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Summary. – Th e interferon system represents one of the components of the fi rst line defence against infl u-
enza virus infection. Interferon omega (IFN-ω) is antigenetically diff erent from IFN-α and IFN-β and can aff ect 
patients who are resistant to these IFNs. To improve the biological characterization of IFN-ω, we compared its 
activity with those of type I and type III IFNs in induced A549 cells. Th e antiviral eff ect on IFN-stimulated A549 
cells was most apparent aft er infection with avian infl uenza virus. IFN-ω had statistically signifi cant antiviral 
activity although less than IFN-β1a, IFN-λ1, or IFN-λ2. On the other hand, IFN-ω appeared more effi  cient 
than IFN-α2. Our results also indicate that IFN-λs were more suitable against human highly pathogenic virus. 
In this case, IFN-λ1 and IFN-λ2 were more potent than type I IFNs.
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Introduction

Infl uenza A virus (IAV, the family Orthomyxoviridae, 
the genus Infl uenzavirus), a highly infectious respiratory 
pathogen, causes major pandemics and annual epidemics 
with serious health consequences. Th e genome contains 
eight segments of negative sense, single stranded RNA which 
encode up to 16 proteins (Wise et al., 2009; 2011; 2012; Jagger 
et al., 2012; Muramoto et al., 2013). Individual viral proteins 
play critical roles in species-specifi c pathogenicity. An im-
portant host innate immune mechanism is the production 
of interferons (IFNs), which can establish an antiviral state 
by up-regulating interferon stimulated genes that interfere 
with distinct steps in the viral life cycle. 

IFNs are classifi ed into subgroups: type I (IFN -α, β, ω, κ, ε, 
τ, ζ, δ, and ν), type II (IFN-γ), and type III (IFN-λs) (Uzé et al., 
2007). IFNs are associated with innate immunity and especially 
IFN-α, IFN-β, IFN-ω and IFN-λ are produced by virus infected 

cells and have non-specifi c antiviral activity on adjacent non-
infected cells (Pestka et al., 2004, Lopušná et al., 2013). Th ese 
IFNs also induce anti-proliferative and anti-infl ammatory 
responses and are involved also in adaptive immune responses 
(Alexopoulou et al., 2001; Au et al., 2001). Induction of IFNs 
by IAV depends on recognition of viral components by either 
cytoplasmic receptors or the toll-like receptor (TLR) system. 
Plasmacytoid dendritic cells use TLR7 to sense infl uenza virus 
and fi broblast and conventional dendritic cells require recogni-
tion of RNA viral genomes by the cytoplasmic RNA helicase 
retinoic acid-induced gene I (RIG-I) (Kato et al., 2007; Rehwin-
kel et al., 2010). Aft er RNA binding, RIG-I interacts with the 
mitochondrial adaptor protein MAVS and initiates a signaling 
cascade that culminates in the activation of the transcriptional 
factors AP-1, NF-κB and IRF3, and the expression of IFNs. 
Secreted IFNs act in a paracrine and autocrine way through 
binding to the ubiquitously expressed receptors (IFN-αR1 
and IFN-αR2 for type I IFN and IFN-λR1 and IL-10R2 for 
type III IFN) to induce activation of the receptor-associated 
tyrosine kinases JAK1 and Tyk2 and subsequent phosphoryla-
tion of the transcriptional factors STAT1 and STAT2 (Uzé et 
al., 1990; Cleary et al., 1994; Gad et al., 2009; Skorvanova and 
Betakova, 2013). Activated STATs form transcription factor 
complexes, including STAT1 homodimers and STAT1/STAT2/
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IRF9 heterotrimers known as ISGF3 (Levy et al., 1988). Aft er 
assembly, ISGF3 is translocated to the nucleus where it binds 
to IFN-stimulated response elements (ISRE) in the promoters 
of various interferon stimulated genes, such as Mx1, OAS1 and 
IRF7. Th e proteins encoded by these genes mediate the antiviral 
activity (Sharma et al., 2003).

IFN-ω may be a useful and alternative antiviral agent, 
in addition to IFN-α and IFN-β. Human IFN-ω is antige-
netically diff erent from human IFN-α and IFN-β and has 
65% amino acid sequence homology and similar function 
as IFN-α (Adolf, 1987). Th e IFN-ω can still aff ect patients 
who are resistant to the IFN-α due to their diff erent an-
tigenicity and immunogenicity. Previous studies have 
shown that IFN-λs induce protective eff ect in a number 
of cell lines following viral infection (Kotento et al., 2003; 
Sheppard et al., 2003; Svetlikova et al., 2010). We set out 
to improve the biological characterization of IFN-ω and 
IFN-λs by comparing their antiviral activity in A549 cells 
induced by these IFNs following infection with human 
and avian IAVs. 

Materials and Methods

Cells and viruses. A549 and MDCK (ATCC CCL) cells were grown 
in Dulbecco modifi ed Eagle medium (DMEM) containing 10% fetal 
calf serum (FCS). Infl uenza viruses A/PR/8/34 [H1N1] and A/chicken/
Germany/27 [H7N7] were cultured in 10-day-old fertile hen's eggs.

Antiviral activity assay. Confl uent monolayer of A549 cells (in 
24-well plates) was pre-incubated for 24 hr with 0, 10, 20, and 40 
ng/ml of recombinant human IL-29/IFN-lambda 1, recombinant 
human IL-28A/IFN-lambda 2, recombinant human IL- 28B/
IFN-lambda 3, recombinant human IFN-omega (R&D System) 
or 0U, 50U, 100U, 200U, 400U, and 800U of recombinant human 
IFN-alpha 2b, recombinant human IFN-beta 1a (R&D System). 
Th e cells were washed once with phosphate buff ered saline (PBS) 
and then infected with infl uenza A/PR/8/34 [H1N1] or A/chicken/
Germany/27 [H7N7] virus at a multiplicity of infection (MOI) 
of 0.5 plaque forming units (PFU) per cell for 1 hr at room tem-
perature. Aft er adsorption, cells were washed three times with 
PBS and then cultured in serum-free MEM at 37ºC. At 24 hr 
post infection, cells were scraped and centrifuged at 500×g for 
2 min. Viral titers in supernatants were determined on MDCK 
cells by plaque assay.

Plaque assay. Confl uent MDCK monolayers propagated in 24-
well plates were infected with a serial 5-fold dilution of supernatant 
from scraped cells. Following adsorption, cells were washed with 
PBS and overlaid with 0.5% carboxymethyl-cellulose in MEM. Aft er 
72 hr, cells were fi xed in 10% PBS-buff ered formalin and plaques 
were visualized by staining with crystal violet.

Statistical analyses. Signifi cant diff erences in the virus titer be-
tween the control group (untreated cells) and IFNs pre-incubated 
cells were calculated using the unpaired Student's t-test. P values 
<0.05 were considered signifi cant. Statistical analysis was performed 
using Graph-Pad Prism software (http://www.graphpad.com/
quickcalcs/ttest1.cfm).

Fig. 1 

Antiviral activity of IFN-α2, IFN-β1a, IFN-ω, IFN-λ1, IFN-λ2, and IFN-λ3 in IFN induced A549 cells infected with A/PR/8/34 [H1N1]
Th e column bars represent the average results with standard deviation from three experiments performed on diff erent occasions. 100% (1) represents 
infected cells without IFN. IFN-α2 and IFN-β1a were used in concentration of 50 U (2), 100 U (3), 200 U (4), 400 U (5) and 800 U (6). IFN-ω and IFN-λs 
were used in concentration 2.5 ng/ml (2), 5 ng/ml (3), 10 ng/ml (4), 20 ng/ml (5) and 40 ng/ml (6). *Statistical signifi cance (*P <0.05; **P <0.02; ***P <0.01 
by unpaired Student's t-test).
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Results

Inhibition of A/PR/8/34 [H1N1] replication in the cells 
pre-incubated with IFNs

A549 cell were stimulated with diff erent concentration 
of IFNs. Subsequently, cells were infected with A/PR/8/34 
[H1N1] virus and infected cells were scraped 24 hr later. 
Th e IFN-ω insignifi cantly decreased the viral titre to 78% 
(Fig.1). Th e further increasing of IFN concentration did 
not result in better inhibitory activity. Only minor changes 
in plaque number were observed in the A549 cells treated 
with the IFN-α2. Th e IFN-β1a signifi cantly inhibited virus 
replication and reduced the virus titer to 70% (P <0.02). 
Th e IFN-λ2 was more potent than IFN-λ1 and IFN-λ3. Th e 
best inhibitory eff ect was observed with 5 ng/ml of IFN-λs. 
Pre-incubation of A549 cells with IFN-λ2 decreased the 
virus titer to 55% (P <0.02). IFN-λ1 reduced virus titer to 
59% (P<0.01) and IFN-λ3 inhibited virus replication only 
to 83% (P <0,05) (Fig.1). 

Inhibition of A/chicken/Germany/27 [H7N7] replication 
in the cells pre-incubated with IFNs 

Antiviral activity of IFNs was also checked with avian 
strain [H7N7]. In this case, the best inhibitory activity was 
observed with IFN-β1a. Th e virus titer was reduced to 17% 
(P <0.01) (Fig.2). IFN-ω decreased the virus titer to 32% 

(P <0.01) and IFN-α2 to 46% (P <0.02). IFN-λ1 and IFN-λ2 
were more potent than IFN-λ3. Antiviral activity of IFN-λ1 
is comparable with activity of IFN-β1a. Th e least effi  cient 
IFN-λ3 inhibited virus replication to 52% (P <0.02). All IFNs 
exerted antiviral activity against virus in a dose-dependent 
manner, with the optimal concentration of IFN ranging 
from 10 to 20 ng/ml. 

Discussion

Th e results presented here compare the antiviral activity 
of IFN-ω with antiviral activities of IFN-α/β and IFN-λs 
against human (A/PR/8/34 [H1N1]) and avian (A/chicken/
Germany/27 [H7N7]) IAV in A549 cells. Th e A549 lung epi-
thelial cells produce a high yield of MxA protein in response 
to IFN and thereby are suitable for antiviral assays (Files et al., 
1998). IAV induces only a weak cytokine response in these 
cells and this response can be enhanced by pre-treated cells 
with IFNs (Veckman et al., 2006). 

Th e antiviral eff ect on IFN-stimulated cells was most 
apparent on A549 cells infected with avian IAV. IFN-ω 
signifi cantly inhibited replication of IAV and inhibition 
was observed in a dose-dependent manner, with optimal 
concentration of 10 ng/ml. Among type I IFNs, IFN-ω 
exhibited better reduction of virus titer (32%) than IFN-
α2 (46%). Its activity was two times lower than activity of 
IFN-β1a and was a little bit lower than activities of IFN-λ1 

Fig. 2

Antiviral activity of IFN-α2, IFN-β1a, IFN-ω, IFN-λ1, IFN-λ2, and IFN-λ3 in IFN induced A549 cells infected 
with A/chicken/Germany/27 [H7N7]

Th e column bars represent the average results with standard deviation from three experiments performed on diff erent occasions. 100% (1) represents 
infected cells without IFN. IFN-α2 and IFN-β1a were used on concentration of 50 U (2), 100 U (3), 200 U (4), 400 U (5) and 800 U (6). IFN-ω and 
IFN-λs were used in concentration 2.5 ng/ml (2), 5 ng/ml (3), 10 ng/ml (4), 20 ng/ml (5) and 40 ng/ml (6). *Statistical signifi cance (*P <0.05; **P <0.02; 
***P <0.01 by unpaired Student's t-test).
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and IFN-λ2. Previous studies have shown the protective 
potential of human exogenous IFN-ω against pandemic 
2009 A [H1N1] infl uenza viruses in vitro and in guinea pigs 
(Xu et al., 2011). 

Th e IFN-α2 and IFN-ω only slightly infl uence the replica-
tion of A/PR/8/34 [H1N1]. Th e most active IFN-β1a and 
IFN-λs signifi cantly reduced the virus titer to 70% and 60%, 
respectively. Our previous studies have acknowledged the 
antiviral role of IFN-λs in vitro and in vivo (Svetlikova et al., 
2010; Svancarova et al., 2015a,b). Some viruses encode NS1 
proteins that are more effi  cient in suppressing the host antiviral 
response. Th e NS1 protein of the highly pathogenic 1918 virus 
blocked the expression of IFN-regulated genes more effi  ciently 
than the NS1 from infl uenza A/WSN/33 (Geiss et al., 2002). 

Antiviral eff ect of IFN-β1a was reduced 4 times in the 
cells infected with human virus compared to avian virus. On 
the other hand, IFN-λ1 and IFN-λ2 reduced their antiviral 
activity in the cells infected with human virus compared to 
the cells infected with avian virus only 1.8 and 2.8 times, 
respectively. IFN-λs and IFN-α have cell-specifi c eff ects in 
regard to STAT signaling, interferon stimulated genes (ISGs) 
expression, and cytokine and chemokine induction. Type 
I IFNs receptor complex consists of two chains, IFN-αR1 
and IFN-αR2. IFN-λs bind to a distinct membrane receptor, 
composed of IFN-λR1 and IL-10R2 (Skorvanova and Beta-
kova, 2013). Th e IFN-λ receptor has a more limited tissue 
distribution than the IFN-α receptor (Kotenko et al., 2003; 
Sheppard et al., 2003). Treatment with IFN-λ has limited 
eff ects on some types of cells in terms of induction of both 
ISG expression and on pro-infl ammatory mediator release, 
partly due to the restricted distribution of the IFN-λ receptor 
and the lower levels of expression observed compared with 
the IFN-α receptor (Dumoutier et al., 2004; Freeman et al., 
2014). Th is correlates with clinical observations of fewer 
related adverse events for IFN-λ vs. those typically associ-
ated with IFN-α (Freeman et al., 2014; Mihm et al., 2014). 
Taken together, better antiviral eff ect of type III IFNs than 
type I IFNs might be explained by lower induction of ISG 
expression and pro-infl ammatory mediators what can lead 
to lower inhibition of RIG-I pathway by NS1 protein. Of 
course, the role of alternative pathway cannot be excluded. 
Diff erences in the replication characteristics and antivirus 
signaling responses among the diff erent viruses were ob-
served (Sutejo et al., 2012).

Peg-IFN-λ1 is currently undergoing clinical development 
for the treatment of viral hepatitis (Duong et al., 2014). Re-
combinant human IFN-ω-Fc fusion protein represents a use-
ful and promising and alternative antiviral agent especially 
for the treatment of chronic viral disease, such as hepatitis 
C virus infection (Li et al., 2011). Accordingly to our results, 
the IFN-ω should be suitable as antiviral agent against some 
avian strains and IFN-λ1s should be used against human 
infl uenza viruses. 
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