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Abstract. In multicellular organisms, both health and disease are defined by means of communica-
tion patterns involving the component cells. Despite the intricate networks of soluble mediators, 
cells are also programed to exchange complex messages pre-assembled as multimolecular cargo of 
membranous structures known as extracellular vesicles (EVs). Several biogenetic pathways produce 
EVs with different properties able to orchestrate neighboring cell reactions or to establish an envi-
ronment ripe for spreading tumor cells. Such an effect is in fact an extension of similar physiologi-
cal roles played by exosomes in guiding cell migration under nontumoral tissue remodeling and 
organogenesis. We start with a biological thought experiment equivalent to Bénard’s experiment, 
involving a fluid layer of EVs adherent to an extracellular matrix, in a haptotactic gradient, then, we 
build and present the first Lorenz model for EVs migration. Using Galerkin’s method of reducing 
a system of partial differential equations to a system of ordinary differential equations, a biological 
Lorenz system is developed. Such a physical frame distributing individual molecular or exosomal type 
cell-guiding cues in the extracellular matrix space could serve as a guide for tissue neoformation of 
the budding pattern in nontumoral or tumoral instances.
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Introduction

Communication patterns play a vital role in multicellular 
organisms because they define the healthy and diseased 
states of these organisms, through communication patterns 
involving the component cells. Despite the fact that soluble 
mediators form intricate networks, cells are also programed 
to transmit complex messages, which are pre-assembled as 
a multimolecular cargo of membranous structures named 
“extracellular vesicles” (EVs). EVs with various properties 
are produced by an array of biogenetic pathways. These 

EVs can induce neighboring cell reactions or establish an 
environment favorable for tumor cells and their uncon-
trolled expansion. This effect is actually an extension of 
similar physiological roles plated by exosomes in guiding 
cell migration under nontumoral tissue remodeling and 
organogenesis. Accordingly, there is increasing support that 
vesicle trafficking, including the release of EVs, is a highly 
important process in tumorigenesis and embryogenesis 
(Helfrich 1973; Lipowsky and Sackmann 1995; Kraus et al. 
1996; Prost and Bruinsma 1996; Durand et al. 1997; Cantat 
and Misbah 1999a,b; Kern and Fourcade 1999; Seifert 1999; 
Sukumuran and Seifert 2001).

In the field of cell’s biology, we call vesicles those small 
bags wrapped in a membrane forming part of eukaryotic 
cell organelles. These sacs help to transport and absorb 
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proteins, enzymes or meet other needs of the cell. Inside the 
membrane bag of a vesicle, there are macromolecules which 
require the ability to move outside the cell walls. The mem-
brane encircling the bag merges with the outer wall of the 
cell to allow such macromolecules to pass through the wall. 
The vesicles are important parts of the human cells, although 
they are also found in other multicellular organisms.

Cells found in humans, plants and animals use a variety 
of types of vesicles, depending on the type of cell and its 
specific intended function. For example, one type of vesi-
cles, lysosomes, are necessary for the process of digestion. 
Lysosomes contain enzymes that breakdown food cells. 
With food absorption, a lysosome vesicle bonds to the food 
holding cell and releases enzymes by a process called phago-
cytosis. These enzymes break down food cells into smaller 
parts that can be better absorbed by other cells. 

Secretory vesicles are frequently associated with nerve 
cells in humans or animals. Their membranes sacs contain 
neurotransmitters. Nervous system through hormonal 
signals triggers these components. Through the process of 
exocytosis, the secretory vesicle’s outer membrane adheres 
to the nerve terminal and releases neurotransmitters in the 
area of the nerve endings, known as the synaptic cleft. Neu-
rotransmitters carry information from one nerve terminal 
to the next, across the entire central nervous system, way 
up to the brain. 

Vesicles, in their role as cellular mechanism are internally 
appointed for transport, uptake and storage of numerous im-
perative bodily functions. Without these tiny bags wrapped 
in membranes, cells could not make the exchange of mate-
rials necessary to maintain their healthy development and 
other crucial processes. In short, with no vesicles, humans 

and other multicellular organisms could not exist, because 
the essential cellular chemical processes would have no other 
method to exchange key materials.

Since there is increasing support that vesicle trafficking, 
including the release of EVs, is a highly important process 
in tumorigenesis, embryogenesis and tissue remodeling, in 
this work we present an extensive discussion on the EVs 
convection in haptotaxis with hydrodynamical dissipation 
(i.e. a novel mechanism for vesicle migration). 

Materials and Methods

Vesicles are closed membranes floating in an aqueous so-
lution (see Fig. 1). These membranes serve as an efficient 
permeability barrier. The vesicles mimic one of the most 
primitive and mechanically flexible dividing interfaces 
between the inside and the outside of a cell. Generally, the 
fluid enclosed by the membrane is incompressible in order 
that the vesicle evolves at a constant volume. Moreover, the 
membrane exchanges no phospholipid molecules with the 
solution; as a result its area remaining constant as time passes. 
Helfrich (1973) described very well the vesicle’s bending 
energy in its equilibrium state, which is compatible with the 
constraints above, i.e. constant volume and area. Even if the 
model is relatively simple it produces a variety of equilibrium 
profiles, such as, discocytes (bearing resemblance with red 
blood cells), stomatocytes, as well as forms presenting higher 
topologies (such as n-genus torus) that have been also ob-
served experimentally (Lipowsky and Sackmann 1995). We 
identify works studying alignments of vesicle in shear flows 
(Kraus et al. 1996), fluctuations out of equilibrium (Prost and 
Bruinsma 1996), lift forces (Cantat and Misbah 1999; Seifert 
1999, Sukumuran and Seifert 2001), migration of vesicle in 
the proximity of a substrate (Durand et al. 1997; Cantat and 
Misbah 1999) or in gravity fields (Kern and Fourcade 1999) 
and also vesicle tumbling (Biben and Misbah 2002). One 
may note several recent experiments dealing with vesicle 
migration (Nardi et al. 1999; Lortz et al. 2000; Abrakarian 
et al. 2001; Abrakarian et al. 2002).

Considering the vesicle migration, we acknowledge it 
involves hydrodynamical dissipation in the neighboring fluid 
as well as inside the vesicle, and, in principle, between the 
two mono-layers which may glide with respect to each other. 
Furthermore, during motion on the substrate the dynamics 
of a vesicle may be restricted not only by the hydrodynami-
cal flow but also by mechanisms of breaking and restoring 
of bonds on the substrate. It is obvious that the slowest 
mechanism limits the motion. Here we focus on a situation 
where hydrodynamics are the limiting factors and we give 
out dissipation associated with bonds on the substrate.

We consider a vesicle which is initially adhering on 
a flat surface. An adhesion gradient is considered along the 

Figure 1. Schematic view of a vesicle emphasizing its microscopic 
structure: a bilayer of phospholipidic molecules. Ladh, the adherence 
length of the membrane.
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substrate. The vesicle moves in the direction of increasing 
adhesion energy (see Fig. 2) – it is named haptotaxis (a mo-
tion induced by an adhesion gradient).

A highly permeable vesicle can be pulled in a fluid without 
any resistance (and without an inner area change), whereas 
an impermeable one would feel a drag force. The assumption 
of local impermeability is legitimate. This entails that the 
fluid velocity at the membrane is equal that of the membrane 
itself (Cantat et al. 2003).

On a vesicle’s scale (R ~ 10 µm) and for the expected 
velocities (V ~ 1 µm/s), dynamics are fully dominated by 
dissipative processes. The energy added is instantly dis-
sipated in various degrees of freedom. Local dissipation 
due to molecular reorganization, characterized by Leslie’s 
coefficient, is negligible in comparison to hydrodynamics 
modes (Brochard and Lennon 1975).

If dissipation is dominated by bulk effects, as shown in 
Landau and Lifshitz (1987) we are in the position to write 
down the basic governing equations for convective vesicles 
in a geometry depicted in Fig. 3, since it was proved that 
the velocity field obeys the Stokes equations (Cantat et al. 
2003). 

In an original atmospheric system, the non-even distri-
bution of ascending water droplets is determined by the 
interplay between solar energy-induced thermal gradients, 
thermal diffusivity, friction, and gravity. Ultimately, the 
mathematics of this model shapes the umbrella-like or bud-
ding appearance of structures like cumulonimbus clouds. 
This model can better or uniquely describe those types of 
structural dynamics not explained under fractal, simple/
linear and several other types of models.

Acknowledging that similar patterns occur in various 
biological spaces, we think that the same mathematical 
determinism can be ascribed. Thus, some histoarchitectural 
prototypic structures, like the capillary sprouting, embryo-
logic organ, or even tumor buds of some types of cancer 
lesions might be in fact sculpted in that shape because gra-
dients of molecular cues called morphogens can be deployed 

within the same manner water droplets can organize within 
nascent clouds.

Assuming that this organization also applies in biological 
systems, and that the EVs release can be considered among 
various processes organizing the budding tissue pattern, we 
think that the Lorenz model (Lorenz 1963, 2005) can govern 
their dynamics too. EVs would be particularly interesting 
as controllers of the tissue shape specification because they 
can include enzymatically active components (not found 
in conventional molecular morphogens), and thus might 
actively interact with the extracellular matrix (ECM) fib-
ers within their migration. Deployment of certain matrix 
degrading enzymes (MDEs) by EVs can modify this space 
while diffusing (event not produced by simple morphogens, 
attractive chemokines or repulsive semaphorins). This 
activity changes the topography of the ECM and creates 
spatial gradients directing the migration of subsequent 
EVs by haptotaxis – a mechanism better described for cell 
migration. 

Let us consider the following thought biological experi-
ment, equivalent to the Bénard experiment: a fluid layer of 
extracellular vesicles adherent on an ECM, in a haptotactic 
gradient. The fluid layer presents an unstable stratification 
of the potential density in a field of forces: the dense fluid 
is placed in front of the less dense one. We assume that in 

Figure 2. Stationary vesicle profiles are depicted. The vesicle is 
moving from the left (smaller adhesion) to the right (stronger 
adhesion); a few discretization points are represented and the 
arrow allows following one of these at three successive times. 
One can observe here the rolling and sliding components of the 
vesicle’s motion.

Figure 3. Convective extracellular vesicles (EVs) geometry. A fluid 
layer of thickness d of EVs, adherent on an extracellular matrix 
(ECM), is subjected to a gradient of concentration, where ∆C = C1 
– C0 > 0 is the difference of concentration between the front and 
back boundaries of the fluid layer.
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the basic state the layer of fluid of thickness d is subjected 
to a gradient of concentration
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with the fluid at rest and a non-perturbed distribution of 
concentration, belongs to the thermodynamic branch, which 
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(∆C ≠ 0) with the equilibrium state (∆C = 0) (Fig. 3).

We examine the evolution of a concentration fluctuation 
θ around the non-perturbed concentration profile C0(z).

Two dissipative processes tend to maintain the fluid at 
rest:
–  friction (motion amortization through viscosity);
–  ECM degradation subsequent to MDE’s activity allowing 

vesicle trespassing – which lowers the concentration of 
the ECM, thus diminishing the forward, or advancing 
force.
The instability cannot be developed unless the EV is ac-

celerated enough to overcome the effect of these dissipative 
processes. The gradient of concentration β which is the 
control parameter of this instability has to surpass a critical 
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With these approximations, the system of Eqs. (2a–c) 
leads to the Boussinesq type system of equations (Manneville 
1991; Schuster 1995)
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where  is the perturbed density 
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Eq. (9a) represents the incompressibility condition for the fluid. Let us note that the Boussinesq 

system of equation has been used for the first time for water waves, taking into account the 

vertical structure of the horizontal and vertical flow velocity. This resulted in non-linear partial 

differential equations, called Boussinesq-type equations, which incorporate frequency dispersion 

(as opposite to the shallow water equations, which are not frequency-dispersive) (Boussinesq 

1871; Johnson 1997). 

 Convection occurs in the fluid layer when the forward, or advancing force, resulted from 

energy expansion, surpasses the viscous forces. We may define now a Rayleigh type number  
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The density perturbation satisfies, according to Eq. (7) 
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Replacing Eqs. (12) and (13) in Eq. (11), and taking into 
account Eq. (1), we get a biological Rayleigh number
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where  = / 0 is the cinematic viscosity. For the Bénard convection, the biological Rayleigh 

number plays the part of a control parameter. The convection occurs for R > Rcritical. Most of the 

time, R is controlled by , the gradient of concentration.  

Within a biological context, g can be specified by polar/linear topography of semaphorins 

or/and chemokines, signals typically creating stable gradients to which EVs can respond. 

 We choose as reference state the rest stationary state (vS = 0), for which the last two 

equations in the system of Eqs. (9a–c) reduce to 
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where ẑ is the versor of the vertical direction. We assume pressure and concentration varies only 

along the vertical direction, due to the geometry of the experiment. For concentration, the 

boundary conditions read C(x,y,0) = C0; C(x,y,d) = C1. Integrating Eq. (15b) with these 

boundary conditions, it results that, in the stationary reference state, the profile of the 

concentration in the vertical direction is linear 
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with , the gradient of concentration. Replacing Eq. (16) in Eq. (15a) and integrating, we get 
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The characteristics of the system in this state are independent of the kinetic coefficients  and  

which appear in Eqs. (9a–c). We study the stability of the reference state using the small 

perturbations method. The perturbed state is characterized by 
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The characteristics of the system in this state are independ-
ent of the kinetic coefficients η and λ which appear in Eqs. 
(9a–c). We study the stability of the reference state using 
the small perturbations method. The perturbed state is 
characterized by
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As can be seen from Eqs. (18a–d), the perturbations are functions of coordinate and time. 

Replacing Eqs. (18a–d) in the evolution equations of the Boussinesq approximation equations 

(Boussinesq 1871; Johnson 1997) (9a–c) and taking into account Eq. (16) and Eq. (17), we get, 

in the linear approximation, the following equations for the perturbations 
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where Pr = /K is the biological Prandtl number, and R the biological Rayleigh number. 

 Beyond the instability threshold (R > RC), the reference state becomes unstable, with the 

occurrence of convection rolls. We assume they are parallel, thus the speed vector will always be 
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We recognize the system of equations (30) as the biological 
Lorenz system. The standard Lorenz systems and its funda-
mental properties are presented in Appendix A.

In Figs. 4–10, the trajectories, time evolutions, phase „por-
traits” and Fourier transforms for different parameter values 
of the biological Lorenz system are given. It results that, 
by increasing the r parameter, a complex chaotic regimes 
succesion with certain „windows” of periodicity occurs.  

Figure 4. 3D, 2D phase pattern and time evolution for r = 80, b = 0.15.

Figure 5. 3D, 2D phase pattern and time evolution for r = 100, b = 0.19.
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Figure 6. 3D, 2D phase pattern and time evolution for r = 106, b = 0.06.

Figure 7. 2D phase “portrait”, time evolution and Fourier transform for r = 416, b = 0.067.

Figure 8. 2D phase “portrait”, time evolution and Fourier transform for for r = 403, b = 0.067.
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The limit cycle appears through an inverse sub-harmonic 
cascade and it loses its stability due to a new chaotic „win-
dow” intermitent transition. 

We show in Fig. 11 the Lyapunov exponent map for σ = 1 
of the biological Lorenz system (the light points coordinates 
represent the values pair (x, y) = (b, r) for which the chaotic 
regime probability is high).

All of these denote the complexity of extracellular vesicles 
convection in haptotaxis with hydrodynamical dissipation.

Results and Discussion

The main results of the present paper are as follows:
1)  we build the first Lorenz model for extracellular vesicles 

migration;
2)  in Sukumuran and Seifert (2001) and similar other refer-

ences, it has been shown that EVs under shear flow close 

to a substrate behave in very much the same way as that 
found in two dimensional simulations, so we are confident 
that the 2D assumptions captures the essential features of 
the 3D EVs;

3) different control parameter values for the Lorenz system 
can create shape distributions similar to the cordonal 
appearance of fingerprints (see Fig. 12A), or complex 
skin tissue tiles like scale appendages in the amphibian 
covering (see Fig. 12B); Fig. 12 – Bénard-Rayleigh model 
patterns representative for biological instances: A) for 
fingerprint like distribution of skin cells, B) for fish or 
amphibian scales;

4) the biological thought experiment equivalent to Bénard’s 
experiment, involving a fluid layer of extracellular vesi-
cles adherent to an extracellular matrix, in a haptotactic 
gradient can be checked experimentally today to a high 
degree of accuracy. We think that suitable test systems 
would be the embryological ones (i.e. the development 

Figure 9. 2D phase “portrait”, time evolution and Fourier transform for r = 401, b = 0.067.

Figure 10. 2D phase “portrait”, time evolution and Fourier transform for r = 380, b = 0.067.
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of branched vessels in membranes – avian eggshell mem-
branes, serous membranes of the peritoneal cavity; or the 
budding development of lung alveoli, or of fingerprints), 
and, similar, inflammatory ones (i.e. the emergence of 
neoangionetic vessels driven by inflammatory proximi-
ties) – all of which apparently start as point like spots 
displayed in a comb-like appearance along a rectilinear 
or arched origin;

5) we analyze the problem of EVs migration in haptotaxis, 
though most of the reasoning applies to chemotaxis 
(migration of cells biased towards a gradient of diffusible 
MDEs) as well as to a variety of driving forces – all of 
which include the possibility to specify an active param-
eter value within the model.
The resulted system of equations exhibits complex be-

havior, hard to control, the two occurring convective rolls: 
either going in one direction, or in the opposite one – means 
patterning the EVs spreading. Such a model shows the 
profoundly nonlinear property of the biological systems. In 
such context the collective type effect becomes dominant 
with respect to the individual one. 
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2007–2013. Figure 13. A pitchfork bifurcation with two fixed points, C+ and C– 

that correspond with the patterns from the Benard experiment.

Figure 11. Lyapunov exponent map for σ = 1 of the biological 
Lorenz system.

Figure 12. Bénard-Rayleigh model patterns representative for 
biological instances: fingerprint like distribution of skin cells (A) 
and fish or amphibian scales (B).
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Appendix A – The standard Lorenz system and its prop-
erties 

Let us consider the evolution equations of the Lorenz system 
(Lorenz 1963; Jackson 1992): 
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From the fact that the parameters b, r, and σ are positive 
results that the first eigenvalue, ω1 = –b is negative for any 
parameters values. The other two eigenvalues, ω2 and ω3, 
satisfy the relations:
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If the fixed points (A.8) will be subjected to a Hopf bifurca-
tion, then, for a value of the control parameter rH > 1, two 
conjugated complex purely imaginary eigenvalues will exist 
at the bifurcation point. By replacing ω = iβ in (A.10) we 
obtain 
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By separating the real from the imaginary part in (A.11), the following system results 
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From Eq. (A.12a) it results that 2 = b(  + r). By replacing this value in Eq. (A.12b), we 

conclude that the Hopf bifurcation takes place at  
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For this value of the control parameter, the two fixed points C+ and C– lose their stability in a 

subcriticall Hopf bifurcation. Beyond the bifurcation point, all of the periodical orbits are 

unstable and the system displays a chaotic behavior. Further increasing the control parameter r 

value, an intricate succession of chaotic regimes follows, with certain periodicity windows. The 

limit cycle appears through an inverse subharmonic cascade and loses its stability through a 

tranzition by intermittences towards a new chaotic window. All of these facts are presented in 

detail in (Sparrow 1982; Jackson 1992). 
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For this value of the control parameter, the two fixed points 
C+ and C– lose their stability in a subcriticall Hopf bifurcation. 
Beyond the bifurcation point, all of the periodical orbits are 



298 Aursulesei et al.

unstable and the system displays a chaotic behavior. Further 
increasing the control parameter r value, an intricate suc-
cession of chaotic regimes follows, with certain periodicity 
windows. The limit cycle appears through an inverse subhar-
monic cascade and loses its stability through a tranzition by 
intermittences towards a new chaotic window. All of these facts 
are presented in detail in (Sparrow 1982; Jackson 1992).
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