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Discovery of signature genes in gastric cancer associated with prognosis
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Gene expression profiles of gastric cancer (GC) were analyzed with bioinformatics tools to identify signature genes 
associated with prognosis. Four gene expression data sets (accession number: GSE2685, GSE30727, GSE38932 and 
GSE26253) were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened out 
using significance analysis of microarrays (SAM) algorithm. P-value < 0.05 and |fold change| >1 were set as the threshold. 
A co-expression network was constructed for the GC-related genes with package WGCNA of R. Modules were disclosed 
with WGCNA algorithm. Survival-related signature genes were screened out via COX single-variable regression. A total 
of 3210 GC-related genes were identified from the 3 data sets. Significantly enriched GO biological process terms included 
cell death, cell proliferation, apoptosis, response to hormone and phosphorylation. Pathways like viral carcinogenesis, 
metabolism, EBV viral infection, and PI3K-AKT signaling pathway were significantly over-represented in the DEGs. 
A gene co-expression network including 2414 genes was constructed, from which 7 modules were revealed. A total of 17 
genes were identified as signature genes, such as DAB2, ALDH2, CD58, CITED2, BNIP3L, SLC43A2, FAU and COL5A1.
Many signature genes associated with prognosis of GC were identified in present study, some of which have been impli-
cated in the pathogenesis of GC. These findings could not only improve the knowledge about GC, but also provide clues 
for clinical treatments.

Key words: gastric cancer, differentially expressed genes, functional enrichment analysis, gene co-expression network, survival 
curve, prognosis, signature genes

Gastric cancer (GC) is the second most common cause 
of cancer-related death worldwide. Risk factors of GC in-
clude diet, tobacco[1], infection of Helicobacter pylori and 
familiar GC [2]. The incidence, diagnostic studies, and 
therapeutic options have undergone big changes in the last 
decades, but the prognosis for GC patients remains poor, 
especially in more advanced stages [3]. Recurrence follow-
ing surgery is a major problem, and is often the ultimate 
cause of death.

 Molecular pathology can be helpful not only to understand 
the disease pathogenesis, but also to give useful prognostic 
molecular markers. Overexpression of p53 has been reported 
in 17–91% of invasive GC [4]. Sumiyoshi et al. suggest that the 
elevatedp53 is a marker for an unfavorable prognosis in GC 
[5]. Yokobori et al. further point out that p53 alters FBXW7 
expression and the disruption of both p53 and FBXW7 con-
tributes to poor prognosis in GC [6]. Besides, many biological 
prognostic factors have been proposed, such as p21 [7, 8], 

vascular endothelial growth factor (VEGF) [9], cyclin D2 [10] 
and HER2 [11].

Many studies have adopted microarray technology to iden-
tify critical genes in GC [12-14]. Lee et al. report that CDH17 
is a prognostic marker for early stage GC [14]. Nishigaki et al. 
find aberrant expression of R-RAS in GC using microarrays 
and prove that blocking of the R-RAS-signaling pathway has 
great potential for GC therapy [15]. Obviously, these gene 
expression data are not fully utilized due to limited tools or 
restricted purpose. Mining valuable information with cur-
rently available bioinformatics tools from the plenty of gene 
expression data is of great significance.

In present study, we obtained a great number of GC-related 
genes via differential analysis of 3 gene expression data sets. 
Using another data set, a gene co-expression network was 
constructed for the GC-related genes and modules were 
disclosed. Then signature genes associated with survival time 
were screened out via Cox regression analysis.
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Materials and methods

Gene expression data. Four gene expression data sets were 
downloaded from Gene Expression Omnibus[16]. GSE2685 
[17]included22 primary human advanced gastric cancer tis-
sues and 8 noncancerous gastric tissues. Affymetrix Human 
Full Length HuGeneFL Array (Affymetrix Inc., Santa Clara, 
California, USA) was used. GSE30727 analyzed 30 pairs of 
normal-cancer stomach tissues using the Affymetrix Human 
Exon 1.0 ST platform (Affymetrix Inc., Santa Clara, Califor-
nia, USA). GSE38932 [18] contained 12 gastric tumors and 
12 paired adjacent non-tumoral gastric tissues. The platform 
was HEEBO Human oligo array. GSE26253 [19] included 432 
formalin fixed paraffin embedded gastric tumor tissues and 
Illumina HumanRef-8 WG-DASL v3.0 was used (Illumina, 
USA).

Pre-treatment of raw data. Probes were mapped to genes. 
For genes corresponding to more than one probe, gene ex-
pression levels were determined by the average probe values 
[20]. Log2 conversion and quantile normalization [21] were 
applied on data. Genes with more than 20% missing values 
were removed and others were filled with average expression 
level.

Differential analysis. Significance analysis of microarrays 
(SAM) algorithm [22] was adopted to screen out differentially 
expressed genes (DEGs). SAM can reduce the false-positive rate 
in multiple testing via controlling false discovery rate (FDR). 
Relative difference (statistic d) is calculated as follow:

d = 
X 1́ | X 2́  (1)

d=   S + s0 

Statistic d measures the relative differences in gene expres-
sion levels and it is the corrected t. X1’ represents the average 
expression level of a gene under certain state, X2’ represents 
the average expression level of a gene under another state, and 
s represents the variance of a gene.

FDR< 0.05 and log2|fold change| >1 were set as the thresh-
old to screen out DEGs.

Functional enrichment analysis. Gene Onotology (GO) 
enrichment analysis and pathway enrichment analysis were 
performed for the DEGs with toppGene [23], a test based 
upon hypergeometric distribution. FDR < 0.05 was set as the 
cut-off value.

Gene co-expression network analysis. A gene co-expres-
sion network was constructed for the GC-related genes with 
package WGCNA (weighted gene co-expression network 
analysis)[24] of R. The connection coefficient a was calculated 
for a pair of genes as follow:

aij = Sb
i  j, where Sij = |cor(xi, xj)| (2)

Where Xi and Xj represent expression vectors of gene i and 
gene j, cor represents Pearson correlation coefficient of the 
two vectors. Pearson correlation coefficient is converted into 

connection coefficients aij via exponential transformation. 
Exponential transform can strengthen strong correlation but 
weaken weak correlation, and thus improve the reliability of 
the network.

WGCNA algorithm takes topological properties into 
consideration to identify modules from the network. The al-
gorithm considers not only the two directly connected genes, 
but also others genes linked with the two genes. It calculates 
weighting coefficient Wij from connection coefficient aij as 
follow:

Wij =           
lij + aij (3)

          
min{ki, kj} + 1 - aij

where lij = ∑ aiu auj, ki = ∑ aiu                    u                                  u

Wij considers overlap in the neighboring genes of node 
i and node j. Modules were identified via hierarchical cluster-
ing of the weighting matrix W.

Survival analysis. After we selected several GC-related 
genes and then clustered them into different modules bas-
ing on the different expressions, the patients were classified 
as having or not having relapse based on module genes 
using Support Vector Machine (SVM)[25]. A tenfold cross-
validation method was chosen to evaluate the classification 
result. Survival-related signature genes were screened out via 
single-variable Cox regression analysis.

Results

Differentially expressed genes. A set of 5,524, 8,988 
and 20,860 genes are detected in the data sets of GSE2685, 
GSE38923 and GSE30727, respectively. The box plots are 
shown in Figure 1, which indicates a uniform expression 
distribution of the samples after normalization. According to 
the criteria (FDR< 0.05 and log2|fold change| > 1), the DEGs 
were screened out in three data sets which contained both 
tumor and normal tissues. Consequently, a cohort of1282 
DEGs were obtained in GSE2685, 28 DEGs in GSE38932 and 
2041 DEGs in GSE30727. As shown in Figure 2, only a few 
genes were common among the 3 sets of DEGs, suggesting 
high heterogeneity in GC samples. The 3 sets of DEGs were 
combined and a total of 3210 genes were acquired, which were 
regarded as GC-related genes.

Functional enrichment analysis result. Significantly 
enriched GO biological process (BP) terms for the DEGs 
included cell death, cell proliferation, apoptosis, response to 
hormone and phosphorylation (Supplementary Table 1A). 
Pathway enrichment analysis revealed viral carcinogenesis, 
metabolism, EBV viral infection, and PI3K-AKT signaling 
pathway (Supplementary Table 1B). These functions and 
pathways have been implicated in the pathogenesis of GC 
[26].

Gene co-expression network and signature genes. To 
further screen out signature genes from the 3210 GC-related 
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genes, another gene expression data set (GSE25263), which 
comprised only 432 GC patient samples with clinical informa-
tion, was acquired from GEO. Same pre-treatment was applied 
on the raw data. Box plot for the 20 samples randomly selected 
out of the 432 samples also revealed a uniform expression 
among samples after normalization (Figure 3).

The 3210 GC-related genes showed various expression pat-
terns in the 432 samples (Figure 4). A co-expression network 
including 2414 genes was constructed with WGCNA algo-
rithm, from which 7 modules were identified (Supplementary 
Table 2).

Functional enrichment analysis was performed for the 
genes in each module. No significant term was enriched in 
module “green” and terms enriched in module “red” was 
not associated with GC. GC-related terms were identified 
in other 5 modules (“Yellow”, “blue”, “grey”, “Brown” and 
“turquoise”) and thus they were considered as GC-related 
modules.

We found that relapse could well classify patients with dif-
ferent survival time by Kaplan-Meier test (P < 0.05) (Figure 5). 
The genes of module “yellow” could separate patients with 
different prognosis and the error rate of cross-validation was 

0.041. Cox regression analysis was conducted for the 65 genes 
in the “yellow” module to find out genes closely associated with 
survival time. With the adjusted p-value < 0.1 as the cut-off, 
a total of 17 genes were revealed (Supplementary Table 3), such 
as Dab homolog 2 (DAB2), aldehyde dehydrogenase 2 family 
(ALDH2), CD58 molecule (CD58), Cbp/p300-interacting 
transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 
(CITED2) and BCL2/adenovirus E1B 19kDa interacting pro-
tein 3-like (BNIP3L).

Discussion

In present study, we acquired a total of 3210 GC-related 
genes through differential analysis of 3 gene expression data 
sets. Functional enrichment analysis was applied on these 
genes. Cell proliferation and apoptosis were significantly 
enriched, which were closely related to cancer development. 
Pathway enrichment analysis showed that viral carcinogenesis, 
EBV viral infection, and PI3K-AKT signaling pathway were 
significantly over-represented in the DEGs. Epstein–Barr virus 
(EBV) has been linked to GC [27, 28]. The EBV is detected in 
the tissue of about 10% of gastric carcinoma cases throughout 

Figure 1. Box plots of the 3 gene expression data sets. A: GSE2685; B: GSE38932; C: GSE30727.
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the world. Takada et al. report that EBV contributes to the 
maintenance of the malignant phenotype of EBV positive GC 
[28]. Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase 
and produces phosphatidylinositol-3,4,5-trisphosphate (PI(3, 
4, 5)P3), a second messenger essential for the translocation of 
Akt to the plasma membrane where it is phosphorylated and 
activated by phosphoinositide-dependent kinase (PDK) 1 and 
PDK2. Activation of Akt plays a pivotal role in fundamental 
cellular functions such as cell proliferation and survival by 
phosphorylating a variety of substrates. PI3K-AKT signal-
ing pathway has been closely associated with various aspects 
of cancers [29, 30]. Osaki et al. report that inhibition of the 
PI3K-Akt signaling pathway enhances the sensitivity of Fas-

mediated apoptosis in human GC cell line, MKN-45 [31]. 
These significantly enriched biological processes and pathways 
confirmed the reliability of the DEGs.

To screen out key genes associated with prognosis in GC 
patients, another gene expression data set was obtained, 
based upon which a weighted gene co-expression network 
was constructed with WGCNA method. A total of 7 modules 
were identified. Finally, a total of 17 genes were closely re-
lated to survival time and thus were considered as signature 
genes. Some of them have been implicated in GC according 
to previous studies, such as DAB2 [32], ALDH2 [33], CD58 
[34], CITED2 [35] and BNIP3L [36].ALDH2 belongs to 
the aldehyde dehydrogenase family of proteins. Aldehyde 
dehydrogenase is the second enzyme of the major oxidative 
pathway of alcohol metabolism. Shin et al. find that ALDH2 
polymorphisms modify the susceptibility to the development 
of GC associated with alcohol intake [37]. Wang et al. carry out 
a meta-analysis and suggest that ALDH2 and ADH1 genetic 
polymorphisms may play crucial roles in the pathogenesis of 
GC [33]. Mayer et al. find that expression of CD56 by more 
than 50% of the tumor cells correlates with tumor recurrence 
and decreased survival time and it may be involved in the 
development of distant metastases of GC [34].CITED2 is 
a gene that mediates sensitivity to chemotherapeutics. Regel 
et al. indicate that levels of CITED2 in gastric tumors correlate 
with patients’ response to epirubicin[35], suggesting it might 
be a therapeutic target to modulate chemotherapy and thus 
benefit prognosis.

With regard to the other genes (or the protein products), 
SLC43A2 (Solute carrier group of membrane transport pro-
tein, member 2), a Na+-independent transporter that has 
significant role in the transport of macromolecule amino acid 
across membranes, is verified to be elevated in most metastatic 
GCs [38]. This cancer-related protein is reported associated 

Figure 2. Venn diagram of the 3 sets of differentially expressed genes.

Figure 3. Box plot of 20 samples randomly selected from GSE25263.
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Figure 4. Heatmapof the differentially expressed genes (DEGs) in three data sets. A: DEGs in GSE2685; B: DEGs in GSE30727; C: DEGs in GSE38932. 
X-axis represents the tumor and the normal samples and Y-axis indicates the differentially expressed genes.
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with the pancreatic cancer survival [39]. These provide po-
tent evidence that SLC43A2 might also be implicated in GC 
survival time, as suggested in our results. In breast cancer, the 
homologous FAU gene (Finkel-Biskis-Reillymurine sarcoma 
virus) is found in the region of 11q13~q14, which other cell 
cycle-related genes are also located, and acts as a tumor sup-
pressor in vitro [40]. However, at present, no data indicate the 
association between this gene and GC, suggesting that FAU 
might be a novel indicator for the prognosis of GC. Overex-
pression of the collagen COL5A1 is discovered in malignant 
lesion of stomach, suggesting the important role of COL5A1 
in the GC progression [41]. These illustrations collectively 
suggest that the three genes might be novel biomarkers for 
the GC prognosis. 

Overall, 17 genes significantly linked with survival time 
of GC patients were disclosed in present study. First, they 
could be used for prognosis. Second, some of them might be 
potential targets and thus could be exploited for GC therapy. 
Besides, the 3210 GC-related genes could also provide clues 
for future researches on GC.
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Table 1A: Top 20 GO biological process terms significantly enriched in the 

differentially expressed genes 

ID Name p-value q-value 

Bonferroni

GO:0071310 cellular response to organic substance 1.16E-24 1.07E-20 

GO:0010941 regulation of cell death 1.19E-20 1.10E-16 

GO:0009719 response to endogenous stimulus 1.39E-20 1.28E-16 

GO:1901700 response to oxygen-containing compound 3.84E-20 3.53E-16 

GO:0008283 cell proliferation 4.63E-20 4.25E-16 

GO:0043067 regulation of programmed cell death 1.91E-19 1.76E-15 

GO:0042981 regulation of apoptotic process 1.97E-19 1.81E-15 

GO:0009725 response to hormone 8.32E-19 7.65E-15 

GO:0016310 phosphorylation 9.79E-19 9.00E-15 

GO:0006915 apoptotic process 1.01E-17 9.32E-14 

GO:0012501 programmed cell death 1.40E-17 1.29E-13 

GO:0001775 cell activation 2.70E-17 2.48E-13 

GO:0006468 protein phosphorylation 5.03E-17 4.63E-13 

GO:0032268 regulation of cellular protein metabolic 

process 

8.97E-17 8.25E-13 

GO:0048584 positive regulation of response to stimulus 1.23E-16 1.13E-12 

GO:0042325 regulation of phosphorylation 1.32E-16 1.21E-12 

GO:0014070 response to organic cyclic compound 1.62E-16 1.49E-12 



GO:0034097 response to cytokine 1.73E-16 1.59E-12 

GO:0040011 locomotion 2.05E-16 1.88E-12 

GO:0042127 regulation of cell proliferation 2.12E-16 1.95E-12 

 



 

 

Table 1B: Top 20 pathways significantly enriched in the differentially expressed genes 

Pathway Name Source p-value q-value 

BH-adjust 

Viral carcinogenesis KEGG 1.51E-10 4.68E-07 

Metabolism REACTOME 9.31E-10 2.89E-06 

PI3K-Akt signaling pathway KEGG 3.14E-07 9.73E-04 

Epstein-Barr virus infection KEGG 6.99E-07 2.17E-03 

Valine, Leucine and Isoleucine 

Degradation 

SMPDB 1.55E-06 4.81E-03 

Amoebiasis KEGG 3.69E-06 1.15E-02 

Viral myocarditis KEGG 5.77E-06 1.79E-02 

Metabolism of lipids and 

lipoproteins 

REACTOME 7.33E-06 2.27E-02 

HTLV-I infection KEGG 1.13E-05 3.49E-02 

Focal adhesion KEGG 1.20E-05 3.73E-02 

Focal Adhesion WikiPathways 1.33E-05 4.14E-02 

Asthma KEGG 1.48E-05 4.60E-02 

Valine, leucine and isoleucine 

degradation 

KEGG 1.64E-05 5.07E-02 

Allograft rejection KEGG 1.89E-05 5.86E-02 



MAP00280 Valine leucine and 

isoleucine degradation 

GenMAPP 2.91E-05 9.01E-02 

Developmental Biology REACTOME 2.98E-05 9.26E-02 

Pathways in cancer KEGG 3.79E-05 1.18E-01 

Interferon Signaling REACTOME 3.93E-05 1.22E-01 

Cytokine Signaling in Immune 

system 

REACTOME 4.88E-05 1.51E-01 

mitogen activated protein kinase 

signaling 

Pathway 

Ontology 

5.19E-05 1.61E-01 

 

 



 

Table 2: Seven modules derived from the co-expression network 

Moduleclasses Number of 

genes 

Module genes (examples) Biological functions 

Blue 351 IL10,TIMP1,FNTB, 

GATA6,FABP4… 

Cell proliferation, 

metabolic, cell death 

Brown 176 SP1,KLF11,NCOA6,KLF6,

SRC,HLX,CASP8… 

immune system 

development, viral 

process 

Green 45 AXIN1,CAPN1,EWSR1 NA 

grey 1308 MTG1,SPRY1,MDM2, 

ADAR,FABP1,MEN1… 

cell death, apoptotic 

process, cell 

proliferation, 

metabolic 

Red 33 OLFM1,HMGB2,TRADD, 

MYO1B,CAT,SPAST 

catabolic process 

Turquoise 435 RPS27A,PFN1,RPL23, 

UBA52,CCL5,USF1 

immune response, 

viral process 

Yellow 65 STK4,RSPO3,MITF, 

DAB2,CTNNB1,SMAD3 

Wnt signaling 

pathway, cell death, 

apoptosis, immune 

system 

 



Table 3: Genes significantly associated with survival time from module “yellow” 

Modulegenes coef exp(coef) se(coef) z Pr(>|z|) 

SLC43A2 0.2446  1.2770  0.0617  3.9643  7.36E-05 

FAU 0.5348  1.7072  0.1650  3.2416  0.0012  

DAB2 -0.2460  0.7819  0.0783  -3.1410  0.0017  

COL5A1 -0.2177  0.8043  0.0771  -2.8253  0.0047  

ZCCHC2 -0.0891  0.9147  0.0323  -2.7572  0.0058  

ISY1 0.1563  1.1692  0.0574  2.7245  0.0064  

WDR1 -0.2144  0.8070  0.0845  -2.5382  0.0111  

DOCK10 -0.1230  0.8843  0.0491  -2.5052  0.0122  

C9orf142 0.2126  1.2369  0.0853  2.4931  0.0127  

SH3BP4 -0.1579  0.8539  0.0648  -2.4363  0.0148  

MRPS16 0.4509  1.5698  0.1882  2.3963  0.0166  

ALDH2 -0.0784  0.9246  0.0367  -2.1359  0.0327  

UBE2H -0.2403  0.7864  0.1203  -1.9972  0.0458  

MAEA 0.1293  1.1380  0.0692  1.8685  0.0617  

CD58 -0.0660  0.9361  0.0358  -1.8440  0.0652  

CITED2 -0.0691  0.9332  0.0402  -1.7214  0.0852  

BNIP3L -0.0776  0.9253  0.0462  -1.6804  0.0929  

coef: coefficient 
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