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Role of pericytes in angiogenesis: focus on cancer angiogenesis and  
anti-angiogenic therapy 
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Pericytes, a kind of mural cells for microcirculation, are critical for vascular development and function. Although current 
studies indicate that PDGF/PDGFR-β, Ang/Tie2, TGF-β involve in the regulation of pericytes recruitment, the mechanisms 
governing pericytes migration and regulating angiogenesis, especially in cancers, have not been fully clear. Many evidences 
have showed that cancer vessels are characterized by abnormal pericyte coverage and altered pericytes-endothelial cells 
interactions, which contribute to the metastasis and progress of cancers. Therefore pericyte-targeting tend to be a promising 
anticancer therapy. Here we discuss the roles of pericytes in vasculatures and the effects of pericyte-targeting in anticancer 
treatment.
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Transforming growth factor β – TGF-β; Vascular endothelial growth factor 
– VEGF; Vascular endothelial growth factor receptor – VEGFR; Vascular 
smooth muscle cell – vSMC 

Pericytes, a kind of mural cells related to microvasculature, 
locate outside of the vasculature and often discontinuous em-
bed in endothelial basement membrane [1]. There have various 
intercellular coactions between pericytes and endothelial cells 
(ECs), pericytes can coordinate other components of blood 
vessel wall to keep the progression of blood vessels, including 
the formation, maintenance and remodeling of blood vessels 
[2-4]. With further study, it’s confirmed that pericytes play 
important roles in maintaining the stability of microvessel, 

coordinating the function of ECs [5, 6], regulating blood flow 
[7], synthesis and release the structural materials of basement 
membrane or extracellular and modulating immune activity 
[8-10], pericyte-related contacts may provide a  beneficial 
candidate for angiogenesis modulation [4]. Thus regulating 
pericytes function is likely to ameliorate vascular driven 
diseases such as cancers. Here we focus on the functions of 
pericytes during angiogenesis, and briefly summarize their 
values in anticancer therapy.

Pericytes recruitment

During angiogenesis, new tubes formed by ECs need the 
recruitment of pericytes and smooth muscle cells to provide 
a physical and chemical support for blood vessels, the recruit-
ment of pericytes plays an important role in maintaining 
appropriate vascular morphogenesis. The pericytes coverage 
can be influenced by many factors, such as directly promote 
pericytes proliferation, directly protect pericytes from apop-
tosis, facilitate pericyte activation by releasing growth factors 
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etc. Here we show some widely accepted mechanisms which 
controlled the recruitment of pericytes around ECs, including 
platelet-derived growth factor (PDGF)/PDGFR-β, Angiopoi-
etin-1/Tyrosine Kinase-2 (Ang-1/Tie2), transforming growth 
factor β (TGF-β), sphingosine 1-phosphate (S1P) and matrix 
metalloproteinases (MMP).

PDGF/PDGFR-β

PDGF/PDGFR-β, act as an important pathway which can 
promote the proliferation, migration, survival and vascular 
endothelial growth factor (VEGF) expression of cells, also 
occupy a significant position in promoting pericytes recruit-
ment [11-13]. Some studies showed that the lack of PDGF 
or PDGFR-β expression resulted in a  failure of pericytes 
recruitment around to vessels [14-16]. When angiogenesis 
occurs, PDGF often will be released from angiogenic ECs[2], 
then PDGF will bind to PDGFR-β on pericytes and induce 
the proliferation and migration of pericytes [17, 18]. However, 
the mechanisms underlying this recruitment remain obscure. 
Hamdan revealed that the expression of stromal-derived fac-
tor 1 alpha (SDF-1α) in ECs, which involved in the motility 
and differentiation of pericytes in vitro, could be induced by 
cancer-derived PDGF-BB. With further studies, they found 
that SDF-1α/CXCR4 axis had a positive effect on PDGF-BB-
induced pericyte recruitment [19, 20]. Cancer cell-secreted 
PDGF-B also potentiate the mesenchymal stem cells-pericytes 
transition and control their recruitment via neuropilin-1 
(NRP-1) signaling [21]. To be note, an in vitro study using 
mouse models, revealed that heparan sulfate (HS) with suf-
ficiently extending and N-sulfated domains with appropriately 
spacing is required for PDGF/PDGFR-β mediated pericyte 
recruitment [22]. 

Ang-1/Ang-2/Tie2

Ang-1 is known to be predominantly produced by vas-
cular smooth muscle cell (vSMC) and pericytes [23]. It can 
be bind with Tie2 receptor, which is expressed mainly on 
endothelium, and maintain the maturation and stabiliza-
tion of newly formed blood vessels [24], the stimulation 
of pericyte recruitment via Ang-1 signal contribute to the 
stabilization. Some findings suggested that Ang-1 could 
facilitate EC-dependent release of growth factors including 
TGF-β and PDGF-B, leading to the promotion of pericytes 
recruitment [25-28]. Moreover, as a  mediator of pericyte 
motility, hepatocyte growth factor (HGF )[29] also could 
be up-regulated by Ang-1/Tie2 signaling stimulation. Thus, 
Ang-1/Tie2 can act as a compensate signaling for pericyte 
recruitment. In contrary, Ang-2, which can compete with the 
binding of Ang-1 to Tie2, will be largely secreted when ECs 
are activated by cancer-derived modulators, then antagonise 
the function of Ang-1 [30]. Ang-2/Tie2 will induce loosen-
ing the attachment between ECs and pericytes and reduce 
pericytes coverage [28, 31]. 

TGF-β

TGF-β is a main factor of pericyte and ECs proliferation, 
and mainly secreted by ECs [2]. The TGF-β signaling is also 
required for the maintenance of vessels development [32]. 
Some findings showed that the absence TGF-β activity will 
result in highly abnormal vasculature such as the lack of peri-
cyte coverage, tortuous vessels and vessel hemorrhaging [33, 
34]. The expression of alpha smooth muscle actin (αSMA), 
a widely accepted pericyte marker, also was related to the re-
lease of TGF-β by ECs. The switch governance of αSMA and 
NG2/desmin expression seemed dependent on TGF-β [35]. 
It’s known that the expression of specific TGF-β receptor can 
modulate TGF-β-induced cell responses [36]. There are dif-
ferent kinds of TGF-β receptors activin receptor-like kinase 
(ALK), such as ALK1 and ALK5, and they perform notewor-
thy opposite effects: ALK1 stimulates cells recruitment while 
ALK5 leads to the quiescence of cells [37, 38]. Zhu showed that 
the decrease of ALK1 signaling and increase of ALK5 activity 
would result in disturbed endothelial proliferation, migration 
and differentiation as well as defective vascular smooth muscle 
cell recruitment and differentiation [39]. Chen indicated that 
ALK1 deficiency promote the impairment of vascular integrity 
even after VEGF stimulation. By using anti-ZIC1 and anti-NG2 
antibodies to identify pericytes, they showed that the pericyte 
coverage was decreased [40]. Moreover, TGF has been found 
to possess the ability of facilitating the secretion of monocyte 
chemoattractant protein-1 (MCP-1) which can promote the re-
cruitment of mural cells[ 41], and may lead the TGF-β-induced 
pericytes migration toward endothelium [42, 43]. 

SIP

S1P, a secreted sphingolipid that regulate cell communica-
tions through G-protein coupled receptors (EDG), is well 
known for its roles in modulation of ECs and mural cells 
proliferation, migration and interactions [44]. It can bind 
to five G  protein coupled receptors named S1PR, S1P1-5, 
and play a critical role in vascular development via vascular 
S1P receptors [45, 46]. As the well-known pro-angiogenic 
factor, S1P-1 can regulate the vascular endothelial barrier 
via the modulation of extracellular matrixc (ECM) such as 
VE-cadherin and adherens junctions, and the mediation of 
mural-endothelial interactions [47, 48], subsequently may 
strengthen the association between ECs and pericytes. On the 
contrary, with the activation of S1P2-dependent pathways in 
LRP1-containing cells, the PDGF-BB induced cell migration 
could be downregulated by SIP [44]. Similarly, Du found that 
inhibiting S1P2 could enhance the recruitment of mural cells, 
and the induced-production of pro-angiogenic factors such 
as TGF-β, VEGF-A may contribute to it [49]. Interestingly, 
recent findings show that S1P1 has a negative regulation in 
angiogenic sprouting [50]. Thus, the activity of different S1P 
receptors will lead to different responses to the migration and 
interaction of mural cells/ECs.
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MMP

MMPs, which can degrade the ECM and basement mem-
brane, can be expressed by vascular smooth muscle cells as well 
as pericytes [51, 52]. Evidences suggested that brain pericytes 
were the major source of MMP-9 in blood-brain barrier, 
and the pericytes-derived MMP-9 would initiate pericytes 
migration [53, 54]. Treated with SB-3CT, a selective inhibitor 
for gelatinases (MMP-2 and-9), the loss of laminin-positive 
pericytes could be reduced [55]. Christophe revealed that there 
was an inhibition in cancer vasculature architecture in MMP-
9-deficient mice, while these changes have a correlation with 
a 48% decrease in pericytes present along microvessels [56]. 
Many mechanisms or possibilities may explain the contribu-
tion of MMPs for pericyte recruitment: directly promoting 
pericyte invasion via ECM degradation; facilitating pericyte 
proliferation by modification of ECM; activating pericytes 
through the release of growth factors (such as VEGF) bound 
to the ECM; assisting the propagation of angiogenic signaling 
and recruiting bone marrow-derived cells [57-59]. 

Pericytes in angiogenesis

In the initial stage of angiogenesis, the dissociation of peri-
cytes-ECs will occur when the formation of vascular tubes by 
ECs. It is well known that the degradation of vascular basement 
membrane is important for initial vascular tubes formation. 
Some evidences suggest that instead of MMPs production, 
the increase of pericyte-derived cathepsin activity result in 
the augment of vascular and the detachment of pericytes [60]. 
Besides, pericytes can secrete VEGF and subsequently play 
a critical role in pericytes-ECs dissociation. So new blood tubes 
will be formed via the proliferation and migration of ECs. But 
of note, the tubes are composed of ECs with immature base-
ment membrane, the followed event is recruiting pericytes to 
promote the stability and maturity of vasculature. 

With the advance of the progression, pericytes-ECs inter-
action will provide beneficial conditions for the survival and 
proliferation of ECs. The secretion of VEGF from pericytes, 
known as the most important pro-angiogensis factor, can 
promote ECs survival and proliferation. Franco uncovered that 
pericytes had the ability to induce the expression of Bcl-w, an 
antiapoptotic protein, in cancer ECs, contributing the survival 
of ECs. The activation of NF-κB in ECs signal transduction 
pathway can partly explain it [61]. Besides, VEGF and other 
pro-angiogensis factors can induce the production of MMP 
by pericytes, which lead to the promotion of ECs migration. 
Meanwhile, PDGF will be secreted from ECs, and facilitate 
more pericytes recruitment in turn. Interestingly, some studies 
confirmed that PDGF and VEGF had an antagonistic relation-
ship in angiogenesis [62, 63]. Recent findings also suggested 
that PDGFR-β activity in mural cells might be modulated 
by VEGF. The most likely explanation is that the function 
of VEGF play a predominant role in earlier stage, then the 
PDGF-related modulation will be permitted. 

When the angiogenic growth is sufficient in an area, the 
proliferation of ECs could be inhibited by pericytes to main-
tain new blood vessels stability. Through the Ang-1/Tie2, the 
inhibition of ECs activity could be induced. Ang-1 also belong 
to chemokine of ECs, it can prevent ECs from apoptosis under 
the lack of VEGF. On the other hand, ECs and smooth muscle 
cells can express Ang-2, act as a antagonistic factor for Ang-1 
function, causing the unstabilization of ECs and the loss 
of pericyte recruitment [64]. So the modulation of Ang-1: 
Ang-2 ratio will influence the physiological progression of 
angiogenesis. Wakui showed that Ang-2 and VEGF could be 
increased in initiatory angiogenic phase, while in maturation 
phase might be initiated by relative enhancement of Ang-1 
and decrease of VEGF [65]. Besides, some studies also showed 
that the enhancement of Rho GTPase signaling in pericytes 
contribute to the inhibition of adjacent ECs proliferation 
[66]; in an in vitro blood vessels model, which regression was 
driven by lysophosphatidic acid (LPA), Motiejūnaitė found 
that pericytes could induce the stabilization of ECs tubes via 
accelerating the metabolism of LPA [67].

Finally, the integrated structural support and physiological 
interactions of pericytes will generate the maturity of vascu-
latures [19, 68]. Interestingly, Simonavicius demonstrated 
that pericytes could actively promote the destabilization and 
regression of selective vessel in vivo [3]. It’s well known that 
the initial newly formed vascular plexus needs to be remod-
eled extensively, the selective branch regression can lead to 
unwanted capillaries pruning and promote the end of vessel 
plasticity. 

Pericytes in cancer

It is well known that cancer vessels is patently abnormal 
and tends to adopt immature vascular phenotypes. Their fra-
gility and leakage caused by abnormal basement membranes, 
impaired cell-to-cell attachment and leaky microvessels 
contribute to the increase of interstitial fluid pressure. The 
reduction of pericytes coverage and the perturbed associa-
tions between pericytes and ECs can partially explain them. 
We have found that pericytes are abnormal around cancer 
vasculatures [69, 70]. They appears more disorderly arrange-
ment, aberrant cell shapes, altered morphologies and marker 
expression and looser vessel attachment. They usually absent 
in cancer vasculatures and have loose associations with ECs. 
Thus, pericyte has been implicated as mediator of several 
cancer-related processes including cancer angiogenesis and 
metastasis [71, 72].

Hypoxia, which often occur in cancer, can effect pericytes 
via releasing a variety of factors, such as VEGF, Ang-2 and 
MMP [73, 74]. During the cancer progression, frequent hy-
poxia can stimulate the secretion of VEGF by pericytes via 
HIF signal [62, 75]. The relatively upregulation of VEGF may 
promote the development of cancer vasculature. With expres-
sion of pericyte-related Ang-2 and MMP caused by hypoxia, 
the destabilization of vessels and the increased permeability of 
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endothelial barrier may be induced. Through the micro-array 
analysis of cortical pericytes miRNAs in rats with exposure to 
low oxygen and without low oxygen, Truettner found that the 
expression of 27 miRNAs were higher and 31 miRNAs were 
lower in hypoxia group, which related to the changes of angio-
genesis, migration and cell cycle regulation [76]. So pericytes 
need to further study to develop possible cancer targets. 

Metastasis is one main reason of patients death, while 
deficient pericytes of cancer vasculatures could be partly 
responsible for vascular metastasis [77, 78]. Immature and 
leaky vessels, caused by pericytes deficiency, in cancers could 
increase cancer interstitial fluid pressure and enhance cancer 
cells flowing into vessels. Compared to lymph node carcinoma 
of the prostate cells (LNCaPs), the LNCaP-19 cells, a hypotype 
with more aggressive, present a lower pericyte coverage [79]. 
Poor pericyte coverage has also been confirmed that has 
correlation with worst prognosis for patients with invasive 
breast cancer [80]. Moreover, Zhou showed that through the 
production of Semaphorin 4D (SEMA4D) from cancer cells, 
the expression of PDGF-B and angiopoietin-like protein 4 
(ANGPTL4) in ECs could be induced in a Plexin-B1/Rho-
dependent manner, thereby affecting the proliferation and 
differentiation of pericytes and vascular permeability [13]. 

To be note, Cao observed that higher pericyte coverage 
was related with more aggressive clinicopathologic character-
istics in clear cell renal cell carcinoma patients [72]. Through 
pericytes genetic targeting in non-hypoxic (early stage) or 
hypoxic (advanced stage) cancers, Keskin indicated that the 
depletion of PDGFRb+ pericytes reduced metastasis at early 
stages, whereas it enhanced metastasis at later stages [28]. At 
early stage, the pericytes depletion may influence cancer’s 
adequate energetic needs via disturbing vascular network, 
leading to the decrease of cancer growth and metastasis. With 
the increased depletion, it will result in the reduction of cancer 
blood vessels as well as the increase of blood permeability, 
which contribute to the enhancement of intratumoral hypoxia 
and cancer metastasis.

Pericytes also have the ability to affect cancer progression 
undergo lymphovascular invasion. Xian found that pericyte 
deficient mice accompanied with increased lymph node 
and distant organ metastasis Additionally, a  novel mode of 
cancer spread has been found: termed “extravascular migra-
tory metastasis”. Cancer cells can migrate along the outer 
or abluminal surface of vessels. Some findings shown that 
melanoma cancer cells spread along the abluminal vascular 
surface in a pericytic location, without entering into vascular 
channels [82, 83]. Perivascular migration or pericyte mimicry, 
a potential route of cancer spread, will provide novel target for 
cancer treatment.

Moreover, pericyte has been confirmed to involve in the 
modulation of immune activity [8, 84, 85]. Immune evasion is 
a critical factor for cancer growth, thus pericytes may influence 
the cancer progression in immune manner. Malignant glioma-
derived pericyte has been evidenced that possess the capability 
to suppress T cell proliferation [86]. Bose demonstrated that 

cancer-derived pericytes had a negatively influence on CD4+ 
T cell activation and proliferation, they also had the ability 
to increase anergy in recall response to Ag by CD4+CD44+ 
T  cells through regulating G protein signaling 5-and IL-6-
dependent pathways [9]. 

Pericyte-targeted treatment 

The anti-angiogenesis field is a  major force in modern 
medicine for various cancers. However, increasing studies 
have shown that targeting ECs, VEGF signaling alone is not 
sufficient for effective cancer control [87]. There are cancer 
vessels subsets which don’t rely upon VEGF for maintenance 
[88]. Thus pericytes have emerged as a significant target for 
anti-angiogenic therapy.

One hand, enlarging the coverage of pericytes around 
cancer vasculature could induce the normalize of cancer 
vasculatures. Thereby, the interstitial fluid pressure and perme-
ability of intratumoral blood vessels will be recovered [73, 89], 
leading to the prevention of cancer cells disseminating into 
circulation and the increase of perfusion and oxygenation in 
cancer to enhance therapy effects [90-92]. Besides, pericytes 
may restrict the formation of new cancer vessel cavity and 
maintain the stability of cancer vessels, subsequently inhibit 
cancer growth due to the limitation of blood supply. Many 
works has showed that anti-VEGF therapy may result in the 
“normalization of cancer vasculature”, including increase 
pericytes coverage, and result in increased regions of necrosis 
in cancer [93].

Through establishing a stable mice mode with PDGF-BB 
overexpression in colorectal cancer and pancreatic cancer cells, 
Mccarty observed the increased pericyte coverage as well as 
marked inhibition of cancer growth, with the treatment of 
imatinib mesylate (PDGFR inhibitor), the growth could be 
increased and the total pericyte content could be decreased, 
compared to untreated cancers [94]. In addition to, enhancing 
pericytes-ECs interaction such as Ang-2/tie2 signal also act 
as an important role in cancer treatment. Falcon showed that 
inhibition of Ang-2, the antagonistic factor of Ang-1, could 
induce the reduction of cancer growth and keep constant 
vascular density [95]. Through comparative analysis of cancers 
growth in wild-type (WT) and Ang-2-deficient mice, Nasarre 
indicated that the cancer growth in Ang-2-deficient mice was 
slower than in WT mice, as well as the cancer microvessels in 
Ang-2-deficient mice were more plentifully covered by more 
mature pericytes. It’s worth noting that the growth difference 
in two kinds mice models occurred during early stages of 
cancer development [64]. 

On the other hand, high level pericytes coverage contrib-
ute to the poorer outcomes, some studies have shown that 
increased PDGFR-β expression, an important promoter for 
pericytes recruitment, can act as an independent predictor of 
short disease-specific survival in cancers [80, 96, 97]. Reduc-
ing pericytes can enhance the effect of anti-cancer therapies 
through many mechanisms. As we all known, VEGF can 
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stimulate the survival and proliferation of ECs, while pericytes 
can protect ECs from the withdrawal of VEGF via producing 
VEGF, therefore may result in pericyte-induced resistance to 
anti-angiogenic therapy. Besides, the Ang-1 expression and the 
binding of PDGF to PDGFR-β in pericytes also play signifi-
cant roles in maintain the stabilization of cancer vessels. Once 
inhibited the pericytes recruitment or disrupted the pericytes-
ECs association, the response to anti-cancer therapies may be 
increased via inhibiting the formation of new cancer vessels 
and reducing cancer blood supply.

Some studies proved that imatinib could mediate anti-
angiogenesis in lymphoma model via inhibiting the function 
of PDGFRb1 pericyte, resulting in significant inhibition of 
human lymphoma growth [98]. As it is said above, single anti-
angiogenic strategies often have provided limited response, 
some trials showed that PDGFR-β blockade (via imatinib) 
alone could not provide benefits for cancers outcomes [99, 
100]. The combination of anti-angiogenic agents or multiple-
inhibitor will be a  trend in anti-cancer treatment. Some 
evidences showed that simultaneously targeting VEGFR, 
PDGFR-β and fibroblast growth factor receptor could result 
in remarkable inhibit the growth and angiogenesis of cancers 
[101]. Dual VEGFR/PDGFR-β inhibition appeared more ben-
efit in ovarian cancer compared with single receptor-inhibition 
[102, 103]. Abou-Alfa found that combination of Sorafenib, 
an inhibitor of VEGFR, PDGFR-β, Kit and Flt3, and doxo-
rubic couldimprove the treatment efficacy of hepatocellular 
carcinoma, versus doxorubicin alone [104]. In a phase 3 trial, 
Raymond found that continuous daily administration of su-
nitinib, a general receptor tyrosine kinase inhibitor that target 
VEGFR and PDGFR-β, at a dose of 37.5 mg could improve 
the progression-free survival, overall survival and the objec-
tive response rate in patients with pancreatic neuroendocrine 
cancers compared to placebo [105], it also provided benefits 
for outcomes of unresectable hepatocellular carcinoma [106]. 
Similarly, regorafenib, a multiple-inhibitor, can improve the the 
outcomes of colorectal cancer patients who fail with VEGFR 
inhibitor therapy [107]. Some evidences also suggested that 
the synergy between PDGFR-β and VEGFR mainly depended 
upon the strength of VEGF blockade. To note, some studies 
also suggested that additional targeting of pericytes didn’t pro-
mote the effect already generated by VEGF inhibitor [108]. 

Besides, considering the physical location of pericytes, 
which often locate at ECs junctions and cover gaps between 
ECs, pericytes-ECs will shield cancer cells from damaging 
factors, such as immune cells [86, 9, 109] and chemotherapy 
drugs. Wang found that pericytes-derived Ang-1 could upreg-
ulate the expression of tight junction proteins zona occludens 
(ZO)-1 and occluding [110]. The upregulation of adhesion 
proteins and N-cadherin induced from pericytes may involve 
in the enhancement of barrier function [111]. Pericytes also 
enhance the function of tight junction or endothelial barrier 
via various molecular mechanisms [112, 113]. Therefore, 
targeting pericytes and ECs may enhance the abrogation of 
pericytes-ECs shield around localized cancer cells and allowed 

more easy to reach targets. Ruan suggested that imatinib im-
paired the growth of lymphoma, not only by influencing the 
pericytes coverage, but also by weakening the cancer stromal 
compartment [114]. 

Conclusion

Pericytes receive increasing attention due to their vital 
role in vasculature development. With the sufficient coverage 
of pericytes and the normal connections between ECs and 
pericytes, the stable and mature vessel structure/function can 
be formed. Due to the pericytes coverage and pericytes-ECs 
interactions are often abnormal in cancer-related vascula-
tures, targeting pericytes would be a  important mode for 
anti-cancer treatment. On the one hand, the restoration of 
normal pericytes coverage and function may enhance cancers 
responses to chemo and radiation therapies via maintaining 
the normalization of cancer vasculature, including increasing 
the perfusion and oxygenation of located cancer. On the other 
hand, targeting pericytes can enhance the effect of anti-cancer 
therapies, especially in combination with antiangiogenic 
agents such as VEGF inhibitors. Although many evidences 
suggest that pericyte-target treatments provide benefit for 
anti-cancer, further researches are needed to set more effec-
tive and reasonable therapy scheme, including decrease the 
side effects in multiple-agents antiangiogenic therapy [115]; 
develop novel and specific pericyte-related agents; choose 
prioritized mode, especially choose better mode (increasing 
the pericytes recruitment or reducing pericytes) in different 
cancers and different stages. With these efforts a better cancer 
control would be achieved. 
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