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Transolfactory neuroinvasion by viruses threatens the human brain
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Summary. – Viral neuroinvasion via the olfactory system has been investigated in a variety of virus-animal 
models by scientists in many fi elds including virologists, pathologists, and neurologists. In humans, herpes sim-
plex virus type 1 (HSV-1), human herpesvirus 6 (HHV-6), Borna disease virus, rabies virus, and infl uenza A virus 
have been shown to take the olfactory route for neuroinvasion based on forensic and post-mortem specimens. 
Th is article briefl y summarizes the anatomy, physiology, and immunology of the olfactory system and presents 
a battery of neurovirulent viruses that may threaten the human brain by invading through this peripheral path-
way, especially focusing on two of the most intensively studied viruses – HSV-1 and infl uenza A virus. Viruses 
may insidiously invade the olfactory neural network not only to precipitate encephalitis/encephalopathy but 
also to promote the development of neurodegenerative and demyelinating disorders. Substantial information 
obtained by analyzing human specimens is required to argue for or against this hypothesis.
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1. Introduction

To gain access to the central nervous system (CNS), 
neurotropic viruses exploit a variety of peripheral neural 
pathways as well as the hematogenous route (Kristensson, 
2011). Neurons are highly polarized cells with structurally 
and functionally distinct processes known as dendrites and 
axons that can be separated by large distances. Axons have 
a uniform arrangement of microtubules with plus ends 
that are distal to the cell body (plus-end-out), whereas 
dendrites have equal numbers of plus- and minus-end-out 
microtubules. Kinesin and dynein serve as motor proteins 
for anterograde and retrograde transports, respectively, 
of macromolecules along microtubules. Infectious agents 
usurp this transport system to gain entry into the nervous 
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system. HSV is rapidly transported along microtubules in the 
anterograde direction from the soma to the axon terminus 
and retrogradely in the opposite direction. Viral capsid/
tegument and glycoproteins synthesized in the soma may 
be separately transported in the anterograde direction down 
the axons. Th ey likely accumulate in varicosities and growth 
cones, where capsids invaginate vesicles and acquire their 
envelope glycoproteins (Diefenbach et al., 2008).

2. Th e olfactory system

Olfactory mucosa lines the posterodorsal nasal cavity in 
terrestrial animals. Th e olfactory neuroepithelium consists of 
a limited number of cell types that are arranged in a roughly 
laminar pattern, with sustentacular cells in the most apical 
location, followed by olfactory receptor neurons (ORNs) and 
then basal cells (Mori et al., 2005a; Gizurarson, 2012). Susten-
tacular cells perform a number of glial-like neuroprotective 
functions, and they express high levels of cytochrome P450 
isoforms and glutathione S-transferases (Rodriguez et al., 
2008). Mature ORNs are bipolar sensory receptors with an 
apical dendrite ending in a knob covered by 12 or more cilia 
over its apical surface in the neuroepithelium. Basal cells are 
multipotent progenitors that give rise to ORNs throughout 
the life of the animal. Unmyelinated axons of ORNs leave 
the neuroepithelium, penetrate the cribriform plate, enter 
the olfactory bulb, and form synapses in the glomeruli with 
dendrites of second-order neurons, i.e., mitral/tuft ed cells. 
Mitral/tuft ed cells, in turn, project centrally to olfactory and 
limbic structures, including the anterior olfactory nucleus, 
olfactory tubercle, olfactory cortex, amygdala, and entorhinal 
cortex. On the other hand, the olfactory bulb has retrograde 
connections with the cholinergic diagonal band, serotoner-
gic dorsal raphe, and noradrenergic locus coeruleus. Ad-
ditionally, dopaminergic neurons in the ventral tegmental 
area project to the anterior olfactory nucleus. Once in the 
olfactory bulb, neurotropic viruses can target these brain 
structures in both anterograde and retrograde manners. 

Th e olfactory system exhibits several unique properties 
that are not typical of other sensory systems. First, the recep-
tor molecules of ORNs are directly exposed to the external 
environment so that they are able to respond to volatile 
chemical stimuli. Second, these neurons have the capacity for 
uptake and transsynaptic transport of exogenous substances 
to the CNS. Th ird, the olfactory system forms direct connec-
tions to the frontal cortex without thalamic relay, whereas 
other sensory pathways of the visual, auditory, and somato-
sensory modalities consistently pass through the thalamus. 
Finally, similar to other epithelial cells, but unlike other 
neurons, ORNs undergo apoptosis and regeneration as a part 
of their normal turnover process that continues throughout 
adult life and they have an average life span ranging from 30 

to 120 days (Oboti et al., 2011). Furthermore, neuronal stem 
cells in the subventricular zone of the adult brain predomi-
nantly migrate into the olfactory bulb, likely protecting the 
olfactory bulb neuronal circuits from damage by infectious 
and toxic agents (Loseva et al., 2009). Th e physiological 
processes of uptake and transsynaptic transport of molecules 
from the nasal cavity to the olfactory bulb potentially pose 
great risks for the CNS, namely neurological damage induced 
by environmental factors including viruses.

In addition, axons of ORNs cross the cribriform plate 
through channels formed by olfactory ensheathing cells. 
Th ese channels penetrate into the ventral portion of the 
olfactory bulb and may serve as a potential entry route 
for viruses into the brain. Viruses may also cause early 
meningoencephalitis by entering the cerebrospinal fl uid 
(CSF) from infected olfactory ensheathing cells (Bodewes 
et al., 2011). Th is notion of alternative olfactory pathway 
for neuroinvasion by viruses is supported by an in vitro 
study that demonstrated human herpes virus 6 (HHV-6) 
replication in olfactory ensheathing cells (Harberts et al., 
2011). Furthermore, the PR8 strain of infl uenza A virus 
(H1N1), a non-neurotropic virus, may also infect olfactory 
ensheathing cells as well as microglia/macrophages along the 
olfactory nerve fi bers (Leyva-Grado et al., 2009). It should be 
noted that the olfactory mucosa is also innervated by fi bers 
from the trigeminal nerve, autonomic fi bers of the cervical 
ganglion, and the nervus terminalis (Vilensky, 2014). Th e 
olfactory nerve, however, connects the nasal cavity directly 
with the CNS and may therefore be a fast and easy shortcut 
for viruses to invade the CNS (van Riel et al., 2015).

3. Innate immunity in the olfactory system

Innate immunity plays a central role in CNS protection 
against a variety of neurotropic viruses (Carty et al., 2014). 
Within the olfactory bulb, interferon (IFN)-α/β-dependent 
antiviral mechanisms effi  ciently inhibit viral spread and serve 
as a barrier against intranasally invading neurotropic viruses 
(Kalinke et al., 2011). Toll-like receptor 3 (TLR3) expression 
was signifi cantly increased in the olfactory bulb of mice aft er 
intranasal pretreatment with polyinosinic-polycytidylic acid, 
a TLR3 agonist, and it conferred protection against a lethal 
intranasal challenge with HSV-1 (Boivin et al., 2008). TLR3 
activation by dsRNA (synthetic or virus-derived) triggers 
downstream signals that lead to the activation of the IFN-β 
promoter. Recently, it has been shown that local olfactory 
bulb infection with both DNA and RNA viruses activates 
long-distance signaling that upregulates IFN-stimulated 
gene expression in uninfected remote regions of the mouse 
brain (van den Pol et al., 2014). In the absence of the IFN-α/β 
receptor, the brain was more vulnerable to viral infection due 
to the impaired induction of IFN-stimulated genes. 
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In addition, Iba1-immunopositive microglia/macrophages, 
the principal resident innate immune cells in the CNS, reside 
in the murine olfactory neuroepithelium where they undergo 
dynamic morphological reactions upon intranasal infl uenza 
A virus infection (Mori et al., 2002). OX42-immunopositive 
microglia/macrophages also appear in the rat olfactory neu-
roepithelium aft er bulbectomy and participate in phagocytic 
activities (Suzuki et al., 1995). In addition, Iba1-/annexin 
A3-immunopositive microglia/macrophages reside in the 
olfactory nerve fascicles of adult rats and cats (Smithson and 
Kawaja, 2010). Th ese peripheral microglia/macrophages may 
play a key role in TLR3 responses and downstream antiviral 
IFN signaling (Suh et al., 2009). On the other hand, adap-
tive immune responses barely contribute to neuroprotection 
against viral attack in the olfactory neuroepithelium (Tan and 
Stevenson, 2014). Neuroepithelial HSV-1 infection failed to 
elicit signifi cant virus-specifi c antibody responses in the nasal-
associated lymphoid tissue. Th us, innate immunity, especially 
IFN-α/β-dependent mechanisms, serves as the fi rst-line de-
fense against invading intranasal viruses. 

Viruses seek to subvert host immune responses. For exam-
ple, distinct amino-acid motif in the polymerase of infl uenza 
A virus, PB1/PA, interacts with retinoic acid inducible gene 1  
(RIG-1) that subsequently inhibits RIG-1-mediated IFN sig-
naling (Liedmann et al., 2014). Additionally, the expression 
of annexin V in infl uenza A virus particles inhibits IFN-γ 
antiviral immune responses (Berri et al., 2014).

4. Transolfactory neuroinvasion by neurotropic viruses 
in humans

Accumulating evidence supports the notion that certain 
neurotropic viruses enter the human brain via an olfactory 
transmission mechanism, namely HSV-1, HSV-2, HHV-6, 
Borna disease virus, rabies virus, infl uenza A virus, measles 
virus, Hendra virus, Nipah virus, and poliovirus (Table 1). 
Among these viruses, HSV-1, HHV-6, Borna disease virus, 
rabies virus, and infl uenza A virus have been detected in the 
human olfactory tissue samples. 

In experimental settings, the olfactory pathway can also 
provide a route of neuroinvasion by some human neurotropic 
arthropod-borne viruses (arboviruses) including La Cross 
virus, Japanese encephalitis virus, Murray Valley encephalitis 
virus, St. Louis encephalitis virus, West Nile virus, Chikun-
gunya virus, and Venezuelan equine encephalitis virus (Table 
1). Of note, La Crosse virus, Murray Valley encephalitis 
virus, St. Louis encephalitis virus, and Venezuelan equine 
encephalitis virus infect the olfactory neuroepithelium aft er 
intraperitoneal or footpad subcutaneous challenge, probably 
via the hematogenous route, which is likely due to the unmy-
elinated nature of ORNs and the absence of a neuroprotective 
architecture equivalent to the blood-brain barrier of the CNS 

in the neuroepithelium (Charles et al., 1995; McMinn et al., 
1996). Th is phenomenon is of particular interest because 
infectious virus particles could be released from infected 
ORNs into the nasal cavity, creating a potential source of 
droplet infection to other individuals.

Th e transmission of arboviruses without involvement of 
arthropod vectors is oft en termed direct transmission. Th is 
mode of viral transmission has been demonstrated in vari-
ous experimental virus-animal models and may be common 
among wild and domestic animals (Kuno, 2001). Th e practi-
cal importance of such direct transmission of arboviruses 
has been recognized with respect to livestock-mediated as 
well as laboratory-acquired human infections. Arbovirus, 
especially present in the form of aerosols, could incidentally 
access the human brain through the olfactory route (Johnson 
and Mims, 1968). Th us, it is reasonable to assign a biosafety 
level to each arbovirus for protection of laboratory workers 
against accidental infections (Kuno, 2001).

5. Th e vomeronasal system as a route of neuroinvasion 
by neurotropic viruses

Th e vomeronasal organ, a second peripheral chemosensory 
module in the nasal cavity, has attracted increased scientifi c 
attention as a primary sensor for detecting pheromones in 
vertebrates (Ibarra-Soria et al., 2014). Th is bilateral, cigar-
shaped organ is encapsulated in a bony and/or cartilaginous 
capsule known as the vomer. It is located at the base of the 
nasal septum, anterior and ventral to the main olfactory 
neuroepithelium. Th e vomeronasal organ contains bipolar 
chemosensory neurons and its axonal nerve fascicles cross 
the cribriform plate to terminate in the accessory olfactory 
bulb. In mice, HSV-1 and HSV-2 enter the brain by infect-
ing vomeronasal chemosensory neurons, in addition to the 
olfactory counterparts, following experimental intranasal 
inoculation (Mori et al., 2005b,c, 2006). HSV-1 infection is 
further transmitted from the accessory olfactory bulb (fi rst 
relay) to the medial amygdala (secondary relay), and then to 
the bed nucleus of the stria terminalis and the ventromedial 
hypothalamus (third relay). Although pheromone-mediated 
controls of human behaviors have been recorded, the presence 
of the functional vomeronasal organ in humans, however, still 
remains controversial (Gizurarson, 2012; Verhaeghe et al., 
2013). Th e neuroinvasion of neurotropic microbes via this 
route will mean a lot to non-human vertebrates, which could 
explain various abnormal behaviors of infected animals.

6. Herpes simplex virus (HSV)

Herpesvirus lineages have emerged by virtue of coevolu-
tion with their specifi c hosts, that is to say, cospeciation. Th e 
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Table 1. Neurotropic viruses that may invade the human brain through the olfactory pathway

Virus Family Subfamily Genus Notes References

HSV-1/HSV-2 Herpesviridae Alphaherpesvirinae Simplexvirus See details in text.

HHV-6 Herpesviridae Betaherpesvirinae Roseolovirus Frequently detected by PCR in the olfactory bulb/
tract specimens of human autopsy cases. Harberts et al., 2011

Borna disease virus Bornaviridae Bornavirus Infects ORNs and spreads intraaxonally to the 
limbic structures in ratsa. Carbone et al., 1987

Infects ORNs and spreads to the brain in sponta-
neously and intranasally infected rats. Morales et al., 1988

Spreads into the brain via the olfactory route 
during rat cohabitation experiments.

Sauder and Staeheli, 
2003

Detected by PCR in the olfactory bulb and related 
regions in human autopsy brain tissues. Haga et al., 1997

Rabies virus Rabdoviridae Lyssavirus Infects ORNs and performs strict transsynaptic 
transmission in micea. Lafay et al., 1991

Caused airborne rabies in a laboratory worker 
with neuroinvasion via the olfactory route. Conomy et al., 1977

Infl uenza A virus Orthomyxoviridae Infl uenza
virus A See details in text.

Measles virus Paramyxoviridae Paramyxovirinae Morbillivirus Spreads via the olfactory pathway to the olfactory 
and limbic systems in hamstersa.

Zlotnik and Grant, 
1976

Hendra virus Paramyxoviridae Paramyxovirinae Henipavirus Infects ORNs and spreads to the olfactory/limbic 
systems in aged mice without viremiaa. Dups et al., 2012

Nipah virus Paramyxoviridae Paramyxovirinae Henipavirus Infects ORNs and spreads intraaxonally through-
out the CNS in hamstersa. Munster et al., 2012

La Crosse virusb Bunyaviridae Bunyavirus Infects ORNs and spreads centripetally in mice 

aft er intraperitoneal injection. Bennet et al., 2008

Poliovirus Picornaviridae Enterovirus Infects the olfactory bulb and spreads centrip-
etally initiating paralysis in monkeysa.

Sabin and Olitsky, 
1938

Takes the olfactory route for neuroinvasion in 
monkeys aft er droplet nuclei infection. Faber et al., 1944

Infects the olfactory bulb and spreads centrip-
etally in poliovirus receptor transgenic micea. Crotty et al., 2002

Japanese encephalitis 
virusb Flaviviridae Flavivirus Infects the olfactory bulb and spreads to the 

olfactory tract/cortex in pigletsa. Yamada et al., 2009

Murray Valley en-
cephalitis virusb Flaviviridae Flavivirus Infects the olfactory bulb and spreads centrip-

etally aft er footpad injection. McMinn et al., 1996

St. Louis encephalitis 
virusb Flaviviridae Flavivirus Infects ORNs and spreads to the CNS in ham-

sters/mice aft er intraperitoneal injection. Monath et al., 1983

West Nile virusb Flaviviridae Flavivirus Invades the brain via the olfactory route aft er 
viral aerosol exposure in mice. Nir et al., 1965

Chikungunya virusb Togaviridae Alphavirus Invades the brain via the olfactory route in 
micea.

Powers and Logue, 
2007

Venezuelan equine 
encephalitis virusb Togaviridae Alphavirus Infects ORNs and spreads centripetally in mice 

aft er subcutaneous challenge. Charles et al., 1995

alpha subfamily is estimated to have diverged from the beta 
and gamma subfamilies approximately 200–220 million 
years ago and the ancestors of HSV appeared 70–80 million 
years ago (Mori and Nishiyama, 2005). Th us, the virus-host 
relationship is fundamentally stable and the virus does 
not usually precipitate lethal diseases in humans. HSV-1 
is transmitted through saliva and respiratory secretions 

aAft er experimental intranasal infection. bVector-borne virus in nature but can directly invade the human brain under unusual circumstances (see details 
in text).

among humans. Typically, HSV-1 asymptomatically infects 
the respiratory and oropharyngeal mucosa in children. Ap-
proximately 90% of adults are seropositive for HSV-1 and 
carry the viral genome in a latent form in peripheral gan-
glions. Reactivation, which may result in herpetic lesions in 
the skin and mucous membranes, takes place upon exposure 
to stressors or following immunosuppression. 
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7. Herpes simplex encephalitis (HSE)

HSE is a rare disease that is associated with a high mortal-
ity rate and serious neuropsychological and neurobehavioral 
sequelae. Patients remain affl  icted with HSE for life even if 
they have been treated very early and have made a good 
recovery (Kennedy and Chaudhuri, 2002). HSE is usually 
caused by HSV-1; however, HSV-2 can also be responsible 
for HSE, especially in neonates and immunocompromised 
hosts. 

Th e view that HSV-1 can invade the CNS through the 
olfactory route originally stems from the site-specifi city of 
HSE; the propensity of the virus to localize to the fronto-
temporal region of the brain and the limbic system (Johnson 
and Mims, 1968; Twomey et al., 1979). Th e virus may also 
spread from the trigeminal ganglion to the temporal and 
frontal cortices by traveling along the tentorial branches of 
the trigeminal ganglion to the meninges that cover the frontal 
and temporal lobes (Davis and Johnson, 1979). However, 
there has been no direct evidence to support this assumption. 
Furthermore, because neurons in the trigeminal ganglion 
principally project to sensory nuclei in the brainstem, the 
trigeminal pathway can only account for infrequent atypi-
cal cases of HSE with brainstem involvement (Livorsi et al., 
2010).

A number of lines of evidence favor the olfactory route 
of neuroinvasion by HSV-1 in HSE patients. Postmortem 
immunohistochemical mapping analyses of 29 HSE subjects 
demonstrated the presence of HSV-1 antigens in the olfac-
tory and limbic structures, but not in regions that would 
indicate invasion via the trigeminal pathway (Esiri, 1982). 
Furthermore, HSV-related histopathological alterations 
were detected in the olfactory neuroepithelium, olfactory 
nerve, and olfactory bulb, but not in the trigeminal ganglion 
(Twomey et al., 1979; Dinn, 1980; Ojeda et al., 1983). Ad-
ditionally, life-long olfactory dysfunction has been described 
in patients who survived HSE, thus highlighting viral damage 
to the olfactory neural network in the human brain (Landis 
et al., 2010). 

Animal experiments using HSV-1 largely recapitulated 
the olfactory system damage observed in humans. Following 
intranasal inoculation with HSV-1 +GC strain, rats con-
tracted acute encephalitis involving regions of the olfactory 
and limbic systems, including the olfactory bulb, olfactory 
cortex, amygdala, hippocampus, and entorhinal cortex, and 
they demonstrated spatial memory defi cits (Beers et al., 1993, 
1995). Moreover, a mouse model of HSE using the HSV-1 
strain 17 syn+ revealed similar neuropathological and neu-
robehavioral abnormalities (Armien et al., 2010). Following 
intranasal infection with the HSV-1 strain SC16, mice devel-
oped an asymptomatic and transitory CNS infection that was 
characterized by viral attack of the olfactory bulb, amygdala, 
and hippocampus, as well as of the olfactory, cingulate, fron-

tal, temporal, and entorhinal cortices (Boggian et al., 2000). 
Th e HSV-1 strain H129 targets brain structures within the 
projections of the olfactory pathway including olfactory and 
entorhinal cortices upon intranasal inoculation (Hudson et 
al., 1991). It is important to note that in another study, the 
SC16 virus targeted the murine olfactory neuroepithelium 
but rarely reached the olfactory bulb, which was likely due 
to diff erences in the animal strains and ages of the mice 
between the studies (Shivkumar et al., 2013). 

8. Role of HSV accessory genes in the olfactory 
neuroinvasion

HSV accessory genes are defi ned as non-essential genes 
that are not required for replication in cultured cells but play 
key roles in virus-host interactions. Th ese genes may help 
neurovirulent viruses invade the brain through the olfac-
tory route (Mori, 2012). Wild type HSV-2 strain 186 infects 
a fraction of ORNs without inducing neuronal death and it is 
transmitted to the CNS where it initiates lethal encephalitis. 
In sharp contrast, the US3-disrupted mutant strain, L1BR1, 
immediately triggers neuronal apoptosis in peripheral 
neurons upon infection, thus blocking viral transmission 
to the brain (Mori et al., 2006). Th e US3-repaired mutant 
strain, L1B-11, behaves similarly to the wild-type virus. 
Th ese observations suggest that viral US3 protein kinase 
inhibits virus-induced apoptosis of ORNs, thus enabling 
effi  cient viral transmission into the CNS. HSV-1 US3 also 
plays a role in resistance to IFN. Th e growth of US3-disrupted 
virus is signifi cantly suppressed in IFN-treated HEp-2 cells 
when compared to wild-type and US3-reconstituted virus 
(Piroozmand et al., 2004). A prominent increase in intra-
cellular expression of TLR3 and IFN-inducible myxovirus 
resistance A protein have been recorded in US3-defi cient 
HSV-1-infected U937 human monocytic cells, but not in 
cells infected with corresponding parental and US3-rescued 
viruses (Peri et al., 2008). Furthermore, HSV-1 US3 protein 
kinase cooperates with glycoprotein B to rapidly inhibit 
CD1d antigen presentation and natural killer T-cell activa-
tion during the initial antiviral response (Rao et al., 2011). 
Additionally, ICP0 impairs the activation of IFN regulatory 
mediators such as IFN-γ-inducible protein 16 (Lanfranca 
et al., 2014). Virion host shutoff  protein counteracts the 
antiviral action of IFN-inducible viperin protein (Shen et 
al., 2014). ICP34.5 confers neurovirulence upon HSV by 
regulating IFN-α/β responses in mice (Davis et al., 2014). 
Th us, HSV has developed a variety of mechanisms to limit 
hosts’ antiviral responses.

Th e HSV-1 strain HF10 lacks a functional UL56 and 
exhibits impaired neuroinvasiveness via the olfactory route 
in mice (Mori et al., 2005c). UL56 is a C-terminal-anchored 
type II membrane protein that is expected to be inserted 
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into the viral envelope. Interestingly, UL56 protein physi-
cally associates with kinesin motor protein KIF1A, and it is 
most likely involved in anterograde axonal transport of the 
viral envelope loaded with viral glycoproteins along axons 
(Koshizuka et al., 2005).

9. HSV latency and persistency in the central 
nervous system

Viruses may silently invade and establish a latent/per-
sistent infection in the olfactory bulb and a particular set 
of limbic structures. PCR detected HSV-1 DNA in 15.5% 
of the olfactory bulbs collected from 97 individuals during 
forensic postmortem analyses (Liedke et al., 1993). PCR de-
tection of HSV-1 genome in 17.5% of the olfactory bulbs and 
less frequently in the amygdala and hippocampus collected 
from 40 patients dying of non-neurological causes provided 
evidence in support of olfactory neuroinvasion during the 
course of a neurologically silent infection (Baringer and 
Pisani, 1994). Asymptomatic HSV-1 persistence in the ol-
factory epithelium and bulb was recapitulated using murine 
models (Drummond et al., 1994; Boggian et al., 2000). It 
should be noted that HSV infection of the CNS through the 
olfactory pathway, even if it takes place silently, may bring 
about learning and behavioral defi ciencies in children and 
adults (Becker, 1995). Th ese fi ndings lead to an assumption 
that HSV reactivation may originate in the olfactory as well 
as in limbic structures. Of interest, the olfactory neuron-
specifi c transcription factor, Olf-1, activates the promoter 
of RL2 and drives the expression of ICP0, which may in 
turn facilitate productive infection and reactivation within 
the olfactory system (Devireddy and Jones, 2000). Th us, it is 
conceivable that HSE in children occurs during the course 
of primary HSV-1 infection, whereas in adults HSE arises 
from the reactivation of the virus in the olfactory and/or 
limbic structures. 

On one hand, the recent improvements in sanitizing envi-
ronments have increased the age of primary HSV-1 infections, 
and it may bring about new health problems in the near future. 
On the other hand, HSV-1 frequently establishes continuous 
and productive infections in the frontal and temporal cortices 
of aged individuals through expression of HSV-1 accessory 
genes. Th is has been implicated, at least in part, in the patho-
genesis of Alzheimer's disease (Mori, 2010; Itzhaki, 2014).

10. Infl uenza A virus

Infl uenza A virus primarily infects the respiratory sys-
tem in humans and sporadically induces extra-respiratory 
system complications including influenza encephalitis/
encephalopathy. Infl uenza A virus neuroinvasion along the 

olfactory pathway has been extensively investigated using 
animal models, including mice and ferrets. Th e recombinant 
infl uenza A virus strain, 90/Ho1, which has the RNA seg-
ment 2 derived from A/Hong Kong/1/68 (H3N2) and other 
segments from A/fowl plague/Rostock/34 (H7N1), entered 
the brain of neonatal mice through the olfactory route fol-
lowing intranasal challenge (Reinacher et al., 1983). Th is can 
take place even in the presence of neutralizing antibodies 
in their serum, thus ruling out the hematogenous spread of 
the virus. Th e A/WSN/1933 (H1N1) virus, which is closely 
related to the 1918/1919 infl uenza pandemic, invades the 
olfactory bulb and several interconnected brain structures 
in mice (Aronsson et al., 2003). Th e virus can cause tran-
sient infection in the CNS, but leads to persistent changes 
in emotional and cognitive functions as well as elevated 
transcriptional activity of genes encoding synaptic regulatory 
proteins in the amygdala and hypothalamus (Kristensson, 
2006). By contrast, infection by the non-neurotropic PR8 
strain (H1N1) of infl uenza A virus was restricted to micro-
glia/macrophages in the olfactory nerve fascicle and bulb, 
but induced widespread CNS production of proinfl amma-
tory cytokines including interleukin 1β and tumor necrosis 
factor-α (Leyva-Grado et al., 2009) and infl uenced the acute 
phase response including hypothermia (Leyva-Gardo et al., 
2010; Zielinski et al., 2013).

We have previously shown that the recombinant infl uenza 
A virus strain R404BP, which possesses the neuraminidase 
and matrix genes from the WSN strain and the rest from the 
non-neurovirulent A/Aichi/2/68 strain (H3N2), induced 
apoptosis in ORNs upon infection following intranasal chal-
lenge in mice (Mori et al., 2002). Virus-infected ORNs and 
sustentacular cells in the vicinity upregulated the expression 
of Fas ligand and activated the c-Jun N-terminal kinase signal 
transduction pathway. Apoptotic bodies were totally cleared 
by activated Iba1-immunopositive microglia/macrophages 
in the olfactory neuroepithelium. Viral components includ-
ing nucleic acids and proteins remained undetectable in the 
olfactory bulb. All of the mice survived the infection and 
failed to exhibit any clinical symptoms. An introduction of 
one plaque-forming unit of virus directly into the olfactory 
bulb was suffi  cient to kill 100% of the mice. Taken together 
these fi ndings suggested that virus-induced neuronal ap-
optosis in ORNs is a protective host response that hinders 
virus transmission into the brain (Mori et al., 2004). Th is 
phenomena, however, appears to be atypical, since many 
reports documented viral infections of ORNs in the absence 
of neuronal death in the neuroepithelium. 

11. Highly pathogenic avian infl uenza

Recent studies have largely focused on highly pathogenic 
avian infl uenza (HPAI) H5N1 viruses that bring about a high 
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incidence of neurological complications in many animal spe-
cies and sporadically in humans (Korteweg and Gu, 2008). 
During the 1997 Hong Kong incident, the avian H5N1 strains, 
HK156 and HK483, were isolated from the throat aspirates of 
a three-year-old boy who was the index case and subsequently 
developed Reye’s syndrome and a 13-year-old girl who was the 
third case, respectively. Th us far, H5N1 virus has been detected 
in the CNS of a limited number of human cases. 

In mouse models, HK483 virus takes the olfactory route 
for neuroinvasion, although other pathways through the 
trigeminal, vagal, and sympathetic systems are also possible 
(Park et al., 2002; Tanaka et al., 2003; Iwasaki et al., 2004). 
Viremia may not largely contribute to the viral dissemination 
to the brain. In addition, HPAI A/Vietnam/1203/04 (H5N1) 
virus invades the murine brain, at least in part, through the 
olfactory route aft er snout infection, inducing neuroinfl am-
mation and neurodegeneration (Jang et al. 2009). In this ex-
perimental system, the virus attacked various brain regions. 
Of note, phosphorylated alpha-synuclein (pSer129SYN) 
is detectable in neurons present in infected areas and ag-
gregated alpha-synuclein, a hallmark of neurodegenerative 
disorders such as Parkinson's and Alzheimer's diseases, in 
the hippocampus, cortex, and brainstem. In addition, a sig-
nifi cant number of dopaminergic neurons in the substantia 
pars compacta gradually die through a mechanism involving 
apoptosis, reminiscent of the postencephalitic Parkinson-
ism that could be associated with the 1918/1919 infl uenza 
pandemic (Gamboa, 1974; Kristensson, 2006).

Many H5N1 strains isolated from various Asian coun-
tries infected the olfactory neuroepithelium and bulb at 
early stages in ferrets (Bodewes et al., 2011; Plourde et al., 
2012; Schrauwen et al., 2012; Yamada et al., 2012; van Riel 
et al., 2015). In ferret nose tissues, abundant attachment of 
the H5N1 virus to the apical side of the olfactory neuroepi-
thelium was noted, whereas no attachment of the virus to 
the apical side of the respiratory epithelium was detected 
(Schrauwen et al., 2012). Th e multibasic cleavage site in 
the hamagglutinin of the H5N1 virus plays a critical role in 
the olfactory spread of the virus (Schrauwen et al., 2012). 
Th e virus fi rst appears in mitral cells in the olfactory bulb 
and spreads centripetally to interconnected structures of 
the brain. Th ree-dimensional analysis of viral distribution 
in the ferret brain unequivocally identifi ed the olfactory 
system as a major route of viral neuroinvasion (Shinya et 
al., 2011). Th e H5N1 virus presented more extensive CNS 
spread than pandemic H1N1 virus, whereas seasonal H3N2 
virus exhibited minimum neurotropism in ferrets (van den 
Brand et al., 2012). A novel HPAI virus (H7N9) invades the 
olfactory bulb following intranasal infection in ferrets (Xu 
et al. 2013, 2014). It has been demonstrated that the H7N9 
virus harbors the nucleoprotein that subverts the antiviral 
action of human myxovirus resistance A protein (Riegger 
et al., 2015). 

12. Infl uenza A virus in human olfactory nervous tissues

Th e fi rst evidence of infl uenza virus entry through the 
olfactory route in a human was recently described, with 
viral antigens being detected in the olfactory bulb and tract 
of postmortem brain samples (van Riel et al., 2014). Th e 
patient was an 11-month-old girl with a severe immuno-
defi ciency, the detail of which remains unknown. Sequence 
analysis of RNA extracted from the bronchoalveolar lavage 
revealed the presence of a seasonal infl uenza A H3N2 virus. 
In addition, three strains of infl uenza A virus, i.e., seasonal 
H3N2, pandemic H1N1, and H5N1, have been demonstrated 
to attach to the apical side of human and ferret olfactory 
mucosa, strengthening the likelihood of the olfactory route 
of neuroinvasion in humans (van Riel et al., 2014). Of spe-
cial signifi cance is the fact that two mutations (L226Q and 
S228G) in the hemagglutinin gene of A/Hong Kong/1/68 
(H3N2) dramatically augmented the viral neurovirulence 
for the olfactory mucosa (Van Poucke et al., 2013). Th us, 
CNS invasion of seasonal H3N2 virus could be explained not 
only by immune defects of the host but also by the increased 
neurotropism of the virus, precipitated by a few mutations 
in the viral genome. 

Furthermore, indirect evidence supports influenza 
A virus entry into the human brain via the olfactory route. 
H3N2 virus RNA could frequently be detected in the CSF 
of children with infl uenza-associated acute encephalitis/
encephalopathy at early stages of infection (Fujimoto et al., 
1998). A previously healthy 26-year-old man developed 
a fatal encephalopathy without any respiratory disease. 
Real-time PCR detected infl uenza A (H1N1) pdm09 virus in 
a brain biopsy specimen but did not reveal the presence of the 
viral RNA in the lung (Simon et al., 2013). In addition, H5N1 
virus was detected in the CSF of the four-year-old boy who 
died of acute encephalitis, without any respiratory disease at 
the moment of hospitalization (de Jong et al., 2005).

13. Concluding remarks

Experimentally, a wide variety of neurotropic viruses 
make use of the olfactory route for neuroinvasion into the 
CNS. In humans, however, there is a scantiness of direct 
evidence demonstrating this route of CNS entry because 
of the restricted availability of human nervous tissues from 
the nasal epithelium to the olfactory bulb/tract. Detailed 
investigation of such human specimens will expand our 
understanding of the neuropathogenesis of virus-induced 
encephalitis/encephalopathy and some neurodegenerative 
disorders in which early olfactory dysfunction and olfac-
tory bulb pathology have much been described, such as 
Alzheimer's and Parkinson's diseases (Doorn et al., 2014). 
Furthermore, early and prominent olfactory dysfunction and 
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pathology are common in demyelinating disorders including 
multiple sclerosis (DeLuca et al., 2015). Common respiratory 
viruses may be involved in the pathogenesis of these diseases 
(Majde, 2010). According to the hit-and-run theory, although 
viruses are eventually eradicated by the immune system at 
early stages of the infection, they have a potential to trigger 
CNS disorders by inducing severe neuroinfl ammation from 
the olfactory network (Leyva-Grado et al., 2009). 

Finally, intranasal delivery of drugs, nucleic acids, and 
cells through the olfactory conduit to the CNS will drasti-
cally improve therapeutic and prophylactic approaches to 
neurological and neuropsychiatric diseases in the future 
(Dhuria et al., 2010; Kanazawa T et al., 2013; Danielyan et 
al., 2014).
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