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With the availability of high-throughput technologies, a huge number of biological data (e.g., somatic mutation, DNA 
methylation and gene expression) in multiple cancers have been generated. A major challenge is to identify functional and 
vital driver mutation import for the initiation and progression of cancer. In this paper, we introduce a novel method, named 
Co-occurring mutated metagene Genetic Algorithm (CoGA), to solve the maximum weight submatrix problem, with the 
aim of distinguishing mutated driver pathways in cancer. The algorithm relies on the combinatorial properties of mutations 
in the same pathways: high coverage and mutual exclusivity, and the possible properties of mutations in different pathways: 
co-occurring pattern. We carried out the experiment with glioblastoma multiform (GBM) data. The experimental results 
show that compared with the original model, our algorithm has more potential to identify driver pathways in cancer with 
biological significance.
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Cancer is an extremely complex disease which is driven 
largely by somatic mutations. Finding the pathogenesis 
of cancer is still difficult. With the development of high-
throughput technologies, several large-scale cancer 
genomics projects, e.g., the Cancer Genome Atlas (TCGA), 
and International Cancer Genome Consortium (ICGC), 
which provide huge amounts of biological data, can help 
researchers to explore a large variety of biological and bio-
medical problems at the genome-wide scale. To understand 
the formation and progression of cancer, one of the chal-
lenges is to identify functional mutations vital for cancer 
development. In other words, distinguishing functional 
“driver mutations” and filtering out the unfunctional and 
random “passenger mutations”, is a key to understand the 
molecular mechanisms of cancer initiation and progression 
[1]. Based on driver mutations, driver genes, and driver 
pathways, researchers have designed efficient treatments for 
cancer patients [2, 3, 4].

In the past several years, identifying recurrent mutations 
and recurrently mutated genes are the most commonly used 
approaches to uncover driver mutations/genes in a  large 

amount of cancer patients. This method has identified several 
significant driver genes, e.g., KRAS in lung cancer, PIK3CA in 
colorectal cancer, and ERRB2 in glioblastoma, etc. [5, 6, 7]. 
However, lots of studies discovered that there is little overlap 
between gene mutations of two cancer cells even if they come 
from the same patient [8, 9]. Because of the heterogeneity 
of genome aberrations, this approach has not revealed all of 
the driver mutations in individual cancer. In other words, 
even cancer genomes from the same type of cancer, no two 
genomes exhibit exactly the same complement of somatic 
aberrations.

One reason for this heterogeneity is that driver mutations 
target signaling and regulatory pathways which have multi-
ple points of failure [10, 11]. Hence, it is significant to study 
mutation in pathway level, rather than in gene level. Recent 
cancer genome sequencing studies have demonstrated that it 
is easy to capture the heterogeneous phenomenon in cancer 
cells in pathway level [12, 13, 14, 15]. For example, Ciriello 
et al. proposed an approach called MEMo (Mutual Exclusiv-
ity Modules) to detect oncogene network modules within 
a constructed network using gene mutation information and 
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a human reference network (including protein interactions 
and signal transduction pathways) [12]. 

However, biological interaction networks are far from 
complete. Meanwhile, a lot of pathway databases may contain 
noise data [16]. Taking into account these obvious limitations, 
it is indispensable to use de novo discovery of mutated driver 
pathways without relying on prior information.

Given a very large number of genes in the whole genome, it 
seems implausible to enumerate and test all the candidates due 
to the enormous number of possible gene sets. For instance, 
there are more than 1026 sets of seven genes [12, 16, 17, 18, 
19]. In recent years, several studies have examined the pat-
terns of somatic mutations of cancers to solve this problem 
[12, 17, 18, 19]. In these studies, the researchers found that 
there are two constraints on the majority of combinatorial 
patterns of aberrations in cancer [20, 21]. First, a driver mu-
tation is generally very rare. Particularly, researchers found 
that a single driver mutation is frequently enough to perturb 
one pathway in most cases. In other words, there is a phe-
nomenon of mutual exclusivity between driver mutations, 
which is called high exclusive. Second, an important cancer 
pathway should cover a  great majority of patients. Thus, 
the aberrations should be contained by most patients in the 
pathway, which is called high coverage. Miller et al. proposed 
a method called RME that distinguishes functional modules 
without any prior knowledge other than patterns of recurrent 
and mutually exclusive mutations [19].

Lately, Vandin et al. proposed an approach, called Dendrix 
(de novo driver exclusivity), to discover driver pathways using 
the somatic mutation and copy number variations data [16]. 
They devised a novel scoring function using the above two 
constraints (i.e., exclusivity and coverage). The maximization 
of this function is defined as the maximum weight submatrix 
problem. However, this problem is computationally difficult 
to solve. Vandin et al. used a  Markov Chain Monte Carlo 
(MCMC) method to solve this problem. After that, Zhao et 
al. proposed two approaches to address the problem based 
on genetic algorithm (GA) and binary linear programming, 
respectively [22].

Mutations of genes in the same pathways are mutually ex-
clusive in the great majority of the combinatorial mutational 
patterns. However, several observations violate this hypothesis 
[21]. For example, several gene pairs in the Ras and IGF-
AKT pathways show co-occurring mutational phenomena: 
KRAS and PTEN (endometrium), BRAF and PTEN (skin), 
and NRAS and PTEN (acute lymphoblastic leukemia) [21]. 
Hence, mutual exclusivity is a fairly strong assumption [16]. 
Taking into account this situation, in this paper, we propose 
a novel algorithm, called Co-occurring mutation metagene 
Genetic Algorithm (CoGA) method, to solve this problem. 
The proposed CoGA method is based on GA, and it constructs 
co-occurring mutated genes as a “metagene”. The results on 
the glioblastoma multiform (GBM) data illustrate that our 
algorithm is able to detect functional driver mutations in 
pathway with biological significance.

Materials and methods

Construction of glioblastoma multiform mutation 
matrix. We obtain the glioblastoma multiform data from 
[16] directly, which comprise of somatic mutations, and copy 
number variant (CNV) data, respectively. Here, we use the 
somatic mutation data of Level 2 and copy number aberration 
data of Level 3. After preprocessing the data, we get mutation 
matrix A, which is a binary matrix of size m×n, here m indi-
cates the number of patients and n indicates the number of 
genes. Each entry aij refers to the status of gene j in patient i: 
aij =1 if one of the following two conditions is satisfied: (i), the 
mutation status of gene j in sample i is labeled valid somatic. 
Here, extremely low frequency somatic mutated genes were 
removed (removing genes with mutation frequency < 5%). 
In addition, some known ‘artifacts genes’ from GBM datasets 
reported by M. Lawrence (http://1.usa.gov/RBtuz7) [17], for 
instance TTN, were deleted; and (ii), gene j is located in the 
statistically significant variable regions of sample i, which is 
determined by Genomic Identification of Significant Targets 
in Cancer (GISTIC) [5, 23].

Maximum weight submatrix problem. It is difficult to 
identify driver pathways. Considering this point, Vandin et 
al. transformed this problem into maximum weight submatrix 
problem using two constraints, which are “high coverage” and 
“high exclusivity” [16]. The first one, “high coverage,” means 
that the majority of samples have at least one mutation in 
driver pathway. The second one, “high exclusivity”, means that 
lots of samples have no more than one mutation in one driver 
pathway. They reflect these two properties using a mutation 
matrix and a scoring function. A binary mutation matrix A 
is constructed by m rows (samples) and n columns (genes). 
The maximum weight submatrix problem is defined as select-
ing a submatrix M of size m×k in the mutation matrix A by 
maximizing the scoring function:

W(M) = |Γ(M)| – ω(M) = 2|Γ(M)| – ∑g∈M|Γ(g)|� (1)

where Γ(g) = {i:Aig = 1} denotes that gene g in ith row (sam-
ple) is mutated, Γ(M) = Ug∈M) Γ(g) indicates the coverage of 
M, which represents the set of patients where at least one of 
the genes in M is aberrations, and ω(M) = ∑g∈M|Γ(g)|-|Γ(M)| 
denotes the coverage overlap weight.

Researchers have proved that selecting the largest set of 
genes is a  NP-hard. Hence, no algorithm can obtain a  sat-
isfactory result in every case. In view of the situation, some 
researchers tried to solve this problem with stochastic search 
methods, for example, Vandin et al. proposed a  MCMC 
method [16]. After that, Zhao et al. used GA to solve this 
problem, and obtained satisfactory results [22]. 

However, in some situations, some genes have co-occurring 
mutations in one pathway in several cancers [21]. As Vandin 
have pointed out, high exclusivity is a fairly strong assump-
tion, and genes mutate with co-occurring in some cases, such 
as CBF translocations and kinase mutations in acute myeloid 
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leukemias, and VHL/SETD2/PBRM1 mutations in renal can-
cer. So we propose a new algorithm, CoGA method, to solve 
this problem (Figure 1).

CoGA algorithm. The pipeline of the CoGA algorithm 
is shown in Figure 2. The details of our implementation for 
the maximum weight submatrix problem are described as 
follows.

Step 1 Download somatic mutation and CNV data of 
a cancer from [16].

Step2 Construct mutation matrix. The data preprocessing is 
described in Construction of GBM mutation matrix section. 
After that, we will get a binary mutation matrix A.

Step 3 Construct co-occurrence mutation metagene. As 
we will describe in details below, we construct an adjacency 
matrix C, which is called “co-occurring mutation adjacency 
matrix”. The co-occurring mutation adjacency matrix en-
codes the connection strength between each pair of genes 
i and j as

cij = 

 
The m×n mutation matrix A = [aij] is transformed into an n(n-1)/2×n(n-1)/2 

co-occurring mutation adjacency matrix C = [cij], which is a symmetric matrix with 

binary entries. 

If the average of several genes’ clustering coefficient is 1, these genes will be 

constructed as a metagene. The clustering coefficient is 

                                (2) 

where v represent a gene, G1(v)is the neighborhood of gene v, deg(v) is the degree of 

gene v. 

Step 4 Integrate these genes to create a new column into mutation matrix. The weight of 

‘close’ between gene i and gene j is 

                            (3) 

where pij is p-value of right-side Fisher’s exact test between gene i and gene j, min(P) 

is the minimum of these p-value between each pair of gene i and gene j. In one 

sample, if the mutation of metagene number n’ is larger than half of metagene 

number n, we multiply n’ by the average impact factor of metagene W as integration 

value of this patient. The average impact factor is 

                                                 (4) 

The other value of integration of metagene is 0. 

Step 5 Running integrated mutation matrix with the GA method and then driver pathway can 

be obtained.  

We adopt random mutation data using the permutation test described by [16] to assess 

the significance of the identified gene set. We run a permutation test to assess the 

significance of the gene set. A permutation test gives a simple way to compute the 

sampling distribution for any test statistic. The statistic is the weight W(M) of the 

results and the null distribution was generated through the independent mutation data of 

1 	if p < 0.01 (right – side Fisher’s exact test between gene i and j) and 
	 number of genes lar ger then 40% sample 
	 0	 otherwise

The m×n mutation matrix A = [aij] is transformed into an 
n(n-1)/2×n(n-1)/2 co-occurring mutation adjacency matrix 
C = [cij], which is a symmetric matrix with binary entries.

If the average of several genes’ clustering coefficient is 1, 
these genes will be constructed as a metagene. The clustering 
coefficient is

  	              2|E(G1(v))|
CC1(v) = � (2)
                      deg(v) (deg(v) – 1)

where v represent a gene, G1(v)is the neighborhood of gene v, 
deg(v) is the degree of gene v.

Step 4 Integrate these genes to create a new column into 
mutation matrix. The weight of ‘close’ between gene i  and 
gene j is

	        1
wij =  × [–log (pij)]� (3)
           –log [min (P)]

where pij is p-value of right-side Fisher’s exact test between 
gene i and gene j, min(P) is the minimum of these p-value 
between each pair of gene i and gene j. In one sample, if the 
mutation of metagene number n’ is larger than half of meta-
gene number n, we multiply n’ by the average impact factor of 
metagene W as integration value of this patient. The average 
impact factor is

	          wijW = ∑i≠j   � (4)           	        n(n–1)

                     2

Figure 1. Somatic mutations in samples (patients) are represented in 
a mutation matrix. The second and third genes show highly co-occurring 
mutation levels across the 10 samples. According to this, we combine these 
two genes as a “metagene”. Gene sets are identified as exclusive submatrices 
or high weight submatrices.

Figure 2. Illustration of CoGA method pipeline. CoGA analyzes integrated mutation data from a variety of sources including somatic mutations and copy 
number aberrations. We construct co-occurring mutation as a metagene. After processing, co-occurring mutation columns integrate into “metagene column”. 
And then “metagene column” integrate into the matrix. With GA method, we find the maximum weight submatrix which is mutated driver pathway.
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The other value of integration of metagene is 0.
Step 5 Running integrated mutation matrix with the GA 

method and then driver pathway can be obtained. 
We adopt random mutation data using the permuta-

tion test described by [16] to assess the significance of the 
identified gene set. We run a permutation test to assess the 
significance of the gene set. A permutation test gives a sim-
ple way to compute the sampling distribution for any test 
statistic. The statistic is the weight W(M) of the results and 
the null distribution was generated through the independent 
mutation data of arrangement, thus holding the frequency 
of mutation for each mutation metagene [16]. Rather than 
a fixed background mutation rate, we use the observed muta-
tion frequency.

Step 6 Functionally annotate the final gene sets. In our study, 
we used the functional annotation tool of the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
for Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment [24]. DAVID uses the so-called EASE score, which is 
a conservative adjustment to the Fisher’s exact probability, to 
assess the significance of the mutated driver genes. A P-value, 
0.01 and a false discovery rate, 5% were chosen as significant 
thresholds upon filtering the pathway data.

Results

Brief introduction to CoGA. The pipeline of the CoGA 
method is illustrated in Figure 2. We download somatic mu-
tation and CNV data of a cancer on the website TCGA, and 
then construct a mutation matrix as indicated in Materials 
and Methods Section. After that, we construct co-occurrence 
mutation metagene using right-side Fisher’s exact test between 
each pair of genes, and integration of these genes creates 
a new column into mutation matrix. We process integrated 
mutation matrix with the GA method. Driver pathway can be 
got. Finally, the biological significance of the final results and 
interpretation is obtained by utilizing DAVID and KEGG.

We analyzed a  collection of 84 glioblastoma multiform 
samples from TCGA. Compared with the original GA model, 
our algorithm has more potential to identify driver pathway 
in cancer with biological significance.

Results on the glioblastoma multiform (GBM) data. 
We applied the proposed CoGA algorithm on84 GBM pa-
tients from TCGA. Somatic mutations in these patients were 
measured in 601 genes. Meanwhile, CNV data is obtained 
using GISTIC 2.0 [23] as described in Materials and Methods 
Section. After the preprocessing, the GBM dataset contained 
mutation and CNV data for 178 genes in 84 patients.

Firstly, we constructed the metagene, which contains three 
genes, i.e., CDKN2A, CDKN2B, EGFR. Figure 3 shows the 

Figure 3. CDKN2A, CDKN2B and EGFR form a metagene. This Venn dia-
gram shows the overlapping relationship between genes in the metagene 
across analyzing the 84 TCGA GBM cases.

Figure 4. (a) The indentified pathway when k=2, which contains metagene (CDKN2A, CDKN2B, EGFR) and TP53. Mutually exclusive and co-occurring 
mutations are shown across analyzing the 84 TCGA GBM samples. (b) Incidence of CDKN2A mutations and co-occurring mutations in any CDKN2B 
gene. (c) Incidence of co-occurring of CDKN2B and EGFR mutations. (d) Incidence of co-occurring of EGFR and CDKN2A mutations
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overlapping relationship between the genes in this metagene. 
CDKN2A and CDKN2B mutations are observed to co-occur 
with EGFR mutations.

Secondly, we explored the biological significance of com-
bining the three genes into metagene. As is known, CDKN2A 
and CDKN2B are in the same chromosome arm (9p21.3). 
Because 9p21.3 homozygous deletion always happens in 
GBM, CDKN2A and CDKN2B can co-occurring mutate in 
the same sample. Lots of researchers have found that EGFR 
amplification and CDKN2A deletion are frequently simulta-
neous molecular alterations in GBM [25, 26]. A recent paper 
showed that the CDKN2A (p14/ARF protein) is frequently 
down regulated in cancer with EGFR mutation. Hence, this 
metagene has biological significance [27].

We used CoGA method to find gene sets of size 2≤k≤3, the 
results are shown in table 1. We also performed a permuta-
tion test, as described in Materials and Methods Section. The 
obtained P-values are less than 0.01. When k=2, the identi-
fied pathway is composed of the metagene and TP53. Figure 
4 shows the mutually exclusive and co-occurring mutations 
pattern. These genes disrupt the p53 and RB pathways. When 
k=3, we have several results. Some of them have biological 
significance. For instance, CDK4, MDM2, RB1can perturb 
one pathway for GBM [1]. 

We then used the tool DAVID to search for KEGG pathway 
enrichment (Figure 5).It is well known that the p53 tumor sup-
pressor pathway prevents the propagation of unstable genomes. 
Inactivation of the p53 tumor suppressor pathway will cause 
cancer. The most common event is mutations and deletions of 
TP53, homozygous deletion of CDKN2A, and amplifications of 
MDM2 [6, 28].Activation of EGFR frequently occurs in primary 
GBM. Among inactivation of the RB tumor suppressor path-
way, meanwhile, mutations occurs in the form of homozygous 
deletion of the CDKN2A/CDKN2B locus on chromosome 9p21 
and amplification of the CDK4 locus.RB1is frequently altered in 
primary GBM, which obviates the genetic pressure for activation 
of upstream cyclin/cyclin-dependent kinases [6, 29, 30].

There are also other genes with biologically significant in 
GBM. The gene TSPAN31 is considered to be taken part in 
growth-related cellular processes, because the encoded protein 
mediates signal transduction events resulting in regulation 
of cell development, activation and growth. Indeed, Zhang 
et al. have revealed that TSPAN31 is associated with tumor 
genesis [31].CENTG1 is substantially amplified in GBM cell 
line TP366, LN-Z308, and CRL-2061 on chromosome 12. 
Amplification of chromosome 12q1 is frequently occurred in 
brain tumors. This chromosomal region contains the MDM2, 
CDK2, and CENTG1 genes. It has been shown that CENTG1 
gene plays a vital role in GBM [32].

We used the functional annotation tool of DAVID for 
BIOCARTA pathway enrichment. We found that one of the 
significant BIOCARTA pathways, First Multivalent Nuclear 
Factor, is a novel pathway which hasn’t been proved a con-
nection with GBM previously. This pathway is a significant 
dysregulated pathway in another brain cancer, Astrocytomas 

[33]. Hence, our method can distinguish novel driver pathway 
(see Supplementary Materials for more details).

In order to validate the efficacy of the CoGA methods, 
we analyzed all genomic data of gliomblastoma patients. 
Considering these data were generating from BI__Illumi-
naGA_DNASeq platform in TCGA, we applied our CoGA 
algorithm to analyze all genomic data of gliomblastoma pa-
tients from the same platform, which have 272 glioblastoma 
patients after filtering 4 samples with high mutation rate. We 
have applied our methods CoGA onto this GBM dataset. We 
can also find p53 signaling pathway (see Supplementary Ma-
terials for more details).

Discussion

It is significant to identify mutated driver pathway in cancer 
for clinical targeted therapeutics. In this paper, we propose 
a  novel algorithm for detecting mutated driver patterns de 

Table 1. Results on the GBM dataset when 2≤k≤3

k driver pathway genes maximum weight score of  
dataset GBMW(M)

k=2 TP53,metagenea 83

k=3

CDK4,TP53, metagene
MARCH9, TP53, metagene
MDM2, TP53, metagene
METTL1, TP53, metagene
TSPAN31, TP53, metagene
RB1, TSPAN31, metagene
CENTG1, RB1, metagene

85

ametagene is composed of CDKN2A,CDKN2B,andEGFR

Figure 5. Illustration of p53/Rb signaling pathway. The double lines 
between KRAS and CDK4 represent sometimes there is a synthetic lethal 
interaction between these two genes. The green nodes denote the co-
occurring metagene. The red nodes denote identified mutation when k=2. 
The blue nodes denote identified mutation when k=3. Regulatory relations 
are extracted from the KEGG database and related literature.
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novo using somatic mutation and CNV data from TCGA. 
This algorithm is based on two previous studies [16, 22]. We 
introduce a new strategy which constructs co-occurring mu-
tated genes as a metagene in the maximum weight submatrix 
problem. We apply the proposed CoGA algorithm on 84 GBM 
patients from TCGA. The results show that our method has 
a  great potential to identify driver pathway in cancer with 
biological significance.

Mutual exclusivity is a fairly strong assumption, and there 
are examples of co-occurring, and possibly cooperative muta-
tions. Using the original GA method, the triplet (CDKN2B, 
RB1, CYP27B1) is the most significant one when k=3 [22]. 
The p53 signaling pathway genes, such as CDKN2A and TP53, 
cannot be detected. As shown in figure 3, CDKN2A and CD-
KN2B are co-occurring mutation. Because mutual exclusivity 
is a  fairly strong assumption, CDKN2A and CDKN2B can-
not be detected simultaneously with the original model (see 
Supplementary Materials for more details about difference 
between our method and the other two previous methods of 
MCMC and GA).

Recently, Zhang et al. proposed a new method CoMDP for 
identification of co-occurring mutated driver pathways in can-
cer [34]. However, it is different method between our method 
and Zhang’s job. Zhang’s paper makes the maximization of the 
weight W for each individual pathway. Meanwhile, it ensures 
the maximization of the inter-overlap between the pathway 
pair. Our new strategy constructs co-occurring mutated genes 
as a metagene using Fisher’s exact test in the maximum weight 
submatrix problem.

These problems can be solved with CoGA method to some 
extent. We set strict conditions to construct ‘metagene’ for the 
following two reasons. First, some of the statistical significance 
of co-occurring mutations is very large. However, the num-
bers of these mutations are small in the total samples. They 
look like co-occurring mutation by chance. Hence, we can’t 
construct these genes as “metagene”. Second, even though 
mutual exclusivity is a strong assumption, the combinatorial 
mutational patterns are mutually exclusive in most cases. Only 
several observations violate this simple hypothesis. Based on 
these reasons, we construct ‘metagene’ with strict conditions. 
The choice of conditions about constructing co-occurrence 
mutation metagene is provided in Supplementary Materials.

To demonstrate the role of our algorithm in solving random 
somatic mutations, the simulation data set was constructed 
(see Supplementary Materials for more details). The results 
show that our algorithm can solve random somatic mutations 
which are commonly found in malignant cells.

However, some cancer data cannot be used to detect ‘me-
tagene’. For example, the lung adenocarcinoma dataset were 
obtained directly from a previous study [16]. We use a right-
side Fisher’s exact test to detect ‘metagene’ as described in 
Materials and Methods Section. The returned ‘metagene’ is 
an empty set. Hence if the metagene gene is null, we can use 
the initial GA method. This example also shows the flexibility 
of CoGA approach.

In future, we will incorporate other biological data, such as 
gene expression and DNA methylation data, with the aim of 
exploring other potential mutated driver pathways.

Supplementary information is available in the online version 
of the paper.
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1. 	 Finding novel driver pathway mutations with CoGA

We used the functional annotation tool of the Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
for BIOCARTA pathway enrichment. We chose Benjamini 
test p<0.05, there are seven pathways in the result. The table 
is shown below.

Table 1. BIOCARTA pathway enrichment results

Pathway Count Benjamini

Cell Cycle: G1/S Check Point 5 8.61E-05
Tumor Suppressor Arf Inhibits Ribosomal  
Biogenesis 4 2.51E-04

p53 Signaling Pathway 4 3.95E-04

Cyclins and Cell Cycle Regulation 4 9.90E-04
RB Tumor Suppressor/Checkpoint Signaling in 
Response to DNA Damage 3 0.0082576

Telomeres, Telomerase, Cellular Aging, and Im-
mortality 3 0.0157247

CTCF: First Multivalent Nuclear Factor 3 0.0166716

2. 	 Apply CoGA to GBM data

We applied our CoGA algorithm to analyze all genomic 
data of gliomblastoma patients, which have 272 glioblas-
toma patients. We reported all the identified patterns with 
2≤k≤3.

We constructed three metagenes, (CDKN2A, CDKN2B, 
EGFR), (CDKN2B, EGFR, PTEN), and (PTEN, PDGFRA), 
based on co-occurrence mutation patterns, one of which 
(CDKN2A, CDKN2B, EGFR), was also reported using the 
original 84 glioblastoma data.

The metagenes, (CDKN2B, EGFR, PTEN), and (PTEN, 
PDGFRA), have biological function connections with GBM. 
For example, it is well known that the occurrence of GBM is 
closely related to p16 (CDKN2) homozygous deletions[1], 
which was found frequently co-occurred with EGFR and 
PTEN alterations[2].

Then, we ran CoGA method for gene sets of size 2≤k≤3.
The results are shown in Table 1.

Table 2. Results on the GBM dataset when 2≤k≤3

k driver pathway genes

k=2
MICALCL, metagene1a

MDM2, metagene1
HMP19, metagene1

k=3 HMP19, MDM2, metagene1
ametagene_1 is CDKN2A,CDKN2B,andEGFR

In our results, MDM2 and CDKN2A are the part of p53 sig-
naling pathway. HMP19 (protein p19) has been demonstrated 
involved in dopamine receptor signaling. In addition, it was 
found highly expressed in neuroblastoma which is another 
brain cancer. Therefore, HMP19 may be crucial to GBM and 
brain development [3].

mailto:jfxia@ahu.edu.cn
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3.	 Conditions of construct co-occurrence mutation me-
tagene

We set p<0.01 which is considered statistically significant, 
with the purpose of constructing ‘metagene’ with strict condi-
tions (Coe B. P., et al. Nature genetics. 2014; 46: 1063-1071).

In some cases, though several mutations are detected with 
co-occurrence significance p<0.01, they are only a small 
proportion in the total samples, which indicates that these 
‘co-occurring’ mutations just happen by chance. Conse-
quently, we restricted the number of mutations to avoid this 
phenomenon. Below, we will show why 40% sample was used 
in this method.

The percentage threshold value that mutated genes account 
for the samples was set as 20%, 25%, 30%, 35%, 40% and 45%, 
respectively. Then the corresponding conditions of construct-
ing ‘metagene’ were processed with our method. The results 
(when k=2 and k=3) are shown by Table 3 below.

Table 3. The results of different percentage threshold value with CoGA

Mutation 
genes 

number 
Metagene 

Resultsa

 (when 
k=2)

Resultsa

 (when k=3)

SEC61G, EGFR, MTAP,  
CDKN2A, CDKN2B TP53 CDC123, TP53

20% MTAP, ELAVL2, CDKN2A, 
CDKN2B TP53

MARCH9, TP53; 
TSFM, TP53; 

FAM119B, TP53
TP53, MTAP, CDKN2A TP53 CYP27B1, TP53

25% and 
30%

SEC61G, MTAP, EGFR,  
CDKN2A, CDKN2B TP53 CDC123, TP53

TP53, MTAP, CDKN2A TP53 CYP27B1, TP53
MTAP, EGFR, CDKN2B CYP27B1 CYP27B1, RB1

35% TP53, MTAP, CDKN2A TP53 CYP27B1, TP53
40% CDKN2A, CDKN2B, EGFR TP53 In our paper

45% None CDKN2B,
CYP27B1

CDKN2B, RB1, 
CYP27B1

aResults are the genes and corresponding to the left metagene together.

In practice, no gold standard of known drivers is exist-
ence. However, well-studied cancer gene lists provide an 
approximate benchmark of known drivers. To help evaluate 
the quality of our results, we utilized a database of 547 known 
driver genes from the well-curated cancer gene list, CGC [4]. 
For each comparison, we used the precision measures.

	           (#Mutated Genes found in CGC)∩(#Genes found)Precision = 
	      	 	 (#Genes found)

The Figure is shown the overlap between our results and 
CGC. We can see that the highest Precision was obtained when 
the percentage threshold value that mutated genes account for 
the samples was set as 40%. As a result, 40% sample was used 
in our method.

4.	 Simulation data study

To demonstrate the role of our algorithm in solving random 
somatic mutations, a simulation data set was constructed as 
below.

First, an empty m(samples)×n(genes) matrix was 
constructed(m=200,n=500 were used). Then we embedded p 
genes N1, N2,…,Np (here p=3 was used) as the driver genes of 
common mutations. Through statistical analysis of GBM data, 
the mutation probability of the first gene was assumed to be 
0.95. The probability that the following genes (N2,…,Np) have 
the same mutation number as the first gene was set to 0.8.The 
mutation probability of genes Np+1,…,Nq (here q=6 was used) 
was pi(pi=1-i*△, where △=0.05). The noisy probability of the 
rest genes (Nq+1,…,Nn) was set from 0.02 to 0.12 in steps of 
0.02. Because of the performances of GA is better than those 
of MCMC[5], the number of embedded genes detected in 
our algorithm was only compared with GA, as shown in the 
Figure below. (Figure 2)

Figure 1. Comparison of the overlap between our results with different 
percentage threshold value and CGC
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We can see that as p0 increases, the exclusivity among the 
genes in Ni decreases, so the find of the embedded gene sets 
Ni becomes increasingly difficult. In this figure, CoGA can 
precisely identify all six embedded gene sets when p0 ≤ 0.06. 
Meanwhile, in real data, the rate of noise mutation is mostly 
less than 0.07 [6]. So our algorithm can solve random somatic 
mutations in malignant cells.

5.	 Difference between our method and the other methods

Table 4 The methodological difference between our method 
and the other two previous methods of Vandin et al. (2012) 
[7] and Zhao et al. (2012) [5].

Figure 2. The number of embedded genes detected in CoGA and GA

 

Table 4. Comparison of these three methods

Difference Our method (CoGA) MCMC GA
co-occurring genes identified in driver pathway Yes No No 
Additional driver pathway (for example, p53 signaling pathway) 
identified without the requirement of removing prevalent genes Yes No No

Data types used in the method Somatic Mutation, CNV Somatic Mutation, CNV Somatic Mutation, CNV and 
Gene Expression Data

Cancer types used in the method Any Any Any
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