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Abstract. Impairment of “protein quality control” in neurons is associated with etiopathogenesis 
of neurodegenerative diseases. The worn-out products of cell metabolism should be safely eliminated 
via the proteasome, autophago-lysosome and exocytosis. Insufficient activity of these degradation 
mechanisms within neurons leads to the accumulation of toxic protein oligomers, which represent 
a starting material for development of neurodegenerative proteinopathy. The spectrum of CNS 
linked proteinopathies is particularly broad and includes Alzheimer’s disease (AD), Parkinson’s 
disease (PD), Lewy body dementia, Pick disease, Frontotemporal dementia, Huntington disease, 
Amyotrophic lateral sclerosis and many others. Although the primary events in etiopathogenesis 
of sporadic forms of these diseases are still unknown, it is clear that aging, in connection with de-
creased activity of ubiquitin proteasome system, is the most significant risk factor. In this review we 
discuss the pathogenic role and intracellular fate of the candidate molecules associated with onset 
and progression of AD and PD, the protein tau and α-synuclein in context with the function of ubiq-
uitin proteasome system. We also discuss the possibility whether or not the strategies focused to 
re-establishment of neuroproteostasis via accelerated clearance of damaged proteins in proteasome 
could be a promising therapeutic approach for treatment of major neurodegenerative diseases.
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Introduction

Alzheimer’s and Parkinson’s diseases are the most common 
neurodegenerative diseases of advanced age, with distinct 

clinical symptoms. They are predominantly sporadic, 
meaning that in more than 95% of cases, there is no evident 
link to monogenic inheritance. Recently about 44.4 mil-
lion people worldwide were diagnosed with Alzheimer’s 
disease (AD) and 7–10 million with Parkinson’s disease 
(PD), however, the number of patients is expected to dou-
ble every 20 years. In 2050 there would be 115.38 million 
AD patients worldwide and 18.65 million AD in Europe 
(Prince 2013).
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Among the serious human diseases, AD and PD belong 
to those which still lack the causative, “diseases modifying” 
treatment that would slow down the pathological processes. 
The pathogeneses of AD and PD share several significant 
characteristics. Both diseases are influenced by various 
risk factors, with ‘age’ being the most prominent. On the 
molecular level, they both are classified as proteinopathies, 
characterized by increased accumulation of misfolded 
and cleaved proteins in the intracellular and extracellular 
space. The spectrum of proteinopathies is very broad and 
except of AD and PD includes Lewy body dementia, Pick 
disease, Frontotemporal dementia, Huntington disease, 
Amyotrophic lateral sclerosis and many others (Golde et 
al. 2013). A significant difference in clinical phenotypes 
of these disorders can be explained by the type of the 
affected neuronal populations within the brain and selec-
tive vulnerability of the neurons. While the characteristic 
dopaminergic deficit seen in PD is caused by degeneration 
of the substantia nigra, the cholinergic deficit evident in AD 
can be traced back to loss of neurons in the nucleus basalis 
of Meynert (Braak et al. 1995; Breydo et al. 2012). 

It was described that degradation mechanisms, preferen-
tially the ubiquitin proteasome system, plays one of the key 
roles in progress of AD and PD and probably also in their 
etiopathogenesis (Bedford et al. 2008). In recent literature 
a regulation of ubiquitin proteasome system (UPS) activ-
ity can often be considered as a promising strategy for the 
development of an efficient treatment of neurodegeneration 
(Dantuma and Bott 2014). Although this idea is broadly dis-
cussed, it is a matter of fact that the majority of compounds 
that regulate UPS activity are known for their toxicity and 
negative side effects.

Protein foldopathies and UPS – the major regulator 
of proteostasis in neurons

A common characteristic feature of many neurodegenerative 
disorders, including AD and PD, is the formation of higher 
molecular protein aggregates (Ballatore et al. 2007; Goedert 
et al. 2013). This is a pathognomic feature, however, experi-
mentally is documented that it can be also pathogenic (Zilka 
et al. 2006). In Alzheimer’s disease, the amount of intracel-
lular accumulation of damaged tau protein and inter-synaptic 
spreading of the pathology positively correlates with the pro-
gression of AD and cognitive decline of patients (Alafuzoff 
et al. 2008). Spreading of tau pathology resembles infection 
behaviour of viruses or more closely prions or tauons as the 
transmitted particles were named more than 20 years ago 
(Novak 1994; Ball et al. 2013). The proteolytic processing and 
misfolding of amyloid precursor protein (APP) fragments 
does not correlate with disease progression so well, rather 
it potentiates and accelerates tau protein toxicity (Khan et 

al. 2014). In Parkinson’s disease, parkin, leucine-rich repeat 
kinase 2 (LRRK2) and, more importantly, α-synuclein gradu-
ally accumulate and form presumably toxic proteinaceous 
fibrillary structures (Spillantini et al. 1997).

Whether or not are these high molecular protein aggre-
gates the primary cause of the diseases or just a consequence 
or even protective in the process of neurodegeneration still 
remains a matter of debate. It is more likely that monomeric 
and/or oligomeric intermediates could play a more signifi-
cant role at the onset of the diseases (Kovacech et al. 2009). 
Animal models show that transgenic expression of patho-
logical form of human tau protein results in irreversible 
changes in brain and premature death of the experimental 
animals (Zilka et al. 2006; Filipcik et al. 2012). In PD, the 
accumulation of α-synuclein results in formation of Lewy 
bodies (Goedert et al. 2013).

The cellular regeneration capability of neurons depends 
exclusively on the function of the mechanisms controlling 
the quality of synthesis and degradation of proteins. Gener-
ally the lifespan of intracellular proteins, multicomponent 
complexes and organelles is variable and therefore the cells 
have to undergo periodic regenerative processes (Ciechanover 
and Brundin 2003). During this renewal process, the proteo-
synthetic machinery produces a certain amount of damaged 
or non-functional proteins which need to be removed. In tis-
sues with a rapid cell turnover, the protein quality control is 
effectively accomplished by apoptosis, phagocytosis and cell 
division. In brain tissue, especially in neurons the cell regenera-
tion is very limited, as there are only few areas in the adult brain 
where neurogenesis occurs, and therefore the cell division as 
a regeneration mechanism cannot be employed. The neurons 
in CNS use the UPS, autophago-lysosome and exocytosis in 
order to clear intracellular debris. Within the time, defective, 
misfolded and otherwise damaged proteins may become ac-
cumulated in long lived neurons, which is the process that can 
occur as a consequence of gradually lowering UPS activity 
during the ageing (Ciechanover and Kwon 2015).

Obviously, one of the key strategies in fighting neuro-
degeneration induced by the misfolded proteins and their 
toxic oligomers can therefore be the stimulation of their 
degradation. Concurrently with this process, the activity 
of selected heat shock proteins may result in increased level 
of substrates available for degradation in UPS. Via targeting 
this mechanism one could be able to prevent the initial con-
version of the proteins into toxic molecules that accumulate 
in the intracellular space, elope into extracellular space, and 
progressively spread throughout the CNS, invading adjacent 
areas of the affected brain.

While the autophago-lysosome pathway is a mechanism 
responsible for the degradation of damaged or defective 
intracellular organelles and large protein aggregates, the 
ubiquitin-proteasome complex is responsible for precise 
and complete elimination of unusable, mutant, misfolded, 



339Treatment of neurodegeneration via regulation of UPS

defective, terminally modified and accumulated proteins 
in both, cellular nucleus and cytoplasm (Ciechanover et al. 
2000; Hartl and Hayer-Hartl 2009).

UPS, however, is not exclusively directed to protein 
degradation, it is also responsible for regulation of gene 
transcription by monoubiquitination and deubiqitination 
of histones, cell cycle regulation, apoptosis and in plants also 
to auxin-mediated response to light (Eide et al. 2005; Vissers 
et al. 2008). Furthermore, the role of UPS is indispensable 
in normal function of immune system (Brehm and Kruger 
2015) and plays a role in highly specific control of protein 
expression in different signal-transduction pathways and 
intracellular communication throughout the regulation 
of synapses development in neurons (Leal et al. 2014).

UPS selective degrades proteins conjugated with ubiq-
uitin, a small 8.5 kDa highly conserved protein (Hershko 
and Ciechanover 1998), composed of 76 amino acids that is 
present in every eukaryotic cell (Pickart and Eddins 2004). In 
mammals ubiquitin (Ub) is encoded by four different genes: 
UBB, UBC, UBA52 and UBA80 (Kimura and Tanaka 2010). 
Ubiquitination involves the covalent attachment of C ter-
minal residue of ubiquitin via isopeptide bond to a lysine 
residue of target protein. This process includes cooperation 
of ubiquitin activating enzyme (E1), ubiquitin conjugating 
enzyme (E2) and finally ubiquitin ligase (E3). In the final step, 
ubiquitin monomers are activated by ATP-dependent reac-
tion through the use of E1 and transferred to cysteine residues 
of E2. Subsequently, ubiquitin is attached to target protein 
by force of E3. E3 ligase is a link between target protein and 
E2-ubiquitin complex and mediates formation of covalent 
binding between C-terminal residues of ubiquitin monomer 
and lysine residues of target molecule. Another activated 
ubiquitin molecules are consequently added to first ubiquitin 
forming poly-ubiquitin chains (Chau et al. 1989; Gregori et 
al. 1990). Poly-ubiquitin chains can have different topography 
based on presence of seven lysine residues on ubiquitin itself: 
K6, K11, K27, K29, K33, K48 and K68 (Dennissen et al. 2012). 
Different chain architecture leads to different protein fate. 
For example, proteins bearing K48 linked ubiquitin-chain 
composed of four or more molecules are distinguished by 
26S proteasome and subsequently degraded (Deveraux et 
al. 1994; Heride et al. 2014). The specificity to the whole 
process is given by selective binding of E2/E3 enzymes to the 
protein. Their activity is often regulated by phosphorylation. 
Ubiquitin monomers are released from proteins after target-
ing of proteins to the proteasome and recycled. Release of 
ubiquitin is under the control of deubiquitinating enzymes 
(DUBs), proteases which reverse isopeptide bond and thus 
control the status of protein ubiquitination and the level 
of mono-ubiquitin in cells (for review see Ristic et al. 2014). 
Within the multi-enzymatic steps which include E2 (about 
40 different enzymes), the E3 ubiquitin ligases (more than 
700 enzymes) and deubiquitylases (about 100 enzymes) that 

could be druggable the E3 ligases represent probably the most 
specific targets (Skaar et al. 2014).

Proteasome (26S proteasome) is composed of three 
subunits: 20S catalytic core and two 19S regulatory re-
gions. 20S subunit has a cylindrical structure formed by 
four rings. Its structure encompasses six active proteo-
lytic sites: two trypsin-like, two chymotrypsin-like and two 
peptidylglutamyl-like proteolytic activity sites (Rivett et al. 
1995). 19S subunit is responsible for recognition and bind-
ing of polyubiquitinated proteins. Prior to degradation in 
20S catalytic core of the proteasome the polyubiquitinated 
proteins are unfolded and deubiquitinated (Hershko and 
Ciechanover 1998). Interestingly, the 20S proteasome subu-
nit can also exist in a free form. In this case, 20S is able to 
digest proteins directly in ATP-independent and ubiquitin-
independent way (Sanchez-Lanzas and Castano, 2014).

Since the proteins like tau and α-synuclein are prone to ab-
errant modifications that are normally subject for UPS deg-
radation it seems very likely that UPS can play an important 
role in early stages of neurodegenerative diseases. Therefore 
the elimination of these aberrant proteins via UPS in early 
stage of disease seems to be an attractive therapeutic strategy 
for treatment of the major neurodegenerative diseases.

Alzheimer’s disease, tau protein and UPS 

A significant research effort in the field of neurodegenera-
tive diseases has been focused on explanation of the AD 
pathogenesis through the overproduction of β-amyloid, 
the cleavage product of APP, which in AD accumulates 
into senile plaques. However, decades of research in APP 
processing did not yield the expected outcome and drug 
development based solely on the amyloid hypothesis was not 
successful until now (Calcul et al. 2012). Understandably, the 
attention in the AD research is drawn towards protein tau, 
the second prominent protein in AD, as it was clearly shown 
that the distribution of pathological forms of tau positively 
correlates with the extent of neurodegeneration and degree 
of cognitive impairment in AD sufferers (Braak et al. 2006). 
Tau protein is now considered as one of the most promising 
targets for development of new generation of anti-AD strate-
gies (Ballatore et al. 2012) with currently first clinical trial 
of active anti-Tau immunotherapy being tested in human 
(Kontsekova et al. 2014). 

Via alternative splicing, six tau isoforms are expressed 
from MAPT gene, differing by presence or absence of one or 
two inserts (29 or 58 amino acids) in the N-terminus and by 
presence or absence of the second repeat in the microtubule-
binding domain (MTBD) of the molecule (Goedert et al. 
1989). Tau protein belongs to the group of phosphoproteins, 
its molecule contains more than 80 potential phosphorylation 
sites (Wang et al. 2013). Tau protein is predominantly localized 
in axons, where it participates on regulation of microtubule 
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stability and thus contributes to the determination of cell 
morphology. When phosphorylated at serine and threonine 
residues within MTBD the binding of tau to microtubule is 
diminished and it accumulates in somato-dendritic space 
of neuron (Kuret et al. 2005; Filipcik et al. 2009). Tau in AD 
patient brains is abnormally hyper-phosphorylated at multiple 
phosphorylation sites and pathologically truncated at both 
ends of the molecule (Novak et al. 1993; Iqbal et al. 2009; Llo-
ret et al. 2015). Such pathologically modified tau proteins form 
paired helical filaments (PHF) that are the core constituents 
of neurofibrillary tangles (NFTs) (Novak et al. 1989).

Tau belongs to the group of intrinsically disordered pro-
teins (IDP) that play an important role in many biological 
processes including cell signaling, translation, transcription 
regulation and facilitates multi-protein assemblies. Besides 
microtubules, tau protein was shown to interact with many 
other proteins, among which protein-phosphatases and 
heat-shock proteins (Hsp) are most prominent (Shimura et 
al. 2004; Dickey et al. 2007a). Under physiological condi-
tions, the tau molecule remains in a highly soluble form. In 
fact, the loss of physiological tau function and gain of toxic 
properties is directly connected to the transformation of tau 
into an insoluble fibrillary structure – this seems to be com-
mon and most significant denominator of neurodegenerative 
tauopathies, including AD. The process of tau conversion into 
its pathological form includes at least two key transition steps. 
First is the posttranslational modification such as truncation 
followed by hyperphosphorylation, miss-phosphorylation, 
oxidation, nitration, glycation, glycosylation or others (Cente 
et al. 2009; Martin et al. 2011). The consequence of these 
changes is a decrease in microtubule-binding affinity and/
or aberrant microtubule assembly. The second step is repre-
sented by the formation of hydrophobic bonds between two 
molecules of pathologically modified tau proteins in the cyto-
plasm, through the MTBD domains resulting in a beta sheet 
protein structure formation (Novak et al. 1993). Since the tau 
contains 3 or 4 MTBD the final PHF morphology depends 
on the specific tau isoform that PHF consist of (Sugino et al. 
2009). It also depends on the presence of specific amino acid 
residues and presence of other molecules in the complex with 
tau. Aggregation of tau into various aberrant forms is a proc-
ess that causes tau to gain its toxic properties (Cente et al. 
2006; Gomez-Ramos et al. 2006; Nisbet et al. 2015). Inhibition 
or prevention of tau aggregation could be therefore an im-
portant step in the development of pharmacologic treatment 
of AD. Some scientific groups support the idea that the ideal 
drug candidate should inhibit tau hyperphosphorylation, 
since hyperphosphorylated tau aggregates much easier than 
its physiologically phosphorylated form, or directly inhibit 
the pathological conformation change that causes aggregation 
into PHF (Kosik and Shimura 2005; Iqbal et al. 2009; Ballatore 
et al. 2012). Together with tau miss-phosphorylation the tau 
cleavage leads to a conformational change and significantly 

increased susceptibility of truncated form to hyperphos-
phorylation and subsequent aggregation (Zilka et al. 2006). 
Obviously, the understanding of the causal mechanisms re-
sponsible for pathological tau cleavage is essential for further 
advancement in understanding of AD pathogenesis.

Tau protein and UPS

The major histopathological hallmark of neurofibrillary 
degeneration in Alzheimer’s disease and related tauopathies 
is presence of tau protein deposits in the brain. Since the 
tau protein in these aggregates is highly posttranslationally 
modified it is still an open question how can be the tau deg-
radation influenced by the posttranslational modifications. 
It was previously described that inhibition of proteasome in 
cell cultures causes inhibition of tau degradation (Tseng et al. 
2008) and on the other hand exogenous delivery of purified 
proteasomes significantly promotes cell survival against pro-
teotoxic stress caused by tau (Han et al. 2014). Furthermore, 
we have recently shown that pathologically truncated tau 
is degraded via proteasome pathway and simultaneously it 
is able to decrease the proteasome activity. Interestingly, in 
the same system, the inhibition of Hsp90 chaperone activity 
by geldanamycin increased the tau protein degradation and 
restored the proteasome activity, proving that enhanced clear-
ance of pathological tau by UPS could represent promising 
strategy for treatment of neurodegeneration (Opattova et al. 
2013). Other in vitro studies reported that abnormally trun-
cated tau at D421 is predominantly degraded by autophagy, 
while full length tau protein is a subject for degradation by 
UPS (Dolan and Johnson 2010). Besides truncation, it was 
documented that tau hyperphosphorylation induced by 
okadaic acid almost completely blocked tau degradation 
in proteasome (Poppek et al. 2006). On the other hand the 
proteasome and calpain protease systems are capable of de-
grading tau in cell-free assays, albeit their inhibition does 
not alter cellular tau levels in primary neurons or differenti-
ated neuroblastoma cells (Brown et al. 2005). It seems that 
selection of intracellular degradation pathway for tau protein 
depends not only on the specific posttranslational modifica-
tions but also on type of tau protein isoform. Although the 
degradation of tau protein in proteasome was intensively 
studied over the past few years the necessity of ubiquitination 
in the process is still discussed among the scientific com-
munity (Erales and Coffino 2014). Studies of various groups 
demonstrated that ubiquitination is not required for normal 
tau degradation (Grune et al. 2010) and tau as an intrinsically 
disordered protein can be degraded by the ubiquitin inde-
pendent proteasome pathway, but it is also unclear how is the 
tau protein recognized by proteasome (Lee et al. 2013). On 
the contrary it is well known, that accumulated ubiquitin is 
present in the plaques and NFTs in the brains of AD patients 
(Kudo et al. 1994). PHF in AD brain have been reported as 
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monoubiquitinated (Morishima-Kawashima et al. 1993) and 
such proteins are poorly degraded by UPS. Importantly, it 
was shown that pathological structures in AD brains contain 
ubiquitin B mutated protein (UBB+1), a mutated ubiquitin, 
which is created by deletion at its C-terminus (van Leeuwen 
et al. 1998). This protein is resistant to deubiquitination (Tan 
et al. 2007) and blocks the ubiquitin-dependent proteolysis in 
neural cells (Lindsten et al. 2002). Despite of increased level of 
ubiquitin in AD brains the E1 and E2 enzymes responsible for 
process of ubiquitination have been reported down-regulated 
in AD and this down-regulation is age-dependent (de Vrij 
et al. 2004). Some of the authors show that ubiquitination 
enhances tau aggregation, however, this has to be further 
investigated (Wang and Mandelkow 2012).  

In addition to ubiquitination, total proteasome level and 
its activity plays an important role in AD pathogenesis. Brain 
areas affected by AD display noticeable decrease in protea-
some immunoreactivity, both the number of proteasome 
subunits and overall proteasome activity are lowered (Keller 

et al. 2000; Lehman 2009). Moreover, insoluble tau aggregates 
isolated from human AD brains directly induce proteasome 
dysfunction resulting from the inhibitory binding of PHF-
tau to the proteasome (Keck et al. 2003).

Ageing significantly contributes to the decrease of protea-
some activity (Dasuri et al. 2009; Vilchez et al. 2014). There-
fore, it is not surprising that in etiopathogenesis of aging-
associated neurodegenerative disorders including AD and PD 
we can observe the markers of proteostasis failure. Dysregu-
lation of individual processes of proteostasis manifested by 
decreased number of functional proteasomes together with 
inhibition of proteasome activity and impaired ubiquitina-
tion inevitably results to impairment of protein degradation. 
Inhibition of tau protein degradation can lead to generation 
of tau pro-aggregating forms capable to promote formation 
of tau oligomers (Wang et al. 2009). Considering recent data, 
the strategies targeting enhancement of degradation pathways 
could influence the generation of toxic tau fragments and 
reactivate the impaired proteostasis in AD (Fig. 1). Still it is 

Figure 1. The pathophysiological mechanisms in Alzheimer’s and Parkinson’s diseases and potential therapeutic targets in ubiquitin pro-
teasome system for their treatment. Abnormal posttranslational modifications of both α-synuclein and protein tau, such as truncation, 
hyperphosphorylation and others can lead to protein aggregation and generation of high molecular assemblies, which are characteristic 
pathognomic feature of the diseases. High molecular aggregates inhibit activity of proteasome, which accelerates further generation of the 
aggregates. In contrast, the inhibition of Hsp90 activity, inhibition of deubiquitinase and activation of proteasome are the processes that 
may alleviate neurodegeneration via acceleration of toxic protein clearance.
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the open question to what extent this process could be AD 
specific and how to avoid the neurotoxicity, which is the major 
concern accompanied with this treatment strategy.

Parkinson’s disease, α-synuclein and UPS

The most significant pathological sign of Parkinson’s disease 
is a progressive degeneration of dopaminergic neurons in 
substantia nigra. Histopathological hallmarks of PD include 
the presence of Lewy neurites along with intraneuronal 
insoluble aggregates called Lewy bodies (LB), which are 
composed of a heterogenic mix of proteins and lipids (Mc-
Naught et al. 2003). However, the major protein component 
of Lewy bodies is α-synuclein (Spillantini et al. 1997). LBs 
are localized in the cytoplasm of dopaminergic neurons in 
the substantia nigra and neurons of cerebellar cortex and 
magnocellular basal ganglia (Braak et al. 1995). Pathological 
form of α-synuclein was shown in the brains of patients with 
sporadic forms of AD as well (Jellinger 2011). Aside from 
the classic motoric impairment in PD, synucleinopathy is 
also the neurodegenerative process behind dementia with 
Lewy bodies (DLB), which features cognitive impairment 
combined with hallucinations, brain atrophy, and accumu-
lation of LB in cortical or cholinergic brain areas (nucleus 
basalis of Meynert) affected also in patients with AD (Liu 
et al. 2015). Definite pathogenic role of α-synuclein was 
confirmed by identification of point mutations and duplica-
tions/triplications in α-synuclein gene (SNCA locus), which 
were shown to be causative for familial forms of PD (Hardy 
et al. 2009; Deng and Yuan 2014). α-synuclein present in LB 
is phosphorylated predominantly at serine 129 (pS129) and 
can be also oxidised (Spillantini et al. 1997) or alternatively 
modified, for example proteolytically cleaved (Breydo et 
al. 2012). The degradation of α-synuclein takes place in 
ubiquitin-proteasome system (Bennett et al. 1999), however, 
it can be degraded also by autophagy (Mak et al. 2010) and 
by chaperone-mediated autophagy (Cuervo et al. 2004). The 
failure in elimination of α-synuclein aggregates from the 
neurons is indicative of defective proteostasis. 

α-synuclein and UPS

Significant role of UPS in the PD pathology is supported by 
discovery of ubiquitin in Lewy bodies (Beyer et al. 2009). 
The ability of UPS to recognize misfolded proteins as well 
as labelling of misfolded proteins with ubiquitin and their 
consequent intracellular accumulation point to the fact, that 
the critical factor in the clearance is a degradation step rather 
than ubiquitination. This means that pathological proteins 
could be marked for degradation, however, the degradation 
process fails, or is not complete and may moreover generate 
still more toxic fragments. It was shown that experimentally-
induced overexpression of wild type α-synuclein, as well as 

its mutated form inhibits proteasome activity (Nonaka and 
Hasegawa 2009; Emmanouilidou et al. 2010). The UPS in-
hibition in PC12 cells leads to the increase in accumulation 
of ubiquitin positive α-synuclein aggregates, which further 
indicates the significance of a deficient proteasome process-
ing system in PD pathology (Rideout et al. 2001; Martinez-
Vicente and Vila 2013). It was also shown that aggregated 
α-synuclein directly interacts with the 19S proteasome subu-
nit, resulting in inhibition of the protein interactions with the 
catalytic subunit, and finally in the blocking of the 26S pro-
teasome subunit (Snyder et al. 2003; Emmanouilidou et al. 
2010). Defects in UPS function were documented not only in 
cellular and animal PD models, but in sporadic PD patients 
as well. In the brains of PD patients, we can observe a selec-
tive decrease in proteasome activity and reduction of protea-
some subunits in the substantia nigra, but not in the striatum 
or cortex (McNaught et al. 2003). This indicates that UPS 
deficiency contributes to dopaminergic neurodegeneration 
in substantia nigra in sporadic PD patients (Betarbet et al. 
2005). The connection between defects in UPS and develop-
ment of PD neurodegeneration is also supported by familial 
forms of PD. Mutations in parkin gene as well as in the „ubiq-
uitin carboxy-terminal hydrolase L1“(UCHL1) genes are 
directly linked to UPS activity. Parkin, which is an ubiquitin/
ligase (E3) cooperates with ubiquitin-conjugation enzymes 
UbcH7 and UbcH8 (E2). Mutations related to familial form 
of PD inhibit binding between parkin and E2 enzymes and 
consequently cause the loss of E3 ligase function. Mutations 
can also decrease parkin enzymatic activity and interaction 
with C-terminus of Hsc70 Interacting Protein, CHIP (Imai 
et al. 2002). These interactions result in defects of substrate 
ubiquitination and transfer to UPS. Interestingly, parkin 
over-production prevents proteasome defects caused by 
α-synuclein (Petrucelli et al. 2002). Parkin also influences 
ubiquitination of the mitochondrial proteome, which signifi-
cantly affects PD pathogenesis (Sarraf et al. 2013). UCHL1 
belongs to the group of de-ubiquitination enzymes and is 
responsible for hydrolysis of poly-ubiquitinated chains. 
Mutations in the UCHL1 gene decrease its catalytic activity, 
which in PD leads to decrease of ubiquitination and finally 
to the failure of misfolded protein degradation (Gong and 
Leznik 2007). The above mentioned experimental evidence 
strongly supports the significance of proteasome activity in 
the etiopathogenesis of PD.

Activation of proteasome: a promising treatment strategy?

Ubiquitin proteasome system belongs to the major molecular 
machinery focused to keep cells in physiological conditions; 
it is indispensable for cell survival and therefore its regulation 
should be very careful since the side effects of the regulators 
could be life threatening. Still the activation of proteasome 
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pathways is considered as one of the potential therapeutic 
strategies for treatment of AD and PD (Dantuma and Bott 
2014). There are 3 principal ways of the UPS activation: 
endogenous activators, genetic activators and natural or 
synthetic compounds, small molecules. 

To date, three main endogenous 20S proteasome acti-
vators were described: PA28, PA200 and PA700 (Schmidt 
and Finley 2014). PA28 activates peptide hydrolysis by 
association of 20S proteasome with it α rings (Rechsteiner 
et al. 2000). Similarly to PA200, this pathway is ATP and 
ubiquitin-independent and is not involved in degrada-
tion of ubiquitinated proteins. PA28 is also known as 11S 
regulatory particle (REG). This regulatory particle is often 
a hetero-hepta-dimer localized in cytoplasm or homo-hepta-
dimer localized mainly in the nucleus (Mao et al. 2008). 
Overexpression of PA28 was shown to enhance the survival 
of neurons in Huntington disease cell model (Seo et al. 2007). 
This suggests that proteasome activators may be used as 
therapeutic targets (Huang and Chen 2009). PA200 is 200 
kDa nuclear protein, which binds to 20S proteasome (Ustrell 
et al. 2002). This proteasome activator enhances hydrolysis 
of peptides, most notably after acidic residues (Blickwedehl 
et al. 2008). PA700-19S regulatory particle is 1 MDa complex 
which consists of 19 proteins. This regulatory particle acti-
vates 20S proteasomes in an ubiquitin- and ATP-dependent 
manner. The individual subunits of this particle are involved 
in de-ubiquitination, unfolding of proteins and α-ring gate 
opening and facilitate substrate entry to the proteasome. 
PA28-20S-PA700 also forms the hybrid proteasomes, which 
are involved with 26S proteasome in MHCI antigen pres-
entation (Hendil et al. 1998). Induction of PA700 has been 
considered as one of the possible therapeutic strategies via 
degradation of poly-ubiquitinated proteins.

The group of genetic activators is currently represented 
by only one yeast transcriptional regulatory system of pro-
teasome, a zinc finger transcription factor Rpn4, which is 
a proteasome-associated transcriptional regulator carrying 

proteasome-associated control elements (PACE) sequence 
(Karpov et al. 2008). Studies on human fibroblast cellular 
model indicate that up-regulation of proteasome activity may 
be achieved also by overexpression of the proteasome matu-
ration protein (POMP), which elevates the level of functional 
and assembled proteasomes and enhances the antioxidant 
capacity of cells (Chondrogianni and Gonos 2007).

Over the period of time several small molecules able to 
activate proteasome were identified. This group of molecules 
includes denaturing reagents, lipids, peptides, fatty acids, 
synthetic peptidyl alcohols, esters and nitriles activators, such 
as SDS, polylysine and linoleic acid. The mechanism of ac-
tion of SDS and fatty acids consists in partial denaturation 
of proteasome and opening of its conformation (Watanabe 
and Yamada 1996). Synthetic peptidyl alcohols, esters, p-
nitroanilines and nitriles activate proteasome through PA28 
binding site (Wilk and Chen 1997). Potent proteasome acti-
vators are also betulinic acid and oleuropein, isolated from 
Betula pubescens and Olea europaea, respectively. Betulinic 
acid dominantly activates chymotrypsin-like proteasome 
activity, while oleuropein can activate all three proteasomal 
activities and cause conformational changes of the 20S α-ring 
(Katsiki et al. 2007). Other natural antioxidants, such as 
dithiolethione and sulforaphane may increase expression 
of proteasome and enhance protection against oxidative 
stress (Kwak et al. 2007). From the relatively large spectrum 
of proteasome activators only few of them were tested for 
their efficacy in neurodegenerative processes. Those which 
were found effective in experimental models of neurodegen-
erative disease are summarized in Table 1.

Another strategy for enhancement of protein degradation 
is stimulation of ubiquitination. This approach of selective 
ubiquitination and proteasome post-translational degrada-
tion of specific substrates employs proteolysis targeting chi-
mera molecules (PROTACS) (Prabha et al. 2012). PROTACS 
are interesting, hetero-bi-functional molecules, which act as 
a bridge between targeted protein and E3 ligase. E3 ubiquitin 

Table 1. Efficacy of proteasome activators in experimental models of neurodegenerative diseases

Compound Mechanism of action Effect Experimental model References

Betulinic acid Activation of chymotrypsin 
proteasome activity

Enhanced clearance of tau 
and amyloid β MT4 human T cells Friedman et al. 2014; 

Huang et al. 2007

Oleuropein
Activation of trypsin, 
chymotrypsin and caspase 
activity of proteasome

Inhibition of tau aggregation In vitro aggregation assay 
with P301L tau protein Daccache et al. 2011

Dithiolethione Increase in proteasomal 
peptidase activities Neuroprotection Hydroxydopamine 

treated SHSY5Y cells Brown et al. 2014

Sulforaphane Induction of proteasome 
activities

Protection against Ab4  
induced neurotoxicity

Scopolamine treated 
mice/ Neuro2A

Lee et al. 2014; Park 
et al. 2009

Lithocholic acid 
derivatives

Activation of chymotrypsin 
proteasome activity

Alleviation of Aβ induced 
inhibition of proteasome

In vitro assay with 
amyloid β1-42

Dang et al. 2012
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ligase with bound PROTAC promotes synthesis of polyubiq-
uitin chain on the target protein which leads to facilitation 
of recognition and subsequent degradation of target proteins 
by 26S proteasome (Cyrus et al. 2011).

Heat shock proteins in neurodegeneration

Regulation of proteostasis via heat shock proteins appears 
to be very interesting strategy for suppression of neurode-
generation. Hsps are chaperones that significantly influence 
protein quality control and are responsible for correct struc-
tural assembly of nascent polypeptide chains and preserva-
tion its structure during the transportation to the effector 
site of the protein. Those proteins with defective structure 
that can’t be reassembled by chaperones are ubiquitinated 
and consequently degraded in proteasome (Goryunov and 
Liem 2007). Different chaperones use different effector 
mechanisms. Their expression is induced predominantly as 
a response mechanism to various external factors including 
heat stress, hypoxia and presence of heavy metals or amino 
acids analogues (Chen et al. 2007). Mammalian cells contain 
more than 100 proteins of the chaperone family that are clas-
sified into groups according to their molecular weight. The 
most significant among them are Hsp110, Hsp90, Hsp70, 
Hsp60, Hsp40 a Hsp27. Immunological and biochemical 
studies have shown increased expression of Hsp proteins 
in AD brains (Sahara et al. 2005). Recently, Hsp27, Hsp70 
and CHIP were described to have the ability to recognize 

abnormal tau and reduce its concentration by mediating its 
degradation and dephosphorylation. Hsp27 was described 
as a preferential binding partner of hyperphosphorylated 
tau (Shimura et al. 2004). The amount of proteins, especially 
Hsp27, Hsp40, Hsp90, alfaB-crystaline and CHIP positively 
correlates with the amount of soluble tau protein (Sahara et 
al. 2007), and inverse correlation with the level of granulated 
tau oligomers, the intermediates of NFT formation was de-
scribed (Koren et al. 2009). However, the communication 
between Hsp27 and pathological tau protein is indirect and 
more complicated than previously thought (Filipcik et al. 
2015).

Postmortem analysis of PD brains showed that Hsp90, 
Hsc70 and Hsp40 co-localize with α-synuclein in Lewy 
bodies (Uryu et al. 2006).

Functioning of the chaperones is generally positive and 
leads to recovery of proteostasis and establishment of physi-
ological status, however, there is at least one interesting 
example clearly showing how the originally physiological 
function of chaperone can be transformed into neuro-
pathogenic. Hsp90 normally stabilizes the proteins, securing 
their correct structural assembly (Wandinger et al. 2008). It 
contains two binding domains: C- and N-terminal (Garnier 
et al. 2002). The C-terminal region modulates its N-terminal 
ATPase activity (Owen et al. 2002). It is known that Hsp90 
binds to GSK3β and inhibits tau protein phosphorylation 
(Dickey et al. 2007a). Recent studies, however, revealed that 
pathologically modified tau protein induces Hsp90 to act as 
a stabilizer of such a pathologic conformational change of tau 

Table 2. Efficacy of Hsp90 inhibitors in experimental models of neurodegenerative diseases

Compound Hsp90 
binding Family BBB per-

meability Effect Experimental model References

17AAG N-term Hydroquinone Good Increases clearance of tau P301L tau mouse β amyloid 
model (Tg2576) Ho et al. 2013

17DMAG N-term Hydroquinone Good Increases clearance of tau
Rat primary 
corticohippocampal neurons 
expressing T151-391

Opattova, 
unpublished data

PU-H71 N-term Purine Poor Inhibits of LRRK2-toxicity and 
rescued axon growth defect

Drosophila ortholog (CG5483) 
of human LRRK1 and LRRK2 Wang et al. 2008

EC102 N-term Purine Good Decreases phosphorylated tau P301L cellular model Dickey et al. 2006
PU24FCL N-term Purine Good Increases Hsp70 Primary neurons Luo et al. 2007

SNX-9114 N-term Pyrazole Good
Protects against α-synuclein 
induced loss of dopaminergic 
neurons

Rat model of parkinsonism 
(α-synuclein)

McFarland et al. 
2014

KU-32 C-term Novobiocin 
derivate Good Protects against Aβ-induced 

toxicity SHSY5Y cell cultures Lu et al. 2009

BBB, blood brain barrier; 17AAG, 17-allylamino-17-demethoxygeldanamycin; 17DMAG, 17-dimethylaminoethylamino-17-demeth-
oxygeldanamycin; PU-H71, 6-Amino-8-[(6-iodo-1,3-benzodioxol-5-yl)thio]-N-(1-; methylethyl)-9H-purine-9-propanamine; EC102, 
C19H25IN6OS;  PU24FCL, 8-aryl-sulfanyl adenine; SNX-9114, derivative of 4-[6,6-dimethyl-4-oxo-3-(trifluoromethyl)-4,5,6,7-tet-
rahydro-1H-indazol-1-yl]-2-[(trans-4-hydroxycyclohexyl)amino]-benzamid; KU-32, [N-(7-((2R,3R,4S,5R)-3,4-dihydroxy-5-methoxy-
6,6-dimethyl-tetrahydro-2H-pyran-2-yloxy)-8-methyl-2-oxo-2H-chromen-3-yl)acetamide].
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that is vulnerable to hyperphosphorylation and aggregation 
and consequently increases intraneuronal concentration 
of pathological tau protein intermediates (Tortosa et al. 
2009). Not surprisingly, the increased Hsp90 chaperone ac-
tivity than leads to the progression of the neurodegenerative 
phenotype (Blair et al. 2013). Logical consequence was test-
ing of Hsp90 activity inhibitors for their potential therapeutic 
effect in models of neurodegenerative disorders. This led to 
development of several candidate molecules for treatment 
of AD and PD. The list of the molecules used in this effort 
and their basic features are included in Table 2.

Inhibitors of Hsp: stimulators of proteasome? 

In contrast to the current treatment procedures established 
for AD and PD that help to manage the symptoms of the 
disease, the regulation of UPS could be a promising can-
didate for causal therapy. Targeting the formation of the 
initial oligomers that gain the toxic function and initiate 
the neurodegenerative process should stop the disease at 
the very beginning. Particularly Hsp90, which is a promis-
ing target for treatment of cancer, seems to be an important 
target for therapy of neurodegeneration as well (Gallo 2006; 
Shimamura and Shapiro 2008). Hsp90 is a prominent heat 
shock protein, which composes about 1–2% of all cytosolic 
proteins (Pratt and Toft 2003). Hsp90 interacts with more 
than 20 partner proteins, most of which are co-chaperones 
that regulate its activity (Li et al. 2012). It plays an impor-
tant role in the structural assembly of unfolded proteins 
(Chiosis et al. 2006) and in protein maturation. Non-toxic 
inhibition of Hsp90 in AD models activates the heat shock 
factor 1 (HSF1), a transcription factor, which controls the 
production of Hsp70, Hsp40 and Hsp27, the proteins taking 
place in the process of elimination of tau protein aggregates 
(Luo et al. 2007). Induction of Hsp70, Hsp40 and Hsp27 
expression leads to selective elimination of phosphorylated 
and conformationally transformed tau proteins by protea-
some pathway, which in conclusion prevents the toxicity 
associated with pathological tau (Dickey et al. 2007b; Opat-
tova et al. 2013). The first identified Hsp90 inhibitor was 
geldanamycin (GDA), a natural product extracted from 
bacteria Streptomyces hygroscopicus. It belongs to the group 
of benzochinone ansamycine antibiotics and binds Hsp90 
through its N-terminal domain (Hartson et al. 1999). The 
inhibition of Hsp90 activity by GDA increases expression 
of Hsp90 and Hsp70, which results in a decrease in the 
level of hyperphosphorylated aggregated tau (Petrucelli et 
al. 2004); moreover it also reduces extracellular α-synuclein 
oligomers formation and related toxicity (Danzer et al. 2011). 
GDA inhibits the function of Hsp90 by reduction of its 
ATPase activity (Panaretou et al. 1998), which results in the 
increase of client protein degradation and the further HSF1 

activation (Ciechanover and Brundin, 2003). Other natural 
Hsp90 inhibitors are herbimycin, radicicol, novobiocin and 
its analogs, coumermycin A1, taxol and other (Amolins and 
Blagg 2009). Synthetic analogues of GDA such as 17-AAG 
a 17-DMAG (17-(dimetylaminoetilamino)-17-demetoxy- 
geldanamycine) are characterized by a lower cytotoxicity 
and higher solubility than GDA (Jez et al. 2003; Ortega 
et al. 2014). It has been observed that inhibitor of Hsp90 
increases the activity of proteasome (Pajonk and McBride 
2001; Opattova et al. 2013); although the mechanism of this 
activity is not yet clear, this would be an ideal combination 
of effects induced by one molecule. Relatively large amount 
of Hsp90 inhibitors was synthetized to date (Blair et al. 
2013). Although for treatment of cancer several of them 
entered clinical testing and seems to be promising for special 
forms of neoplasia (Neckers and Workman 2012; Jhaveri et 
al. 2014), till now no inhibitor of Hsp90 that would have 
ideal properties for clinical use in AD or PD patients was 
developed. Therefore an effort should be done in order to 
develop the inhibitors with acceptable pharmacokinetic 
properties, good bioavailability including good blood brain 
barrier transfer. It is likely that non-toxic inhibitors of Hsp90 
could lead to re-establishment of the proteostasis; however, 
they should always be tested for the prevention of cognitive 
decline and behavioural deficits, the two phenomena, which 
are typical for AD and PD (Fig. 1). 

Conclusion 

Neurodegenerative disorders lead to a decrease of cogni-
tive abilities, memory impairment and behavioural deficits 
in a significant part of the elderly population. Alzheimer’s 
and Parkinson’s diseases, despite a difference in symp-
tomatology, share common signs at the subcellular and 
molecular level, the most significant is an accumulation 
of misfolded proteins which gain toxic functions and drive 
the neuropathology of these fatal diseases. Considering 
the common denominator in molecular mechanism, the 
concept of treatment possibilities could be similar in both 
of these disorders. Since the chaperone system, originally 
focused on the repair of the defective proteins, can also 
prolong the lifespan of toxic proteins in neurons, the 
inhibition of this system could lead to increased degrada-
tion of toxic proteins, which may result in improvement 
of neuron survival and consequently to the alleviation 
of neurodegeneration. Concurrently, specific activation 
of degradation signaling pathways e.g. ubiquitin pro-
teasome system could be an attractive tool in fighting 
against neurodegeneration. The combination of these two 
approaches could lead to significant decrease of amount 
of intraneuronal misfolded proteins or completely elimi-
nate toxic proteins from neurons. Major bottleneck in this 
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strategy is the lack of compounds that would specifically 
target just pathologically modified proteins and leave the 
physiological ones untouched. Such a complex system as 
UPS provides good opportunity for development of spe-
cific therapeutics targeting specific groups of misfolded 
proteins, the amount of potential candidates is huge. An-
other biggest obstacle, which remains to be solved, is the 
toxicity and adverse effects of the compounds targeting 
UPS or chaperone system. The idea of re-establishment 
of neuroproteostasis is appealing; the way from this idea 
to the experimental evidence at least in preclinical animal 
models will be still very long and tough. Once it comes to 
the practice, very likely this strategy could be efficient not 
only in AD and PD, but also in other neurodegenerative 
diseases with related molecular pathology, which could be 
a major step on the route to the healthy ageing.
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