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Hypothermia mitigates neurochemical alterations in rat’s cerebral 
cortex during status epilepticus induced by pilocarpine 
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Abstract. Status epilepticus (SE) is a prolonged seizure activity associated with mortality and mor-
bidity. SE is characterized by changes in neurotransmitter systems and oxidative stress that facilitate 
cellular damage. These alterations represent the neurochemical mechanisms underlying the initia-
tion and progression of seizure activity and co-existing morbidity. In the present study, amino acid 
levels (glutamine, glutamate, GABA, aspartate, glycine and taurine) and oxidative stress parameters 
malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide NO) were determined in the 
cerebral cortex during SE induced by pilocarpine in rats. The study has also evaluated the effects of 
hypothermia, as a physical non-invasive tool, on neurotransmitters and oxidative stress alterations. 
The results obtained revealed that there are significant increases in glutamate, GABA, glycine and 
taurine and NO in the cortex of pilocarpinzed rats. Hypothermia pretreatment mitigated most of 
the alterations induced by pilocarpine and significantly decreased GABA concentration. These find-
ings emphasize the involvement of extrahippocampal amino acid neurotransmitters in pilocarpine-
induced SE and the ameliorative role played by hypothermia.
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Introduction

The pilocarpine model of temporal lobe epilepsy (TLE) in 
animals can reproduce behavioral, electrical and chemical 
characteristics observed in humans (Morimoto et al. 2004). 
Injection of pilocarpine (muscarinic receptor agonist) 
induces a status epilepticus (SE) that is characterized by 
tonic-clonic generalized seizures. After several hours of SE, 
animals go into a seizure-free period (latent period). Then, 
the animals display spontaneous recurrent seizures (SRSs) 
that characterize the chronic epileptic condition (Leite et al. 
1990; Cavalheiro et al. 1991). 

Although studies show that cholinergic routes were 
activated by pilocarpine administration, several neurotrans-
mitter systems were involved in initiation and maintenance 
of convulsions during establishment of this model (Turski 
et al. 1983). Several studies clearly indicate the importance 
of amino acids in epileptic phenomenon (Smolders et al. 
1987; Fritschy et al. 1999; Sarkis et al. 2000; Cross et al. 
2004). Disturbances in the brain metabolism of some amino 

acids especially glutamate and GABA may lead to seizures 
(Szyndler et al. 2008). In addition, the glutamate release by 
activated microglia induces excitotoxicity and may contrib-
ute to neurodegeneration in numerous neurological diseases, 
including epilepsy (Takeuchi et al. 2008). It is known that 
GABA and glutamate can exert anti- and proconvulsive ef-
fects, respectively, in seizures and SE induced by pilocarpine 
(Treiman 1995; Solberg and Belkin 1997). However, little is 
known about the alterations in amino acid contents during 
pilocarpine-induced SE. 

In normal conditions, there is a steady-state balance be-
tween the production of reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) and their destruction by 
the cellular antioxidant system. Oxidative stress can damage 
the organism if the physiological balance between oxidants 
and anti-oxidants is disrupted. Studies have been conducted 
during SE induced by pilocarpine to indicate whether lipid 
peroxidation, nitrite concentration and GSH are involved in 
the pathophysiology of SE in this model (Junior et al. 2009; 
Aguiar et al. 2012)

The extent of damage due to neuronal insult is essentially 
influenced by brain temperature (Dietrich 1992). It has been 
shown that a moderate reduction of brain temperature by 
about 2–5°C has a protective effect on histopathological 
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damage (Chopp et al. 1991; Chen et al. 1992a, 1992b; Mori-
kawa et al. 1992) and behavioral deficits (Green et al. 1992). 
Several reports have shown that hypothermia can prevent 
or mitigate the neuronal insults through reduction in cer-
ebral metabolism (Polderman et al. 2008), inhibition of the 
activation of caspase enzymes (Xu et al. 2002), prevention 
of mitochondrial dysfunction (Gong et al. 2012), deceas-
ing the overload of excitatory neurotransmitters (Irazuzta 
et al. 1999; Hachimi-Idrissi et al. 2014) or modifying the 
severe disorders of intracellular ion concentrations (Ding 
et al. 2000) occurring due to neuronal insult. However, the 
anticonvulsant mechanism by which hypothermia works is 
not fully understood. Brain hypothermia and its underlying 
neuroprotective mechanisms should be elucidated in order 
to improve therapeutic outcomes. 

The previous reports have mostly focused on the 
hippocampus as an origin structure of TLE. However, 
the present work aimed to investigate the alterations in 
amino acid neurotransmitter levels and oxidative stress 
in the cerebral cortex during status epilepticus induced 
by pilocarpine in rats. Furthermore, the possible effects 
of hypothermia on these neurochemical alterations were 
investigated.

Materials and Methods

Experimental animals

The experimental animals used in the present study were 
adult male Wistar albino rats weighing 200–250 g. The ani-
mals were purchased from the animal house of the National 
Research Center and were given food and water ad libitum. 
They were maintained under fixed appropriate conditions 
of housing and handling. All experiments were carried out 
in accordance with research protocols established by the 
animal care committee of the National Research Center, 
Egypt.

Drugs and chemicals

Pilocarpine was obtained from Macfarlan Smith Ltd. (Ed-
inburgh). It was dissolved in saline. Atropine sulphate was 
obtained from Boehringer Ingelheim (Germany).

Design of experiment

Rats were divided into three groups. Group 1 consisted of 
control animals (6 animals) which injected only saline and 
serves as control animals for both the other two groups. 
Group 2 – pilocarpinized animals (7 animals), which were 
injected intraperitoneally with a single dose of pilocarpine 
(380 mg/kg) according to Turski et al. (1983). Atropine sul-

phate was injected subcutaneously at a dose of 5 mg/kg, 30 
min before the induction of epilepsy, to prevent peripheral 
muscarinic stimulation (Williams and Jope 1994). Rats of 
the third group (8 animals) were exposed to hypothermia 
for 30 min before pilocarpine administration. The core 
temperature of the animals was measured by inserting 
a thermometer’s probe about 4 cm into the animal’s rectum 
through the anal opening. Each animal was placed into 
a plastic cylinder suitable for its size and has a closable wide 
opening and a narrow exit for the animal’s breathing. The 
animal was placed into a refrigerator’s freezing box (ambi-
ent temperature: –5 ± 1°C). Immediately after bringing the 
animal out of the freezing box, the core temperature was 
re-measured (core temperature = 26 ± 2°C). All the animals 
were sacrificed after 1 h of pilcarpine injection. After de-
capitation, the brain was transferred rapidly to an ice-cold 
Petri dish where it was dissected to remove the cortex. The 
cortex of each animal was divided into two equal halves. 
The left half of each brain area was homogenized in 5% w/v 
20 mM phosphate buffer, pH 7.6 and used for the analysis 
of oxidative stress parameters. The right half was homog-
enized in 75% ethyl alcohol and used for the determination 
of amino acid levels. The brain samples were weighed and 
kept at –53°C until analyzed.

A separate group was used to study the dissociation of the 
brain temperature from the systemic temperature. The core 
temperature of each animal was recorded before exposure 
to hypothermia as described. Immediately after exposure to 
hypothermia for 30 min, the core temperature was recorded. 
The rats were decapitated, the scalp of each rat was removed 
and the temperature at the surface of the cerebral cortex 
was measured. The mean core temperature of the animals 
before cooling was 35.2 ± 0.4°C and after cooling was 26.6 ± 
0.6°C. The temperature at the surface of the cerebral cortex 
was 28.3 ± 0.6°C.

Determination of nitric oxide level and lipid peroxidation

The assay of nitric oxide (NO) was carried out using Bio-
diagnostic kit No. NO 25 33 (Biodiagnostic Co., Egypt). 
This method is based on the spectrophotometric method 
of Montgomery and Dymock (1961) which is based on the 
measurement of endogenous nitrite concentration as an indi-
cator of nitric oxide production. It depends on the addition of 
Griess Reagents which convert nitrite into a deep purple azo 
compound whose absorbance is read at 540 nm in a Helios 
Alpha Thermospectronic (UVA 111615, England). 

Lipid peroxidation (LP) was determined by measuring 
the level of thiobarbituric reactive species using the method 
of Ruiz-Larrea et al. (1994) in which the thiobarbituric 
acid reactive substances react with thiobarbituric acid to 
produce a red colored complex having peak absorbance 
at 532 nm.
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Determination of reduced glutathione level

The assay of reduced glutathione (GSH) levels was per-
formed using Biodiagnostic kit No. GR 25 11 (Biodiagnostic 
Co., Egypt) based on the spectrophotometric method of 
Beutler et al. (1963). It depends on the reduction of 5,5’-
dithiobis 2-nitrobenzoic acid with glutathione to produce 
a yellow color whose absorbance is measured at 405 nm.

Determination of amino acids concentration

The quantitative determination of the amino acids (gluta-
mate, aspartate, glutamine, GABA, glycine and taurine) 
was carried out by using the high performance liquid 
chromatography (HPLC) method employed by Marquez 
et al. (1986). The HPLC system consisted of a Wellchrom 
Mini-star K-501 pump (Knauer, Germany), a column 
thermostat 5–85°C with injector equipped with a 20 μl 
loop (Knauer, Germany), a luna 5u C-18 reversed phase 
column (5 μm particle size, 150 × 4.6 mm I.D.) from phe-
nomenex, USA, a Wellchrom spectrophotometer K-2600 
with variable wavelength (Knauer, Germany) and a chro-
matography workstation (Eurochrom 2000). The mobile 
phase consisted of 50/50 (v/v), methanol/water contain-
ing 0.6% glacial acetic acid and 0.008% triethylamine. 
The concentrations of the amino acids were expressed as 
μmol/g fresh tissue.

Statistical analysis

The data were expressed as mean ± S.E.M. Data were 
analyzed by analysis of variance (ANOVA) followed by 
the Duncan multiple range test when the F test was sig-
nificant (p < 0.05). All analyses were performed using the 
Statistical Package for Social Sciences (SPSS) software in 
a PC-compatible computer. Percentage difference (PD) was 
calculated by the following equation: [(Treated – Control) 
/ Control] * 100

Results

Animals injected by pilocarpine became, after about 30 min-
utes, hypoactive. Then, they showed typical behavioral mani-
festations associated with this epileptic model, such as facial 
automatisms, salivation, eye-blinking, twitching of vibrissae 
and yawing. After about 40 minutes, generalized convul-
sions appeared on animals. Hypothermic animals showed 
no clear manifestation of the symptoms of SE. They were 
slightly sedated and exhibited only shivering and tremors 
after pilocarpine injection.

Table 1 shows the effects of pilocarpine-induced SE on 
amino acid levels in the cortex of male albino rats. There 
were significant increases of 20, 15, 16 and 14% in gluta-
mate, GABA, glycine and taurine above the control levels, 
respectively. Non-significant increases of 2 and 7% were 
recorded in glutamine and aspartate above the control levels, 
respectively.

As shown in Table 2, a non-significant decrease in MDA 
of 13% was obtained in the cerebral cortex of pilocarpine-
induced SE and a non-significant increase of 15% was 
obtained in the case of GSH from the control values. A sig-
nificant increase of 44% was recorded in NO concentration 
above the control value.

Application of hypothermia before induction of SE 
in rats has mitigated the alterations in amino acid levels 
after pilocarpine administration as shown in Table.1. 
Glutamine, glutamate, aspartate, glycine and taurine have 
recorded non-significant changes of –8, –5, 4, 5 and –3% 
from the control levels, respectively. However, GABA 
recorded a significant decrease of 20% from control level 
during SE.

Hypothermia has also decreased, non-significantly, the 
differences of MDA and GSH and prevented the significant 
increase of NO level obtained after pilocarpine-induced SE 
in rat’s cortex (Table 2). Percentage differences of –5, 8, and 
17% were obtained for MDA, GSH and NO from control 
values, respectively.

Table 1. Amino acids levels (μmol/g tissue) in the rat’s cortex of pilocarpine-induced SE in control, pilocarpinzed and hypothermic 
pretreated animals

Control Pilocarpine PD Hypothermia PD
Glutamine 4.64 ± 0.15 4.75 ± 0.26 2.37 4.25 ± 0.12 –8.41
Glutamate 12.09 ± 0.25 14.53 ± 1.12* 20.18 11.45 ± 0.19 –5.29
Aspartate 8.94 ± 0.39 9.56 ± 0.28 6.94 9.34 ± 0.23 4.47
GABA 2.03 ± 0.04 2.34 ± 0.06* 15.27 1.62 ± 0.04*,# –20.19
Glycine 1.18 ± 0.04 1.37 ± 0.05* 16.10 1.24 ± 0.03 5.08
Taurine 6.16 ± 0.12 7.01 ± 0.46* 13.79 6.00 ± 0.17 –2.59

Data are mean ± S.E.M. * p < 0.05 vs. control; # p < 0.05 vs. pilocarpine-treated animals. PD, % difference with respect to control values; 
SE, status epilepticus.
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Discussion

Temporal lobe epilepsy (TLE) is the most common drug-
resistant type of adult epilepsy, which is characterized by 
hippocampal sclerosis leading to reorganization of neuronal 
networks. Currently, it is one of the most frequently used 
models to study the mechanisms of epileptogenesis and 
to test new compounds for epilepsy treatment (Curia et al. 
2008).

In the present work, pilocarpine injection resulted in 
a significant increase in glutamate in the rat’s cortex. El-
evation of glutamate concentration has been observed in 
patients with complex partial seizures subjected to epilepsy 
surgery (Carlson et al. 1992; During and Spencer 1993; 
Nomura et al. 2014). It was reported that muscarinic recep-
tor stimulation by pilocarpine administration may lead 
to a long-lasting facilitation of NMDA receptor-mediated 
postsynaptic potentials (Markam and Segal 1990; Naylor 
et al. 2013) which leads to enhancement of glutamate levels 
in different brain regions. A pronounced glutamate release 
followed by activation of NMDA, kainate and metabotropic 
receptors has been associated with glutamate excitotoxicity 
and neuronal death in several structures during SE (Millan 
et al. 1993; Szczurowska and Mares 2013). 

The significant increase in NO recorded in this study 
in pilocarpinzed rats could be attributed to the significant 
increase in glutamate, as the production of NO is linked to 
the activation of NMDA receptors (Schuman and Madison 
1994). Di Maio et al. (2011) reported that the Ca2+ uptake 
by mitochondria in combination with NO production trig-
gers cell death. 

The significant increase in the excitatory amino acid gluta-
mate in the cortex of pilocarpinzed rats indicates a state of 
hyperexcitability that could be responsible for the secondary 
cortical generalization (originated in hippocampus) seen in 
this model of epilepsy. Furthermore, the present recorded 
increase in glycine content in the cortex may enhance the 
state of excitation as glycine potentiates NMDA receptors 
(Larson and Beitz 1988). Supporting this present finding, re-
ports showed elevations of aspartate, glycine, and glutamate 
concentrations during the onset of seizures in the cerebral 
cortex of epileptic patients (Carlson et al. 1992; Sherwin 

1999). Furthermore, Engstrom et al. (2001) reported eleva-
tions of aspartate and glutamate levels in the brain tissue of 
epileptic rats. 

Glutamate is transformed to glutamine in the glial cells via 
the specific enzyme glutamine synthetase (GS) (Norenberg 
and Martinez-Hernande 1979; Brookes 2000) and released to 
be taken by neurons and transported to the synaptic terminal 
for the subsequent re-synthesis of glutamate (glutamatergic 
neurons) and GABA (GABAergic neurons). The present 
data recorded moderate increase in glutamine level in the 
rat’s cerebral cortex during SE. This may indicate that the 
glutamate-glutamine cycle is not compromised in rat’s cer-
ebral cortex during SE. It may also indicate an early increase 
in the glutamate-glutamine cycle which ultimately leads to 
the enhancement of the inhibitory system as a compensa-
tory response. 

When activity levels of neuronal networks are altered, cel-
lular excitability and synaptic strength within the network are 
adjusted in a direction that appears to oppose the alteration 
in activity (Burrone et al. 2002; Wierenga et al. 2005). In the 
present study, the significant increase in GABA and taurine 
level in the cortex during this early stage of SE (1 hour) seems 
to be of that kind of adjustment that occurred in the cortical 
network in response to the increase in glutamate level. Ad-
ditionally, a significant increase in glutamic acid decarboxy-
lase (GAD), the enzyme responsible for the conversion of 
glutamate to GABA, has been reported in several models of 
epilepsy (Feldblum and Ackermann 1990; Baran et al. 2004). 
The increase in GAD activity may underlie the cortical rise 
in GABA level recorded in the present study.

Taurine is an inhibitory amino acid acting as an os-
moregulator and neuroromodulator in the brain, with 
neuroprotective properties. The NMDA-evoked release of 
taurine both in vivo and in vitro has been well documented. 
For instance in vitro, NMDA has evoked taurine release 
from mouse cerebral cortical slices (Saransaari and Oja 
1991). The significant increase in taurine during SE in the 
present study could be associated with the increase in the 
activity of the NMDA receptors obtained after pilocarpine 
injection. Taurine exerts its protective function against 
glutamate-induced neuronal excitotoxicity by counteracting 
the glutamate-induced increase of free intracellular calcium 

Table 2. Oxidative stress markers values in the rat’s cortex of pilocarpine-induced SE in control, pilocarpinzed and hypothermic pre-
treated animals

Control Pilocarpine PD Hypothermia PD
MDA (nmol/g) 4.72 ± 0.35 4.11 ± 0.23 12.92 4.49 ± 0.2 –4.87
GSH (mmol/g) 0.62 ± 0.04 0.71 ± 0.06 14.52 0.67 ± 0.06 8.06
NO (μmol/g) 1.36 ± 0.13 1.96 ± 0.13* 44.11 1.59 ± 0.11 16.91

Data are mean ± S.E.M. * p < 0.05 vs. control. PD, % difference with respect to control values; SE, status epilepticus; MDA, malondial-
dehyde; GSH, reduced glutathione; NO, nitric oxide.
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and by preventing the glutamate-induced membrane depo-
larization (Wu et al. 2005).

Neuropathological and electrophysiological data have 
shown that although limbic structures are involved in the 
pathogenesis of TLE, in most cases, limbic-originated sei-
zures frequently spread to extrahippocampal areas (Silva et 
al. 2002; Xia et al. 2009). Abnormal intra-cortical inhibition 
and facilitation was observed in adult TLE patients during 
extra-operative cortical stimulation, suggesting a remote 
effect of epileptic activity onto the cortex that leads to an al-
teration in local circuits (Werhahn et al. 2000). Additionally, 
acute pilocarpine-induced seizures typically become general-
ized much more rapidly, which suggests that this model has 
a strong cortical component during the induction period that 
could trigger seizure-dependent damage in cortex. Recently, 
Mathew et al. (2012) showed that alteration in GABA recep-
tors in the cerebral cortex of pilocarpine-induced epilepsy 
in rat comprise an important role in seizure initiation and 
memory deficits associated with epilepsy.

The induction of hypothermia in rats prior to injection 
of pilocarpine in the present study has greatly alleviated 
the typical behavioral symptoms characterizing this animal 
model. This is in line with the study of Yu et al. (2011) who 
found that pretreatment of animals with hypothermia pro-
tected the animal from the deleterious effects of SE. Several 
other reports demonstrated the ameliorative and therapeutic 
potential of hypothermia particularly in refractory SE (Liu 
et al. 1993; Maeda et al. 1999; Rothman and Yang 2003; 
Schmitt et al. 2006; Bagic et al. 2008). Recently, Bo et al. 
(2014) reported the protective effect of mild hypothermia 
pretreatment against injury to rat cortical neurons by gluta-
mate in vitro. 

Hypothermia in the present study has preserved gluta-
mate and glycine concentrations from change with respect 
to control level after pilocarpine injection. These findings 
emphasize the capacity of hypothermia to modulate exci-
totoxic transmission. Studies have provided evidence that 
hypothermia reduces extracellular concentrations of both 
glutamate and glycine (Baker et al. 1991; Kvrivishvili 2002). 
Yu et al. (2012) reported that hypothermia might exert its 
protective effects against pilocarpine-induced SE by regulat-
ing glutamate receptor expression. Friedman et al. (2001) 
reported that glutamatergic receptors AMPA and NMDA 
are modulated by hypothermia. Therefore, this modulating 
effect of hypothermia on the excitatory transmitters which 
prevents their excessive release could eventually lead to 
a reduction in the calcium overload and Ca2+- mediated 
neuronal damage. 

In the present study, hypothermia prevented the increase 
in the concentration of NO induced by pilocarpine injection. 
It has been reported that NO is a highly reactive radical play-
ing a major role in neurotoxicity during seizures (Dawson 
et al. 1991; Ryan et al. 2014). This hypothermic-induced 

inhibition of NO generation in the cerebral cortex during 
SE may be a possible mechanism of neuroprotective effects 
of hypothermia. Van Hemelrijck et al. (2005) have reported 
that mild hypothermia can inhibit the expression of NOS in 
cortex and reduce NO and its metabolites thereby playing 
a neuroprotective role. 

Hypothermia induces slowing of cerebral metabolism 
(Polderman et al. 2008) leading to reduced glucose concen-
tration (Nomura et al. 2014). Glucose is the main substrate 
for most of the amino acids including GABA and gluta-
mate (Schousboe et al. 2007). Therefore, the amelioration 
of glutamate increase and the significant decrease in GABA 
recorded in hypothermic animals after pilocarpine injection 
in the present study could be attributed to the reduction in 
cerebral glucose metabolism. Kaibara et al. (1999) reported 
that hypothermia induces a depression in the flux of the 
tricarboxylic acid cycle (TCA) which is responsible mainly 
for production of GABA and glutamate in glial cells. 

Taking together, the neurochemical changes taking place 
in the cortex of pilocarpine injected animals and hypother-
mic treated animals with respect to control indicated that 
pilocarpine as a cholinergic drug causes imbalance in exci-
tatory/inhibitory neurotransmission balance that in turns 
leads to the behaviorally symptoms of status epilepticus. It 
indicates also, that neurochemical state in hypothermic ani-
mals could interpret the lack of status epilepticus symptoms 
in these animals.

In conclusion, the present study revealed that the marked 
variations in amino acid neurotransmission and NO in the 
cortex of the experimental animal model of epilepsy dur-
ing SE may underlie the propagation and progression of 
epileptogensis. Furthermore, hypothermic pretreatment 
modulated this cortical hyperexcitability state after epilepsy 
induction by pilocarpine and this was reflected in the reduc-
tion of epileptic manifestations in these animals. Further 
studies are needed to elucidate the safety of hypothermic 
application at the onset of SE. 
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