45–60 min before the 
experiment. The contractile responses (induced by electric 
field stimulation (EFS), by metacholine (MCh) or by adenos-
ine triphosphate (ATP)) were used for the examination of the 
AChEI effect on rat bladder. Firstly, control responses were 
obtained. EFS was employed at increased frequencies (1, 2, 5, 
10, 20 and 40 Hz) delivered as square wave pulses. The strip 
was then allowed to equilibrate for at least 20 min. MCh was 
administered in a cumulative manner in concentrations from 
10–8 mol/l to 10–3 mol/l and then the strip was washed three 
times. Thereafter, ATP was added (10–6 mol/l to 5 × 10–3 
mol/l). The tested compound, 7-MEOTA or compound 
2, was then added to achieve the final concentrations 10–6 

mol/l, 10–5 mol/l and 10–4 mol/l in the organ bath chambers. 
The contraction responses to EFS, MCh and ATP were re-
corded after administration of the test compound in each 
concentration. A 20 min resting period was applied between 
each measurement, and after addition of MCh or ATP into 
the organ bath, the whole bath was washed three times. All 
drugs were administered cumulatively in a volume of 125 µl 
at a 200 times larger concentration in order to achieve the 
correct final concentration in the organ bath chambers. 
Responses were recorded by MP100WSW data acquisition 
system (Biopac, Goleta, USA). Results were evaluated by 
statistical program GraphPad Prism 5.0 (San Diego, CA) to 
generate the graphs, IC50 and SD.

Modified PAMPA assay

Penetration across the BBB is an essential property for 
compounds targeting the CNS. In order to predict the 
passive BBB penetration of the novel compounds, the 
parallel artificial membrane permeation assay (PAMPA) 
was used according to a slightly modified protocol (Di et 
al. 2003). The tested compounds were dissolved according 
to their solubility properties directly in PBS pH 7.4 buffer 
(7-MEOTA 300 µmol/l). Donepezil (100 µmol/l) and the 
7-MEOTA-donepezil derivatives were first dissolved in 
DMSO in order to prepare a stock solution (1.2 mmol/l), 
which was subsequently further diluted in the PBS pH 7.4 
buffer to achieve the final concentration in the donor well 

(300 µmol/l). The concentration of DMSO in the well was 
always below 0.5% (v/v). 250 µl of the solution was added to 
the donor wells. The filter membrane was coated with PBL 
in dodecane (4 µl of 20 mg/ml PBL in dodecane) and the 
acceptor well was filled with 500 µl of PBS pH 7.4 buffer. 
The donor filter plate was carefully put on the acceptor plate 
so that the coated membrane was “in touch” with both the 
donor solution and the acceptor buffer. The test compound 
diffused from the donor well through the lipid membrane 
and into the acceptor well. The set was left undisturbed 
for 24 h while permeation progressed. The concentration 
of drug in the acceptor well and in the reference wells 
(standard curve) was determined using the UV plate reader 
Biotek Synergy HT at the maximum absorption wavelength 
(360 nm for 7-MEOTA-donepezil derivatives, 270 nm for 
donepezil and 250 nm for 7-MEOTA). The concentration 
of the compounds was calculated from the standard curve 
and the membrane permeation was expressed in percentage; 
i.e. the ratio of the concentration assessed in the acceptor 
well and the concentration applied into the donor well. 

Results

In order to characterize the therapeutic potential of novel 
7-MEOTA – donepezil derivatives, a series of in vitro experi-
ments were carried out involving evaluation of interaction 
of novel derivatives and their parent compound with AChE, 
with various subtypes of muscarinic muscle-type of nicotinic 
receptors. Furthermore, BBB penetration was estimated as 
a prime prerequisite for a centrally-acting drug. The inves-
tigation describing the mechanism of action was mainly 
of a comparative nature, i.e. it compares the properties of the 
new drugs with an already approved drug (7-MEOTA).

Interaction with AChE

The kinetic Lineweaver-Burk analysis was applied in 
order to investigate the affinity of the compounds and 
the mechanism of inhibition. IC50 (the concentration 
of tested compound that inhibits AChE activity to 50%), 
the Ki constants (the dissociation constant of the enzyme-
inhibitor complex into free enzyme and inhibitor) and 

Table 1. AChE inhibition constants for tested compounds

IC 50 (µmol/l) Ki (µmol/l–1·min–1) Type of inhibition
7-MEOTA 10.50 ± 2.00a 1.50 ± 0.15 Noncompetitive
Compound 1 1.38 ± 0.15a 0.02 ± 0.01 Mixed
Compound 2 1.59 ± 0.32a 0.29 ± 0.05 Mixed
Compound 3 12.91 ± 0.70a 4.62  ± 0.74 Mixed

Data are mean ± SD. a Korabecny et al. 2014.
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type of inhibition are summarized in Tab. 1. The graphical 
analysis of steady state inhibition data is presented in Fig. 2. 
7-MEOTA demonstrated classical noncompetitive inhibi-
tion. It binds reversibly, randomly and independently at the 
different sites of the enzyme. On the other hand, the data for 
compounds 1, 2 and 3 indicated a mixed type of inhibition. 
This type of inhibition generally resulted in a combination 
of partially competitive and pure noncompetitive inhibi-
tions and points towards inhibitors having a dual-binding 
site feature. Such characteristics assume binding into the 
active site as well as into the peripheral anionic site (PAS) 
of AChE at the same time.

Interaction with nicotinic receptors

Interaction of new AChEIs (compounds 1, 2, 3) on ACh-
induced (100 µmol/l) with muscle-type nicotinic receptors 
has been investigated using the patch clamp technique. The 

inhibitory effect on ACh-induced (100 µmol/l) currents in 
the presence of increasing concentrations (3 × 10–6–10–4 
mol/l) of new drugs was investigated. AChEIs were admin-
istered 5 s before Ach.

We used human embryonic muscle type receptor α1β1γδ 
stably expressed by the TE671 cell line. All tested compounds 
inhibited the ACh-evoked response in a dose-dependent 
manner (Fig. 3). Compound 3 showed the most pronounced 
inhibitory potency of the ACh-evoked (100 µmol/l) response 
(IC50 = 1.7 ± 0.9 µmol/l). The other tested compounds 
inhibited the nicotinic muscle receptor response at the 
same order of magnitude, but with slightly lower potency 
(compound 1: IC50 = 3.6 ± 0.3 µmol/l, compound 2: IC50 
= 6.8 ± 2.6 µmol/l). 7-MEOTA has previously been tested 
and shows a similar concentration-dependent curve (IC50 
= 3.7 µmol/l). However, it should be pointed out that in 
the previous investigations the concentration of ACh was 
30 µmol/l (data not shown). 

Figure 2. Lineweaver-Burk analysis of hrAChE inhibition by 7-MEOTA, compounds 1, 2 and 3. The reciprocal plots show noncompeti-
tive type inhibition for 7-MEOTA and compound 1, and mixed type of inhibition for compounds 2, 3. 
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Interaction with M1 muscarinic receptors

The effect of 7-MEOTA and its derivatives on the muscarinic 
receptor-mediated response was assessed in CHO-K1 cells 
stably expressing the M1 subtype of mAChR, using calcium 
mobilization assay (Fig. 4). For comparison, atropine, 
the classic antagonist of mAChR, and BQCA, a standard 
allosteric agonist, were used in order to investigate the 
mechanism of interaction. The novel compounds 1, 2, 3 
and 7-MEOTA, exhibited an antagonistic effect on M1 
muscarinic receptors, similar in type to that of atropine. 
However, such effect was observed at completely different 
concentration ranges. Atropine (IC50 = (59 ± 13) × 10–9 

mol/l), was a 300-fold more effective antagonist than the 
novel inhibitors series. The parent compound 7-MEOTA 

Figure 3. Antagonistic effect of tested AChEIs. Inhibitory effect 
of tested AChEIs (Compounds 1, 2, 3) on ACh-induced currents. 
Decrease of ACh (100 µmol/l) response amplitudes with increas-
ing concentrations (3 × 10–6–10–4 mol/l) of AChEIs. AChEIs were 
pre-applied 5 s before Ach.

Figure 4. Antagonistic effect of tested compounds on M1 mus-
carinic receptors. Inhibition curves were obtained in the presence 
of EC80 Oxo-M (1 µmol/l). Data represent the mean ± SEM of three 
measurements.

Figure 5. Effect of novel compound 2 and standard BQCA on 
CHO-M1WT2 cells stably expressing M1 mAChR. Increasing 
concentrations of tested compounds were added to wells and incu-
bated for 10 min. EC20 of Oxo-M was then added. Data represent 
the mean ± SEM of three measurements. 

Table 2. Inhibition ability of tested compounds on nicotinic muscle-
type and muscarinic M1 receptor

nACHR IC50
(µmol/l)

mAChR M1 IC50
(µmol/l)

7-MEOTAa 3.7 ± 0.3 3.05 ± 0.47
Compound 1 3.6 ± 0.3 23.17  ± 2.18
Compound 2 6.8 ± 2.6 20.02 ± 7.49
Compound 3 1.7 ± 0.9 38.18  ± 3.99
Atropine nt 0.059 ± 0.013

Data are mean ± SD of three to independent experiments, each from 
different cells (nAChR) and at least two experiments in triplicate 
(mAChR). a 7-MEOTA was tested with 30 µmol/l, others with 100 
µmol/l; nt, non tested.

was able to inhibit M1 muscarinic receptor in a concentra-
tion range one order of magnitude lower than the 7-MEO-
TA-donepezil derivatives (see Tab. 2).

None of the tested compounds showed any potentiat-
ing effect on the M1 muscarinic receptor as does BQCA 
(Fig. 5). 

Contraction study

The functional significance of the binding characteristics 
demonstrated above (i.e. inhibition of AChE and mus-
carinic receptors) was examined in the rat urinary bladder, 
a complex model involving both of these targets. Three 
types of stimulation – EFS and agonist stimulation by MCh 
and ATP, were applied in order to evoke contractions of the 
isolated bladder strip preparations on which the effects 
of 7-MEOTA and one 7-methoxytacrine-donepezil deriva-
tive (compound 2) were examined (Fig. 6). Since EFS leads to 
the release of all the transmitters within the bladder innerva-
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Figure 6. Data from 7-MEOTA (left column) and from compound 2 (right column) in the contraction study. Graph in absence (○) and 
presence of 10–4 mol/l (▼), 10–5 mol/l (▲), and 10–6 mol/l (■) of tested compounds.

tion, specifically acetylcholine and ATP that are co-stored in 
the rat parasympathetic neurons (Vesela et al. 2012), MCh 
and ATP were employed for distinguishing the cholinergic 
and the purinergic effects (Werner et al. 2007). All three 
types of stimulation evoked contractions that were enlarged 
by increasing the intensity of the stimulation. Analyses 
employing a two-way ANOVA revealed the basal responses 
(responses in the absence of any derivate in the EFS, MCh 

and ATP groups) not to be significantly different in any 
group. EFS thus induced frequency-dependent contractions. 
The maximum responses occurred in the range of 20–40 Hz 
and were 17.9 ± 2.7 and 17.0 ± 4.0 mN in the 7-MEOTA 
and compound 2-treated groups, respectively. The non-
selective muscarinic receptor agonist MCh, which is resistant 
towards AChE cleavage, evoked concentration-dependent 
contractile responses showing maximums of 26.0 ± 3.2 and 
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20.4 ± 2.0 mN for the 7-MEOTA- and compound 2-treated 
groups, respectively. ATP evoked smaller contractions but no 
maximum response could be identified at the concentration 
range used currently. At the largest concentration used, the 
contractile responses were 7.4 ± 1.1 and 5.2 ± 1.0 mN for the 
7-MEOTA- and compound 2-treated groups, respectively. 
A tendency to biphasic concentration-dependent responses 
to ATP was indicated. A first phase showed a pEC50 of 6.5 
(merged data from both groups). The second phase of the 
response appeared at ATP concentrations higher than 10–5 
mol/l (7.3 ± 1.1 and 5.2 ± 1.0 mN, for the 7-MEOTA- and 
compound 2-groups, respectively). 

The presence of the compounds (7-MEOTA and com-
pound 2) at the lowest concentration examined (10–6 mol/l) 
showed no or little inhibition of the ATP-evoked responses. 
At the higher concentrations, and in particular at the high-
est concentration (10–4 mol/l), significant decreases in the 
contractions occurred (p < 0.05). The same pattern ap-
peared for the largest concentration of the derivatives for 
the EFS- as well as the MCh-evoked responses, tentatively 
indicating non-specific effects. A concentration of 10–5 mol/l 
of MEOTA still tended to inhibit the contractions to EFS 
(18.6 ± 1.6 vs. 10.9 ± 2.4 mN at 10 Hz) in the presence and 
absence of 7-MEOTA, respectively (p < 0.01). However, this 
was the only significant change, if disregarding the 10–4 mol/l 
concentration. For compound 2, no significant changes oc-
curred regarding EFS with the exception of the 10–4 mol/l 
concentration. 7-MEOTA at 10–5 mol/l significantly re-
duced the methacholine-evoked response. In the absence 
of 7-MEOTA, the contractile response to methacholine at 
10–3 mol/l was 26.0 ± 3.1 mN, whereas in its presence it was 
17.8 ± 2.7 mN (p < 0.001; n = 7). 

BBB penetration estimation

The ability to penetrate the BBB is a main prerequisite 
for a centrally-acting drug. The modified PAMPA assay 
showed that all new compounds readily penetrate across 
the lipophilic membrane by passive diffusion. Except for 
compound 2, the drugs showed similar penetration abilities 
as the parent compound 7-MEOTA (Tab. 3), which has been 
proved to cross BBB (Soukup et al. 2013). Donepezil, which 
was used as a model of a CNS-permeable drug, confirmed 
an adequate experimental setup by its high penetration rate 
(87%). 

Discussion

The area of prophylaxis against organophosphates still 
needs further exploration. Different approaches have been 
investigated but many problems have been found. After 
administration of stoichiometric or catalytic scavengers (e.g. 

butyrylcholinesterase or phosphotriesterase) immunologic 
reactions were invoked (Bajgar 2004; Lenz et al. 2007), and 
their use is limited to experimental purposes due to high 
cost. Administration of anticonvulsants shows low prophy-
lactic efficiency. Also, some problems have been reported 
regarding reactivators (Bajgar 2005), principally regarding 
the route of administration due to their fast metabolism, 
but also due to their fast excretion. Recently, prophylaxis 
against nerve gases has focused predominantly on revers-
ible AChE inhibitors. One of such medicaments, PANPAL, 
was introduced into the Czech Army in 2002 (Bajgar 2004). 
Pyridostigmine, which is not effective in the brain at lower 
doses, was combined with trihexyphenidyl and benactyzine 
that mitigate peripheral side effects, so that a higher dose 
of pyridostigmine can be applied. Furthermore, both anti-
cholinergics penetrate to the central compartment, where 
they are able to protect the cholinergic receptors from 
the overstimulation of ACh during the poisoning. It has 
been demonstrated that exposure of pyridostigmine alone 
can lead to neurobehavioral deficits and region-specific 
alterations of AChE and AChR (Abou-Donia et al. 2001). 
Albequerque et al. (1985) presented that physostigmine (co-
applied with atropine) combined with a ganglionic blocking 
drug mecamylamine was the most effective medication for 
protecting rats against lethal doses of VX. 

Accordingly we started to look for a new compound, 
which would be able to protect AChE and simultaneously 
AChR against organophosphate intoxication. Inspired by the 
positive 7-MEOTA results and its efficacy in VX poisoning 
prophylaxis (Bajgar et al. 1983), and the “PANPAL” approach, 
we investigated how 7-MEOTA derivatives are able to influ-
ence AChE, AChR activity, and the mechanism of action 
of such hybrid compounds.

The new 7-MEOTA-donepezil derivatives exerted more 
potent (compound 1, 2) or similar (3) AChE-inhibitory ac-
tivity compared to 7-MEOTA. 7-MEOTA has been reported 
to be a better AChE inhibitor than pyridostigmine (Lorke et 

Table 3. AChE inhibitors permeation ability

Permeation (%) R2

7-MEOTA
Compound 1

66
63

0.9898
0.9974

Compound 2 44 0.9940
Compound 3 62 0.9970
Donepezil 87 0.9829

The degree of membrane permeation of the compounds expressed 
in percentage, i.e. the ratio of the concentration assessed in the 
acceptor well (as a result of the membrane penetration) and of 
the concentration applied into the donor well. Linearity of the 
standard curve was proved by the determination coefficient rep-
resented as R2.
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al. 2011). Moreover, as has been said above, pyridostigmine 
does not penetrate the BBB (Dunn et al. 1997) and it is not 
able to offer protection against seizures and subsequent 
neuropathology induced by organophosphates, especially 
in cases of soman-induced toxicity (Dunn et al. 1997). On 
the contrary, 7-MEOTA is able to pass the BBB (Kunes et 
al. 2005). Based on the fact that 7-MEOTA and donepezil 
alone cross the barrier (Kim et al. 2010), we presumed that 
7-MEOTA-donepezil hybrids might penetrate the BBB too. 
The modified PAMPA assay showed that all new compounds 
readily penetrate across the lipophilic membrane by passive 
diffusion. Data have shown that a possible solution for this 
matter is co-administration of AChEI and the muscarinic 
antagonist scopolamine, which speaks in favour of our 
hypothesis.

The M1 subtype of mAChR is abundantly found in the 
cortex and hippocampus (Fisher et al. 2002), whilst a small 
population of M1 appears in salivary glands and the presy-
naptic area of the bladder parasympathetic nervous system 
(Tobin 1995; Abrams et al. 2006). Notably, compound 3 is 
able to cause 50% inhibition of AChE and M1 mAChR in 
the same concentration range, whilst compounds 1 and 2 
showed one order of magnitude lower ability to inhibit M1 
mAChR than AChE. In contrast, 7-MEOTA inhibited M1 
receptor at a lower concentration (IC50 = 3 µmol/l) than it 
inhibits AChE (IC50 = 10 µmol/l). None of the compounds 
showed any ability to potentiate the M1 muscarinic recep-
tor effect. From this point of view, compound 3 possesses 
promising in vitro antimuscarinic action on the centrally 
occurring muscarinic subtype.

Further examination was focused on peripheral recep-
tors. After organophosphate intoxication, the overstimula-
tion of the muscle type of nAChR that occurs at the motor 
end-plate in respiratory and other muscles (Sungur et al. 
2001) is followed by fasciculation and weakness, eventu-
ally resulting in asphyxiation. Thus, the hypothesis of us-
ing a nAChR antagonist was developed. Sheridan et al. 
(2005) pointed out the difficulties of administering a dose 
of a compound that antagonizes the effect of excessive ACh, 
but which does not cause paralysis of muscle. Turner et al. 
(2011) introduced a non-competitive antagonist on nAChR, 
which acts as an open channel blocker and is able to protect 
guinea pigs against poisoning by nerve agents. We observed 
an antagonist effect in all tested compounds on the muscle 
type of nAChR expressed in TE671 cells. Generally, the ef-
fect of the tested AChEI was similar (IC50 = 1–3 µmol/l). 
However, compounds 1 and 2 inhibited AChE in comparable 
concentrations to those acting on the nicotinic receptor; 
whereas 7-MEOTA and compound 3 needed to be admin-
istered at higher concentrations to inhibit AChE. Moreover, 
7-MEOTA has been evaluated previously, concerning how 
it influences the neuronal α4β2 nicotinic receptor (Soukup 
et al. 2013). 7-MEOTA interacts slightly more effectively 

with muscular than neuronal nAChR (IC50 = 4 µmol/l, 
respectively 15 µmol/l). 

The effect on peripheral mAChR (M2 and M3 subtype) 
was examined employing an organ model (rat urinary 
bladder). When applying EFS, the antagonistic effect 
of 7-MEOTA and compound 2 was evident. However, 
it was not clear whether the cholinergic pathway is the 
only pathway involved. Furthermore, 7-MEOTA in high 
concentration completely inhibited the strip contractions. 
Since an atropine-resistant bladder contraction exists (An-
dersson and Wein 2004) and since 7-MEOTA completely 
inhibited the nerve-evoked response, 7-MEOTA is not likely 
to affect only the cholinergic pathway. Hence we applied 
MCh (mAChR agonist) and ATP (P2X purinoreceptor 
agonist) to distinguish the different mechanisms of action 
influencing the contraction. Even though compound 2 is 
a derivative of 7-MEOTA, it acts through a different path-
way. Compound 2 inhibits contraction induced by MCh 
through mAChR in a concentration-dependent manner 
and the highest concentration tested (10–4 mol/l) resulted 
in 3-times weaker contractions than MCh did on its own. 
On the other hand, 7-MEOTA caused less inhibition of the 
muscarinic response, and at 10–4 mol/l the contraction 
almost completely vanished. Differences in inhibition 
of purinoreceptor effects also occurred, but there seems to 
be an opposite action. 7-MEOTA decreases contractions 
in a concentration-dependent manner and compound 2 
antagonism on P2X receptors is rather subtle. This is 
confirmed by the EFS stimulation. At low frequencies, the 
purinergic-mediated force is enhanced (Werner et al. 2007). 
Thus 7-MEOTA inhibits contraction at low frequencies, and 
in high concentration (10–4 mol/l) completely inhibits blad-
der contraction to EFS even at higher frequencies (40 Hz). 
Note that a concentration-dependence can be observed in 
the ATP-evoked contraction that indicates 7-MEOTA has 
a higher effect on the purinergic rather than the choliner-
gic pathway. On the other hand, the contractile reaction is 
maintained in the presence of compound 2 (at all concen-
trations) in response to EFS, while a dose-dependence is 
observed on the MCh-evoked contractions. Thus it seems 
that antagonism on the purinergic P2X receptors is absent or 
smaller than the effect on the cholinergic system. However, 
it cannot be completely ruled out. 

In conclusion, this study provides evidence that the 
newly synthesized 7-MEOTA-donepezil derivatives have 
anticholinergic effect; in vitro and ex-vivo experiments 
showed that they can inhibit AChE, nAChR and mAChR 
of both peripheral and central types. Furthermore, their 
mechanisms of interaction were elucidated. Overall, 
7-MEOTA- donepezil hybrids represent promising com-
pounds whose features could be an effective way to dimin-
ish the effect of overstimulation of cholinergic receptors 
during organophosphate poisoning. However, their real 
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prophylactic potency and benefit must be definitively 
verified in vivo. 
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