New perspectives in diagnosis of gynaecological cancers: Emerging role of circulating microRNAs as novel biomarkers

Minireview

L. ZAVESKY1-*, E. JANDAKOVA1, R. TURYNA1, L. LANGMEIEROVA1, V. WEINBERGER1, L. MINAR1, M. KOHOUTOVA1

1Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University Prague and General University Hospital in Prague, Albertov 4, CZ-128 00 Prague 2, Czech Republic; 2Institute of Pathology, University Hospital Brno, Obilní trh 11, CZ-625 00 Brno, Czech Republic; 3Institute for the Care of Mother and Child, Podolínské nábřeží 157, CZ-147 00, Prague 4, Czech Republic; 4Faculty Transfusion Centre, General University Hospital in Prague, U Nemocnice 2, CZ-128 08 Prague, Czech Republic; 5Department of Obstetrics and Gynaecology, University Hospital Brno, Obilní trh 526/11, CZ-602 00 Brno, Czech Republic; 6Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University Prague and General University Hospital in Prague, Albertov 4, CZ-128 00 Prague 2, Czech Republic

*Correspondence: ludek.zavesky@gmail.com

Received January 2, 2015 / Accepted March 18, 2015

Early diagnosis is a prerequisite of the more successful treatment of cancer. In gynaecological cancers, such as ovarian, endometrial and cervical cancers, the recent efforts are aimed at finding novel diagnostic biomarkers to help reduce the worldwide health burden associated with these cancers. In this review, we focus on the recent research progress in circulating, particularly cell-free microRNAs expression achieved in ovarian, endometrial and cervical cancers showing an opportunity to find novel diagnostic biomarkers for these malignant diseases. With the onset of microRNAs investigations showing their diagnostic potential in many diseases, their role in gynaecological cancers has been examined as well. However, similarly as in many other diseases, the vast majority of research on microRNAs expression has been dealing with tissue samples and cell lines. Recently, as the novel approaches focused on cell-free microRNAs expression have emerged, several studies identified their potential diagnostic and prognostic value in gynaecological cancers using blood, serum/plasma or urine samples. More research will be needed to establish circulating and extracellular microRNAs as the novel diagnostic markers for gynaecological malignancies. Inconsistency of results across the studies due to technical and biological variation, and a low number of this kind of investigations are the main potential pitfalls remaining to be resolved.

Key words: cervical cancer, circulating microRNA, diagnosis, endometrial cancer, ovarian cancer, microRNA

Diagnosis of cancer within the early stages of the disease progression is usually associated with a better response to treatment and eventually results in an improved survival of patients. In ovarian cancer, the most deadly gynaecological cancer, the early detection during stages I and II leads to a 60-90% 5-year survival of patients, however diagnosis in the stages III and IV results in significantly decreased survival rate about 33%, with the worst survival rate (19%) observed for stage IV [1]. In the USA, the diagnosis of localized stages results in a 92% survival, while diagnosis in regional stages accounts for a 72% survival. Survival rates further drop to 27% in diagnosis of distant stages. On average, a 5-year survival rate of 44% is reported for ovarian cancer patients [2]. More than two thirds of ovarian cancer cases are diagnosed in advanced stages typically associated with a resistance to chemotherapy treatment and a disease recurrence. As a result, this eighth most common female cancer worldwide occupies the sixth position in estimated deaths for female cancer in developed countries [3].

Epithelial ovarian cancer (EOC) is traditionally divided into several subtypes due to an extensive histopathological heterogeneity: serous (most common, ~70% of EOC), mucinous,
endometrioid, clear cell, transitional cell, or their combinations (mixed) types are recognized [4]. Based on molecular traits, the most recent views suggest treating EOC either as type 1 (early stages, indolent clinical course and rare TP53 mutations), or type 2 (advanced stages, aggressive, genetically highly unstable with ~80% frequency of TP53 mutations) [5,6]. In ovarian carcinogenesis, etiopathological processes may be interrelated within the parts of gynaecological tract (see [7]). In a search of a place of EOC origin, increasing evidence suggests the clear cell and endometrioid carcinomas (type 1) may arise from endometriosis. The presumable origin of mucinous tumors (type 1) is more questionable, with implicated roles of ovarian teratomas, surface epithelial inclusions, endometriosis, Brenner tumors, or endocervix. Low-grade serous carcinomas are thought to evolve from benign serous cystadenomas through serous borderline tumors (see [6]). High-grade serous carcinomas (type 2) have been suggested to originate from the epithelium of the fallopian tube, or may have truly ovarian origin through ovarian metaplasia of the ovarian mesothelium or ectopic Müllerian tissue (endometriosis, endosalpingiosis) [4]. Cancer stem cells and processes of epithelial to mesenchymal (and vice versa) transition are further implicated in ovarian carcinogenesis. They may play a role in above mentioned processes of the development and progression of ovarian cancer [7-10].

Cervical cancer is the third most common female cancer worldwide [3]. This malignancy is mainly considered as a consequence of the long-term infection with human papillomavirus (HPV) resulting in incorporation of viral DNA into host DNA and induction of oncogenic transformation [11]. In developing countries, the cervical cancer represents the second most deadly female cancer (242,000 estimated deaths) in contrast to developed countries where most of the deaths (64,500) from gynaecological cancers are attributed to ovarian cancer [3].

Endometrial cancer, however, is the most common gynaecological cancer, the sixth most common female cancer worldwide and the fourth most often diagnosed female

Figure 1. Epigenetic control of miRNA expression
The down-regulation of miRNAs that function as tumor suppressors could lead to tumor formation and aggressive phenotypes through the loss of the translational repression of several oncoproteins. The effect of epigenetic silencing may be mediated by methylation and loss of acetylation on the miRNA gene. The gain of repressive histone marks, such as histone trimethylation could prevent the transcriptional activation of miRNA genes. Abbreviations: CH3, methyl-cytosine; HMT, histone methyl-transferase; HDAC, histone deacetylase; DNMT, DNA methyl-transferase; HAT, histone acetyl-transferase; CpG, CpG islands; Ac, acetyl group; H3-Me, trimethylation of the histone H3 at the K4 residue; ATG, translation start codon; TGA, translation stop codon. Adapted from [69] with a permission of Elsevier (License number 3557660139817).
cancer in developed countries [3]. A heterogeneous nature of endometrial cancer is observable to a lesser extent than in ovarian cancer. In addition to a traditional classification of the two major groups, type I endometrioid and type II serous tumors, the ongoing novel molecular classifications have been considered recently (see [12]).

Finding novel diagnostic, screening, treatment and monitoring opportunities for these cancers remains the great challenge of the current biomedical research. MicroRNAs have emerged recently as the key regulators of cellular processes functioning at post-transcriptional level and presenting potential dysregulations applicable in cancer diagnostics, monitoring and therapeutics [13, figs. 1 and 2]. For diagnostic purposes, circulating miRNAs (particularly in plasma/serum) have appeared as the most promising source of clinical material [14,15]. Several investigations proving that circulating miRNAs encompass a promising diagnostic potential also in gynaecological cancers have been published recently. Here, we reviewed the current knowledge on cell-free and whole blood microRNAs expression revealing their underestimated potential as perspective and promising diagnostic biomarkers in ovarian, endometrial and cervical cancers.

Ovarian cancer

Whole blood microRNA expression in ovarian cancer. There is only one study profiling microRNA expression in whole blood available for ovarian cancer [16]. This study evaluated whole blood-borne microRNA expression in micro-array profiles from 24 post-menopausal patients with relapsed ovarian cancer (mostly of the serous type) and 15 age- and sex-matched healthy controls of unknown menopausal status. Among 147 significantly deregulated miRNAs, four miRNAs were still significantly different after Benjamini–Hochberg adjustment. While miR-30c1* has been shown up-regulated, three miRNAs (miR-342-3p, miR-181a* and miR-450b-5p) appeared down-regulated in ovarian cancer patients. Within this investigation, miR-30c-1*, miR-191, miR-155, miR-16, miR-106b, miR-146a, miR-29a and miR-383 previously found to be de-regulated in ovarian cancer have been shown up- or down-regulated similarly as in previous investigations [16] (see Table 1).

Serum/plasma microRNA expression in ovarian cancer. The first pioneer study focused on exosome microRNAs in
<table>
<thead>
<tr>
<th>Type of cancer</th>
<th>Detailed specification</th>
<th>Up-regulated microRNAs</th>
<th>Down-regulated microRNAs</th>
<th>Sample source</th>
<th>Methodology</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian carcinoma</td>
<td>Relapsed ovarian cancer: serous (n = 22), endometrioid (n = 2). Control samples (n = 15).</td>
<td>miR-16, miR-30c-1*, miR-187, miR-191, miR-383, miR-423-3p, miR-499-3p, miR-574-5p, miR-1181, miR-1228, miR-1253, miR-1254, miR-1289, miR-1908, miR-1915</td>
<td>miR-28-3p, miR-29a, miR-106b, miR-138-2*, miR-146a, miR-155, miR-181a*, miR-181a-2*, miR-192, miR-342-3p, miR-450-5p, miR-616*, miR-628-5p, miR-1287, let-7f-1*</td>
<td>Whole blood</td>
<td>Geniom Biochip miRNA homo sapiens array.</td>
<td>[16]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>Serous carcinomas (n = 50), benign samples (n = 10), control samples (n = 10)</td>
<td>miR-21, miR-141, miR-200a, miR-200b, miR-200c, miR-203, miR-205, miR-214</td>
<td>miR-99b, miR-127, miR-155</td>
<td>EpCAM-positive tumor exosomes in blood</td>
<td>Ocean Ridge Biosciences microarrays, GenePix 4000A</td>
<td>[17]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>EOC (n = 28), serous (60%), clear cell (21.2%), endometrioid (12%), mucinous (6%). Control samples (n = 15).</td>
<td>miR-21, miR-29a, miR-92, miR-93, miR-126</td>
<td></td>
<td>Blood serum</td>
<td>TaqMan Array Human MicroRNA Panel, single tube TaqMan MicroRNA Assays</td>
<td>[20]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>Serous carcinomas (n = 68), others (n = 26). Control samples (n = 40).</td>
<td>miR-21</td>
<td>n/a</td>
<td>Blood serum</td>
<td>TaqMan microRNA assay</td>
<td>[23]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>EOC samples (non-specified) (n = 50). Control samples (n = 50).</td>
<td>miR-92</td>
<td></td>
<td>Blood serum</td>
<td>SYBR green qRT-PCR</td>
<td>[24]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>Total EOC cases (n = 360), incl. 179 serous tumors (49.7%), 86 endometrioid tumors (23.9%), 33 mucinous tumors (9.2%), 15 clear cell tumors (4.2%), and 47 adenocarcinomas, Not Otherwise Specified (NOS) (13.0%). Control samples (n = 200).</td>
<td>miR-205</td>
<td></td>
<td>Blood plasma</td>
<td>TaqMan Array (TLDA)</td>
<td>[25]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>Serous carcinomas (n = 18), control samples (n = 12).</td>
<td>miR-22 and miR-93</td>
<td></td>
<td>Blood serum</td>
<td>Microarray Affymetrix microRNAV2.0. TaqMan qRT-PCR.</td>
<td>[26]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>Ovarian carcinomas (type unspecified) (n = 31), benign samples (n = 23). Control samples (n = 8).</td>
<td>miR-132, miR-26a, let-7b, miR-145, and miR-143</td>
<td></td>
<td>Blood serum (filtration through a 0.2 μm filter)</td>
<td>Microarray Affymetrix microRNAV2.0. TaqMan qRT-PCR.</td>
<td>[26]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>Serous carcinomas (n = 42), benign samples (n = 36). Control samples (n = 23).</td>
<td>miR-1274a, miR-625-3p, and miR-720</td>
<td></td>
<td>Blood plasma (ultracentrifugation, plasma without exosomes)</td>
<td>Taqman Open Array MicroRNA</td>
<td>[29]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>Serous carcinomas (n = 28). Control samples (n = 28).</td>
<td>miR-200a, miR-200b and miR-200c</td>
<td></td>
<td>Blood serum</td>
<td>Exiqon MiRCURY Locked Nucleic Acid Arrays</td>
<td>[30]</td>
</tr>
<tr>
<td>Ovarian carcinoma</td>
<td>EOC, serous carcinomas (n = 5), others (n = 4), benign ovarian samples (n = 3). Control samples (n = 13).</td>
<td>miR-92a</td>
<td>miR-106b</td>
<td>Urine</td>
<td>Taqman microRNA real time PCR</td>
<td>[34]</td>
</tr>
</tbody>
</table>
Circulating microRNAs in gynaecological cancers

Serum of ovarian cancer patients has been published in 2008 [17]. The study showed a correlation of microRNA expression between tumor tissues and the tumor-released EpCAM-positive exosomes while failing to find their expression in control samples. Following these studies, further investigations were focused on exosome microRNAs isolated by different means in many other cancer types (e.g. [18, 19]). Going back to ovarian cancer, Resnick et al. [20] analysed microRNA expression in serum of ovarian cancer patients. They found miRNAs-21, 92, 93, 126 and 29a significantly over-expressed, and miRNAs-155, 127 and 99b significantly under-expressed when comparing sera of cancer and control patients.

In concordance with the oncogenic status and the over-expression of miR-21 found previously in ovarian cancer tissues (e.g. [21,22]), serum levels of this miRNA were investigated [23]. Here, Xu et al. [23] found higher levels of miR-21 in ovarian cancer patients sera associated also with advanced FIGO stage, high tumor grade, and shortened overall survival.

It has been shown recently that miR-92 may be found up-regulated in serum of ovarian cancer patients [24]. Within this study, 50 ovarian cancer patients and 50 controls were enrolled, and miR-16 was used as an endogenous control. Up-regulation of miR-92a was associated with regional lymph node involvement and advanced clinical stages (III–IV) [24]. The large recent study [25] investigated microRNA expression in plasma samples of ovarian cancer patients (360 EOC patients, 200 healthy controls). The study revealed higher levels of miR-205 and lower let-7f expression in cancer samples than in controls, the lower expression of let-7f was also associated with a poor prognosis in EOC patients. In comparison of early and advanced stages, miR-483-5p expression was elevated in stages III and IV [25]. Down-regulation of microRNA expression in serum of ovarian cancer patients (18 serous cancers, 12 controls) was shown most markedly and significantly in miR-132, miR-26a, let-7b, miR-145, and miR-143 in the study of Chung et al. [26].

Table 1. (continued)

<table>
<thead>
<tr>
<th>Type of cancer</th>
<th>Detailed specification</th>
<th>Up-regulated microRNAs</th>
<th>Down-regulated microRNAs</th>
<th>Sample source</th>
<th>Methodology</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endometrial carcinoma</td>
<td>Endometrioid endometrial cancers (n = 48), control samples (n = 14)</td>
<td>miR-99a, miR-100 and miR-199b</td>
<td></td>
<td>Blood plasma</td>
<td>ViIA7 Real–Time PCR System</td>
<td>[31]</td>
</tr>
<tr>
<td>Endometrial carcinoma</td>
<td>Endometrioid endometrial cancers (n = 34). Control samples (n = 14)</td>
<td>miR-92a, miR-141, miR-200a, miR-203, miR-449a, miR-1228 and miR-1290</td>
<td>miR-9 and miR-301b</td>
<td>Blood plasma</td>
<td>ViIA7 Real–Time PCR System</td>
<td>[32]</td>
</tr>
<tr>
<td>Endometrial carcinoma</td>
<td>Endometrioid endometrial cancers (n = 33). Control samples (n = 42).</td>
<td>miR-222, miR-223, miR-186 and miR-204</td>
<td></td>
<td>Blood serum</td>
<td>TaqMan array human microRNA A+B cards set v3.0 real time PCR</td>
<td>[33]</td>
</tr>
<tr>
<td>Endometrial carcinoma</td>
<td>Endometrioid endometrial cancers (n = 9), benign endometrial cancers (n = 3). Control samples (n = 13).</td>
<td>miR-106b</td>
<td></td>
<td>Urine</td>
<td>Taqman microRNA real time PCR</td>
<td>[34]</td>
</tr>
<tr>
<td>Cervical carcinoma</td>
<td>Squamous cell cervical cancers (n = 71), cervical adenocarcinoma (n = 19). Control samples (n = 50).</td>
<td>miR-218</td>
<td></td>
<td>Blood serum</td>
<td>Taqman microRNA real time PCR</td>
<td>[35]</td>
</tr>
<tr>
<td>Cervical carcinoma</td>
<td>Cervical squamous cell carcinomas (n = 80). Control samples (n = 20).</td>
<td>miR-1246, miR-20a, miR-2392, miR-3147, miR-3162-5p and miR-4484</td>
<td></td>
<td>Blood serum</td>
<td>Human microRNA OneArray, SYBR Green real time PCR</td>
<td>[36]</td>
</tr>
<tr>
<td>Cervical carcinoma</td>
<td>Cervical squamous cell carcinoma (n = 80). Control samples (n = 20).</td>
<td>miR-20a, miR-203</td>
<td></td>
<td>Blood serum</td>
<td>SYBR Green PCR kit, BIO-chromol4 (Bio-Rad) Real-Time PCR System</td>
<td>[37]</td>
</tr>
</tbody>
</table>

The very recent study [28] applied a combined approach using the deep sequencing technology (Solexa) and real-time qPCR.
PCR for microRNA analysis of serum in ovarian cancer. This study involving 31 patients with ovarian carcinomas, 23 patients with benign ovarian tumors, and 8 control samples confirmed the differential expression of four microRNAs. Here, miR-22 and miR-93 were shown to be consistently (> 2-fold) up-regulated and miR-451 up-regulated in cancer sera. On the other hand, miR-106b appeared significantly down-regulated in cancer samples [28]. Another search for finding relevant diagnostic serum circulating microRNAs has been published recently [29]. There were 42 serous epithelial cancer samples, 36 benign samples and 23 control samples of patients enrolled within this investigation. The down-regulated expression (at least 10-fold) in cancer samples compared to control samples was found in miR-106a, miR-126, miR-146a, miR-150, miR-16, miR-17, miR-19b, miR-20a, miR-223, miR-24, and miR-92a. The down-regulated expression was also observed in miR-106b, miR-191, miR-193a-5p, miR-30b, miR-30a-5p, miR-30c, miR-320, and miR-328. Three microRNAs, miR-1274a, miR-625-3p, and miR-720 were up-regulated in cancer samples, but they were shown not to be good discriminators between cancer and control samples [29]. In another study, three serum microRNAs (miR-200a, miR-200b and miR-200c) appeared to be up-regulated significantly in serous ovarian carcinomas (n = 28), with a multivariate combination of miR-200b + c resulting in AUC = 0.784 within ROC-AUC analysis [30].

When comparing the above-mentioned studies, consistent results could be considered particularly for onco-miR-21. The miR-21 has been found to be up-regulated across several studies [20, 23, 27]. Controversial results can be seen in miR-92a, shown mostly to be up-regulated [20, 24], but down-regulated elsewhere in cancer-related samples [29].

For details on serum/plasma microRNA expression in ovarian cancer see Table 1.

Endometrial cancer

Serum/plasma microRNA expression in endometrial cancer. Torres et al. published the first study focused on microRNA expression both in tissue and plasma samples of patients with endometrial cancer [31]. They investigated expression of miR-99a, miR-100 and miR-199b, three microRNAs targeting mTOR kinase. The up-regulated expression of mTOR kinase in EEC tissues was associated with a decreased expression of the three investigated microRNAs in these samples. However, the expression of these microRNAs in plasma was found increased in comparison with control samples. A combined signature for plasma microRNAs (miR-99a/miR-199b) resulted in 88% sensitivity and 93% specificity, indicating a good diagnostic potential. Sixteen microRNAs were chosen for the expression analysis using plasma of 34 EEC patients and 14 controls in another recent study [32]. Two microRNAs were found down-regulated (miR-9 and miR-301b), and seven microRNAs up-regulated (miR-92a, miR-141, miR-200a, miR-203, miR-449a, miR-1228 and miR-1290) in EEC plasma samples. Using logistic regression, the miR-9/miR-1228 and miR-9/miR-92a signatures appeared as good classifiers (AUC values ~0.9) [32].

The first, genome-wide serum microRNA expression profiling analysis of 754 microRNAs using TLDA technology and follow-up analyses, has been published recently [33]. This study identified four serum microRNAs (miR-222, miR-223, miR-186 and miR-204) to be up-regulated significantly in the endometrial cancer patients (n = 26) in comparison with the control samples (n = 22). The four-miRNA signature resulted in an AUC of 0.927 ((95% CI, 0.845-1.000) [33].

For details on serum/plasma microRNA expression in endometrial cancer see Table 1.

MicroRNA expression in urine of ovarian and endometrial cancers. Our pilot study to explore cell-free urinary microRNAs in ovarian and endometrial cancers has revealed a feasibility of assessing de-regulated microRNAs expression in urine of these gynaecological cancer patients for the first time [34]. We performed a set of several experiments, analysing two supernatant fractions and exosome RNA fraction. Pre-surgery and post-surgery ovarian cancer samples showed no significant differences between these two sampling modalities. Within the expression of candidate individual cell-free microRNAs coming from supernatant fractions, several differentially expressed microRNAs were identified. In ovarian cancer, miR-92a was found up-regulated, and miR-106b down-regulated, the latter microRNAs were revealed as down-regulated also in endometrial cancer (Table 1). Interestingly, we could not find any microRNA de-regulated using exosomal RNA both in ovarian and endometrial cancers. This pilot study identified the potential of assessment of urine microRNA expression as novel diagnostic tool for non-urinary tract-related diseases such as ovarian and endometrial cancers [34]. However, further validation studies investigating more samples and more miRNAs are needed.

Cervical cancer

Serum/plasma microRNA expression in cervical cancer. The recent attention of investigators has been concentrated also on serum microRNAs in cervical cancer. In 2012, the first report on serum microRNA in cervical cancer (cervical adenocarcinoma and squamous cell cancer) has been published [35]. A down-regulated expression of serum miR-218 as the only one microRNA investigated was shown in cancer patients, also with associations with cervical adenocarcinoma, later stages and lymph node metastasis. U6 was used as the endogenous control [35].

Later on, two further reports have followed. Chen et al. [36] profiled 89 microRNAs in tissue and serum of cervical cancer patients (80 cervical SCC patients, 20 control patients involved). Several of them (miR-1246, miR-20a, miR-2392, miR-3147, miR-3162-5p and miR-4484) were found up-regulated both in tissue and serum samples. These microRNAs were also able to predict lymph node metastasis with good
sensitivity and specificity [36]. Zhao et al. [37] showed the up-regulated expression of miR-20a and miR-203 in serum of patients with cervical squamous cell carcinomas compared with control patients. They found also the association of lymph node metastasis with the over-expressed miR-20a [37]. For details on serum/plasma microRNA expression in cervical cancer see Table 1.

Stability of extracellular microRNA and the sources of microRNAs in cell-free samples. Initially, the presence of RNases in blood hindered the investigations assuming that RNA should not be present in the body fluids rich in ribonucleases such as serum, or considered as being a result of cell death and lyses [38]. However, the reports on RNA detection in plasma of nasopharyngeal carcinoma patients [39] and serum of malignant melanoma patients [40] showed that RNA may be readily detected in these biological fluids. In 2008, three ground-breaking studies of Lawrie et al. [41], Mitchel et al. [42] and Chen et al. [43] proving the remarkable stability of endogenous extracellular microRNAs and differences between cancer and control patients were published. Moreover, microRNAs in serum were shown to be highly stable in the harsh conditions (extreme temperature and pH) and even more resistant to RNase digestion than tissue or cellular microRNAs [43]. However, the exact origin and the mechanisms stabilizing the circulating miRNAs could not be addressed at that time.

Following reports revealed the presence of extracellular miRNAs in diverse body fluids such as urine, saliva, breast milk, seminal plasma, tears, amniotic fluid, colostrum, bronchial lavage, cerebrospinal fluid, peritoneal fluid, and pleural fluid [44-46].

Figure 3. Origin of intracellular and extracellular miRNAs

The mature miRNA strand eventually serves as the guide for RISC-mediated mRNA targeting resulting in either mRNA cleavage or translational interference. The three types of membranous vesicles that contain extracellular miRNA are apoptotic bodies, shedding vesicles, and exosomes. Besides these, extracellular miRNA can also be vesicle free and associated with either AGO proteins alone or be incorporated into HDL particles. Adapted from [49] with permission of Elsevier (License number 3561921092056).
The stability of circulating microRNAs was then attributed to their carriers, i.e., various kinds of the microvesicles (microparticles, exosomes, and other vesicular structures) providing the protection of trapped miRNAs against digestion by RNases while naked miRNAs appeared to be RNase-sensitive [42]. These vesicular structures mediating intercellular interactions and communications by transporting bioactive molecules (miRNAs, mRNA, proteins, and lipids) between cells have been then subjected to further intensive experimental investigations. However, it became evident that the extracellular miRNAs are a heterogeneous entity consisting of various fractions. Interestingly, microvesicle-associated miRNAs appeared as the least represented fraction while AGO-protein-bound form represented 90-95% of cell-debris-free plasma miRNAs [47,48]. Two major theories suggested recently consider extracellular miRNAs as 1) “by-products” of cellular activity and cell death, and/or 2) on-purpose released cell-cell signaling messengers [49]. The possible mechanisms of miRNA secretion include packaging into various forms of apoptotic bodies, shedding microvesicles, exosomes and lipoprotein HDL particles or binding with associated AGO proteins (Fig. 3, [49]). The exact functions of extracellular miRNAs remain to be further elucidated [49].

Meanwhile, many studies explored the potential of body fluids-associated cell-free microRNAs for the diagnostic purposes, particularly using patients’ serum/plasma. Results of the investigations for gynaecological cancers are presented above. It should be noted that diagnostically-focused studies have not usually explored the miRNAs sources in detail. There exists growing evidence that microRNA expression in blood samples such as serum/plasma may be associated with the blood components, including leukocytes, erythrocytes and thrombocytes. However, in pathological states including cancer, other relevant sources such as tumor cells, and other tissue- and organ-specific cells may release miRNAs into a blood circulation and thus may contribute to the global miRNAs expression. It may be further affected by genetic and epigenetic alterations and externally by other expression modulators such as smoking, food or treatment [50-53]. However, external miRNAs have not been proved yet convincingly to be a functioning part of human miRNome, and alterations in miRNA expressions are suspected to be due to the endogenously originated miRNAs [54].

Blood is a complex body fluid composed particularly of blood cells (erythrocytes, leukocytes and thrombocytes) and plasma. It has been shown in healthy subjects that microRNA expression profile in serum was shared between blood cells (all cellular components of blood here were considered as blood cells) and serum [43]. In the same paper, however, the remarkably different miRNA expression pattern between blood cells and serum was demonstrated in lung cancer patients. Differential serum miRNA expression of lung cancer patients and colorectal patients in comparison with healthy subjects has been shown as well [43]. The “tumor-related” miRNAs common in both cancer types were identified and the authors suggested them to be in a relation with the body’s immune system and a general inflammatory response. Authors further concluded that serum microRNA in cancer may reflect both blood cells and other tissues affected by ongoing diseases as well [43].

It has been demonstrated experimentally using mice xenograft models that plasma microRNAs may represent tumor-derived miRNAs reaching the circulation [42]. Also other investigations proved the impact of tumor-released cells on the plasma/serum microRNA expression, implicating that it may reflect both the microRNAs released by blood and tumor cells. Taylor et al. [17] focused on ovarian cancer exosomes, and found that microRNAs expressions of the EpCAM positive exosomes circulating in the blood were broadly consistent with the ovarian tumor cells of the same patients. Among 218 detected miRNAs, 175 miRNAs (i.e. ~80%) were not significantly different between the ovarian tumor cells and their corresponding exosomes, 12 were up-regulated in cells, and 31 were found with increased expression in exosomes. The study corroborated that cancer-specific signatures based on microRNA expression are shared both in cellular (tumor) and exosome (plasma) compartments of ovarian cancer patients [17].

Evidently, many miRNAs reported as the tumor markers may be found expressed abundantly in the blood plasma. Blood cells have been shown to substantially affect plasma microRNAs expression. Pritchard et al. [55] demonstrated that 58% of the 79 miRNAs reported as cancer biomarkers may be found highly expressed in one or more blood cell types. In more detail, ten miRNAs were then investigated to test the potential correlations of the miRNA expression and blood cell counts. Myeloid-expressed miRNA (let-7a, miR-223, miR-197, and miR-574-3p) were positively correlated with the myeloid blood cell counts (neutrophils and platelets), and the lymphoid-enriched miR-150 was correlated with lymphocyte counts [55].

However, many tissue-specific miRNAs exist in blood circulation although they cannot be derived from blood cells [56-59]. It can be assumed that among over 2,000 human miRNAs currently known, some plasma miRNAs may be clearly associated with a particular disease. For example, in gastric cancer, miR-191 was found up-regulated both in tissue and serum, and the inhibition of this oncogenic miRNA resulted in reduced cell proliferation, cell cycle progression, and impaired cell migration and invasion in HGC-27 cell line [60].

In a contradiction with previous thoughts considering the mature erythrocytes as lacking the microRNAs, Chen et al. [61] proved that both reticulocytes and erythrocytes may contain microRNAs. Moreover, their expression in the mature erythrocytes differed from that of the reticulocytes and leukocytes, and it was suggested that erythrocytes may be contributing to the majority of the microRNA expression in whole blood [61].

Soon after the suggestions on microRNA presence in platelets (i.e. thrombocytes), the third type of anucleate blood cells,
have emerged [62,63], their occurrence has been evaluated elsewhere [64]. Further reports followed confirming the previous studies, and recently it has been shown that the platelets should be considered as the specific source of circulating miRNAs [65]. The levels of miR-24, miR-197, miR-191, and miR-223 identified to be abundant in platelets were increased in serum in comparison with platelet-poor plasma. Moreover, several miRNAs have been found to be affected and responsive to the anti-platelet therapy.

Lymphocytes have attracted attention of microRNA investigations due to their key role in host immune system for many years. As there exist many functional subpopulations of T cells, their microRNA expression diverges between them [66]. Moreover, different miRNAs have been implicated in the differentiation of both T cells and B cells [67]. Interestingly, corresponding miRNA de-regulations may be found in different sample sources including immune cells. For example, in multiple sclerosis there were several miRNAs up-regulated in both peripheral blood mononuclear cells (PBMCs) and brain white matter lesions, and also miRNAs simultaneously up-regulated in regulatory T cells (Tregs), plasma, blood cells, PBMCs and brain white matter tissues [68].

Pitfalls and challenges of the current research

It has become evident that many obstacles yet prevent introducing cell-free miRNAs as novel clinical diagnostics. As we have shown above, there is a limited number of studies investigating this type of samples in gynaecological malignancies. The studies may suffer from insufficient number of samples, application of different methods for miRNAs detection and various approaches for normalization of expression data. Possible complications may also arise from inadequate use of control samples, ethnogeographical issues, underestimated biological variation, and a complex origin of cell-free miRNAs occurring in blood/plasma/serum, or urine samples. More research will be needed to elucidate also the factors affecting the miRNAs expression at the epigenetic and transcriptional control levels known for cellular processes of miRNA functioning (see Figs. 1 and 2, [69]).

Despite these potential pitfalls, a much intensive focus on the diagnostically relevant samples should be encouraged. It is because the body fluids-based miRNA diagnostics are clinically more convenient, non-invasive strategies, giving the chance for an early diagnosis to be achieved with an implicated impact on patients' survival.

Conclusions

MicroRNAs are present and stable occurring not only in different tissues but also in various body fluids. Their resistance to digesting by RNases allows detecting and quantifying them in the sources easily available for diagnostic purposes, such as blood/plasma/serum and urine. Plasma/serum as the prominent representatives of investigated body fluids represent the heterogeneous population of various kinds of extracellular miRNAs of different origin. Blood cells, tumor cells and other organ/tissue-specific cells may serve as their major sources. Urine miRNAs may reveal as the novel diagnostic tool also for other than urinary tract-related diseases. Many questions on exact origin and functions of extracellular miRNAs remain to be answered. However, mounting evidence suggests that their expression harbours significant diagnostic potential with a broad impact on introducing novel biomarkers for various diseases including gynaecological cancers into clinical practice.

Acknowledgements: The financial support from the Charles University Prague (project PVOUK-P27/LF1/1) and from the Ministry of Health of the Czech Republic (project FNBr 65269705) is appreciated.

References

