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Voltage-gated Cav1.2 calcium (Ca2+) channels are expressed 
in a variety of tissues where they serve important physi-
ological functions. In nerve cells, they are predominantly 
expressed on the cell body and spines where they shape 
neuronal firing and support Ca2+-dependent gene tran-
scription processes (Lichvárová and Lacinová 2015; Ortner 
and Striessnig 2016). In the heart, they supply Ca2+ influx 
that activates type 2 ryanodine receptors, allowing rapid 
mobilization of the sarcoplasmic reticulum Ca2+ store and 
the increase in myoplasmic Ca2+ concentration that trig-
gers contraction. In neuroendocrine cells, they support an 
excitation-secretion process that account for the release of 
a number of hormones and neurotransmitters. Finally, the 
essential role of Cav1.2 channels is further exemplified by 
their implication in a number of pathophysiological condi-
tions, essentially linked to an alteration of the channel protein 
expression and function (Zamponi et al. 2015). 

The α2δ subunit is an integral component of the chan-
nel complex, which is essential for cell surface trafficking 
and functional expression of the Cav pore-forming subunit 
(Dolphin 2012; Geisler et al. 2015). While α2δ is the product 
of a single gene, it undergoes a number of post-translational 
modifications that have important consequences on the fate 
and behavior of the protein. First, a proteolytic cleavage 
generates α2 and δ peptides, which remain associated by 
disulphide bonds. Second, a glycosylphosphatidylinositol 
(GPI) moiety is attached to the C-terminal region of the 

δ domain, and contributes to the anchoring of the protein 
to the plasma membrane (Davies et al. 2010). Third, α2δ is 
extensively glycosylated, which accounts for about a third 
of its molecular weight (Marais et al. 2001). However, 
the functional role of α2δ glycosylation remains largely 
unknown.

Asparagine (N)-linked glycosylation, which refers to 
the enzymatic attachment of glycan moieties to newly syn-
thetized proteins, has emerged as an essential mechanism 
controlling ion channel function (Lazniewska and Weiss 
2014). For instance, N-linked glycosylation of Cav1.2 and 
Cav3.2 channels is necessary for effective surface trafficking 
and functional expression of the channel protein (Weiss et 
al. 2013; Park et al. 2015; Ondacova et al. 2016), and more 
generally affects expression of other ion channel families 
(Penuela et al. 2014). In a recent study published in the 
Journal of Biological Chemistry, Tétreault and colleagues 
assessed the role of asparagine-linked glycosylation on the 
trafficking of α2δ1 and its consequence on Cav1.2 channel 
function (Tétreault et al. 2016). In order to assess to role of 
N-glycosylation in the trafficking of α2δ1 to the cell surface, 
the authors used site-directed mutagenesis to eliminate 
consensus N-glycosylation sites (N-X-S/T) by replacing 
the asparagine residue (N) to a glutamine (Q). Expression 
of glycosylation-deficient α2δ1 mutants in HEK 293 cells 
revealed that glycosylation at some specific loci is essential 
for surface expression of the protein. For instance, glycosyla-
tion at asparagine N633 was found essential for expression of 
α2δ1 at the cell surface, and consistent with the role of α2δ1 in 
the functional expression of Cav1.2 channels, L-type currents 
were abolished. In contrast, while disruption of glycosylation 
at asparagine N812 resulted in a 50% decrease of the surface 
expression of α2δ1, the L-type current density was not dra-



240 Lazniewska and Weiss

matically affected. Analysis of multiple mutant combinations 
also revealed a less essential implication of some of the other 
glycosylation loci in the expression of α2δ1. Altogether, the 
authors demonstrated that N-glycosylation of α2δ1 at some 
specific loci is essential for the biogenesis and surface expres-
sion of the protein, and influences functional expression of 
the Cav1.2 channel, but stopped short in demonstrating the 
implication of α2δ1 glycosylation in the surface expression 
of the Cav1.2 channel protein. 

The novel and important findings of Tétreault and col-
leagues raise interesting questions about the role of α2δ1 
glycosylation in the functioning of the calcium channel 
complex. Alteration of the L-type Ca2+ conductance upon 

expression of the glycosylation-deficient α2δ1 subunit may 
result either from a decreased surface expression of the 
Cav1.2 channel protein, or from an alteration of the func-
tioning of the channel (Figure 1). Previous reports indicated 
that glycosylation at asparagines N136 and N184 influence 
functional expression of Cav2.2 channels (Sandoval et al. 
2004). In the study by Tétreault and colleagues, these sites 
did not play a role in modulating surface expression of 
α2δ1 suggesting a direct action on the functioning of the 
channel protein independently of the surface trafficking of 
the channel. It is noteworthy that the N348 locus is located 
in the VWA domain that contributes to the interaction of 
α2δ1 with the Cav subunit (Gurnett et al. 1997; Wu et al. 

Figure 1. Modulation of Cav1.2 channel by α2δ1-dependent glycosylation. Glycosylation of α2δ1 controls functional expression of Cav1.2 
channels via two distinct mechanisms: (1) a trafficking-dependent pathway that involves the chaperone role of α2δ1 in the sorting of 
the channel to the cell surface (middle panel); and (2) a trafficking-independent regulation mediated by the direct modulation of the 
channel gating at the surface (bottom panel). 
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2015). Therefore, it is likely that glycosylation of α2δ1 plays 
a role in the interplay with the channel protein. In addition, 
a number of glycosylation sites surround the molecular 
determinants of antiepileptic/analgesic gabapentin drug 
binding onto α2δ1 (Marais et al. 2001; Field et al. 2006) and 
may have important influence on the pharmacology of the 
calcium channel.

Overall, the findings of Tétreault and colleagues provide 
novel insights into the molecular biology of α2δ1, and estab-
lish glycosylation as a key post-translational modification 
in regulating functional expression of the calcium channel 
complex. Considering that expression of α2δ1 was found 
altered in a number of pathological conditions (Bauer et al. 
2009; Lana et al. 2014; Nieto-Rostro et al. 2014; D’Arco et 
al. 2015), and that glycosylation has been reported to sup-
port glucose-dependent increase of ion channel expression 
(Orestes et al. 2013; Weiss et al. 2013), the notion that the 
expression of α2δ1 is largely influenced by its degree of gly-
cosylation may have important pathological implications, 
for instance in the development of painful neuropathy that 
arise from diabetes. Further study will certainly uncover 
some deeper physiological and pathological implications of 
the glycosylation of α2δ1.
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