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This study aimed to unravel the molecular mechanism of oral squamous cell carcinoma (OSCC). With microarray dataset 
GSE30784, differentially expressed genes (DEGs) were identified between OSCC and control samples. The DEGs overlapped 
with genes obtained from online database MalaCards were determined as OSCCDEG, followed by Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis. A total of 5177 up-regulated and 6081 down-regulated DEGs were iden-
tified between OSCC and control. Out of the DEGs, 451 genes were overlapped with the 704 genes gained from MalaCards 
and regarded as “OSCCDEG”. Up-regulated OSCCDEG were associated with cell cycle pathway, while down-regulated 
OSCCDEG were linked to ErbB pathway. ANGPT1, ANGPT2 and 3 hub proteins (EGFR, HSP90AA1, RB1) in the PPI net-
work were associated with the survival rates of several tumors. The largest network module with the hub protein EGFR was 
associated with positive regulation of cell communication. The second largest module with the hub node FN1 was related 
to angiogenesis. For the third network module in connection with DNA metabolism, the hub protein was PCNA. ErbB and 
cell cycle pathways were crucial for OSCC. EGFR, FN1, PCNA, ANGPT1 and ANGPT2 might be potential biomarkers for 
OSCC. These findings help provide guidelines for treating OSCC.
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As the most frequent tumor arising from oral cavity, oral 
cancer is of remarkable public health importance with an age-
standardized incidence rate of 5.5 per 100, 000 in male [1]. Oral 
squamous cell carcinoma (OSCC) accounts for more than 90% 
of oral cancer. OSCC results from the unlimited multiplica-
tion of squamous cells lining the oral cavity and oropharynx 
[2]. The prognosis of patients with OSCC has remained poor 
for the last 20 years with an overall 5-year survival rate of 
50%, largely due to delayed diagnosis and progression of the 
tumor [3, 4]. Therefore, there is an urgent need to unveil the 
molecular mechanism of OSCC, and identify possible mo-
lecular biomarkers predictive of OSCC for development of 
novel potent therapies.

Increasing studies are ongoing on the topic of the molecu-
lar mechanism of OSCC. For instance, it has been found that 
miRNA-181a (miR-181a) could suppress the growth of OSCC 
via inhibiting the expression of K-ras [5]. In a retrospective 

study enrolling 163 cases with OSCC, prospero homeobox 1 
and forkhead box C2 were reported to be significantly cor-
related with angiogenesis and lymph-angiogenesis, which 
is critical for the progression of OSCC [6]. Furthermore, 
a  genome-wide study showed that the gene Talin-1(TLN1) 
was overexpressed in OSCC, and could serve as a potential 
target for treating OSCC [7]. In addition to important genes, 
a number of signaling pathways have been identified to play 
important roles in OSCC. It has been reported that in OSCC, 
the tumor-promoting phosphoinositide 3-kinase (PI3K) /v-akt 
murine thymoma (AKT) pathway in OSCC could be activated 
by the mutation of phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA) [8]. Parikh et al. 
have found that in OSCC cell lines, the ATR-CHEK1 pathway 
is up-regulated and appears to enhance the sensitivity of OSCC 
patients to the ionizing radiation treatment [9]. A previous 
study using microarray dataset GSE30784 has screened dif-
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ferentially expressed genes (DEGs) between OSCC and control 
samples with the help of GenePlus software. It then identified 
potential biomarkers from the screened DEGs using the For-
ward and stepwise logistic regression for distinguishing OSCC 
from controls [10]. However, important questions regarding 
the precise biological function of DEGs involved in OSCC 
and the genes associated with the prognosis of the disease 
remain unanswered.

To address these issues, this study performed a secondary 
study of the microarray dataset GSE30784. Following the 
DEGs identification, the study gained OSCC-related genes 
from online database MalaCards. Overlapped DEGs with 
genes from MalaCards were identified to reduce the false 
positive rate. Apart from that, we underscored the significant 
signaling pathways involved in OSCC and uncovered the criti-
cal genes associated with the prognosis of patients with OSCC 
using online platform PPISURV. Protein-protein interaction 
(PPI) network was constructed as well, followed by network 
module analysis.

Materials and methods

Microarray data preprocessing. Gene expression profiling 
dataset GSE30784 [10] based on HG-U133-Plus-2 platform, was 
retrieved from Gene Expression Omnibus (GEO) database. It 
included 167 OSCC, 17 dysplasia and 45 normal oral tissues 
samples. Specifically, OSCC samples were extracted from 167 
patients with first primary OSCC between December 1, 2003 
and April 17, 2007 at the University of Washington Medical 
Center, Harbor-view Medical Center and the VA Puget Sound 
Health Care System in Seattle, Washington. Dysplasia samples 
were extracted from 17 patients with diagnosed dysplastic le-
sions at these same medical centers during the same period. 
Control samples were extracted from patients who had tonsillec-
tomy or oral surgery for treatment of diseases other than cancer, 
such as obstructive sleep apnea, at the same medical center dur-
ing the same time period. The robust multiarray average (RMA) 
algorithm[11] of the affy package in R language was utilized for 
transformation of the raw data in CEL profiles into expression 
data and normalization of the gene expression data.

Screening of DEGs. Linear Models for Microarray Analysis 
(LIMMA) package in R language is a specifically designed pack-
age for differential expression analysis of microarray data [12]. 
It was applied to identify DEGs between OSCC and control 
samples. Adjusted P-value < 0.05 was set as the threshold for 
DEGs identification. We screened 5177 up-regulated DEGs and 
6087 down-regulated DEGs between OSCC and control samples. 
MalaCards is an integrated database of human maladies and 
their annotations, modeled on the architecture and strategy of 
the GeneCards database of human genes. It combined 44 data 
sources to generate a computerized card for each of 16919 human 
diseases [13]. We then retrieved 704 genes possibly related to 
OSCC from online database MalaCards. In order to reduce the 
false positive rate of DEGs between OSCC and control samples, 
we selected the overlapped genes between the DEGs screened 

by LIMMA package and 704 genes from MalaCards. These 
overlapped genes were defined as the genes related to OSCC 
(OSCCDEG), and used for further analyses in this study.

KEGG pathway enrichment analysis. The Database for 
Annotation, Visualization and Integrated Discovery (DAVID) 
is characterized by an systematic biological knowledgebase 
and analytic tools for functional annotation of genome-scale 
dataset [14]. In order to map OSCC onto biological metabolic 
pathways, DAVID was used to perform Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [15] enrichment analysis for 
these OSCCDEG obtained above. P-value < 0.05 was set as the 
strict cutoff after multiple testing correction with Benjamini-
Hochberg (BH) approach.

PPI network construction and PPISURV analysis. On-
line database The Search Tool for the Retrieval of Interacting 
Genes (STRING) covers 5214234 types of proteins from 1133 
organism species and was used to score the interactions be-
tween proteins by integrating genomic data, high-throughput 
experimental data, information of protein coexpressions and 
literature annotation [16].

In order to evaluate the interactions between OSCCDEG 
genes, the OSCCDEG list was submitted to the STRING da-
tabase, which selected protein pairs with interaction score ≥ 
0.4. A PPI network was built with these protein pairs selected. 
In the network, the degree of the protein node represented 
the number of interactions that a protein possessed. The hub 
proteins were defined as the protein with the highest degrees 
in the network.

The top 3 proteins with higher degree than other proteins in 
the network were selected, and the associations of the 3 proteins 
with the survival outcome of OSCC patient were then evaluated 
using online platform PPISURV [17]. PPISURV is a data-mining 
tool used to evaluate whether the expression of the input gene in 
40 datasets of tumor patients samples is significantly associated 
with survival rates of patients. Subsequently, the relationship 
of the input gene interactome with the survival rates-related 
genome of each tumor dataset was detected as well.

Identification and GO enrichment analysis of network 
modules. Network clustering analysis was performed to 
identify PPI network modules from the PPI network using 
clusterMaker plugin [18] from Cytoscape software. Markov 
cluster (MCL) [19] algorithm was used to assign proteins into 
different families according to known sequence similarity 
knowledge. For extracting the biological information from 
identified network modules, gene ontology (GO) [20] func-
tional enrichment analysis was performed using BinGo [21] 
plugin from Cytoscape software, followed by multiple testing 
correction with BH method (adjusted p-value < 0.05).

Results

Identification and KEGG pathway analysis of DEGs. Total 
5177 up-regulated DEGs and 6081 down-regulated DEGs 
were identified between the OSCC samples and the control 
samples by using LIMMA. Among the 704 genes gained from 
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MalaCards database, 302 were up-regulated, while 149 were 
down-regulated. Moreover, 451 DEGs were overlapped with 
the 704 genes, and were regarded as “OSCCDEG”.

The results of the KEGG pathway analysis for OSC-
CDEG showed that both up-and down-regulated genes 

were associated with tumor-related KEGG pathways. Spe-
cifically, up-regulated genes were predominately linked 
to cell cycle pathway (Table 1a), whereas down-regulated 
DEGs were primarily enriched in ERBB signaling pathway 
(Table 1b).

Table 1a. Top 10 KEGG pathways enriched with up-regulated OSCCDEG

KEGG PATHWAY Count of 
genes

Genes FDR

hsa05200:Pathways in 
cancer

68 E2F1, E2F3, PTGS2, PDGFA, MMP9, TGFB3, NFKB1, MMP2, PTEN, MMP1, TGFB1, TGFB2, CCNE2, 
AKT1, FOS, CCNE1, CDKN2A, SLC2A1, PIK3CA, TGFA, RARA, MYC, CHUK, AKT3, PRKCA, 
EGFR, HSP90AA1, SKP2, FADD, CDK6, RB1, CDK4, CDK2, VEGFB, VEGFC, HIF1A, JUN, VEGFA, 
LAMC2, XIAP, NFKBIA, IGF1R, PTK2, ITGAV, FN1, CSF1R, COL4A2, IL6, BMP2, COL4A1, EPAS1, 
IL8, TGFBR1, MET, ITGA2, BIRC5, ITGA3, BIRC2, STAT3, LAMA1, HSP90B1, CDKN1A, ITGA6, 
LAMA5, ETS1, BAX, ABL1, CRK

7.71E-29

hsa05222:Small cell lung 
cancer

31 E2F1, E2F3, XIAP, PTGS2, NFKBIA, NFKB1, PTEN, CCNE2, AKT1, CCNE1, PTK2, ITGAV, PIK3CA, 
MYC, CHUK, AKT3, FN1, COL4A2, COL4A1, SKP2, ITGA2, CDK6, ITGA3, RB1, CDK4, BIRC2, 
CDK2, LAMA1, ITGA6, LAMA5, LAMC2

1.74E-19

hsa04510:Focal adhesion 44 IBSP, CAV1, XIAP, PDGFA, TNC, ITGB4, PTEN, PXN, VCL, AKT1, IGF1R, PTK2, ITGAV, ILK, 
ITGB6, PIK3CA, ZYX, THBS1, AKT3, SPP1, FN1, PRKCA, EGFR, COL4A2, COL4A1, FLT1, MET, 
ITGA2, ITGA3, ITGA4, VAV2, BIRC2, VEGFB, VEGFC, LAMA1, CCND3, ITGA6, LAMA5, ITGA5, 
JUN, VEGFA, LAMC2, COL1A1, CRK

9.40E-19

hsa04110:Cell cycle 29 E2F1, E2F3, TGFB3, PRKDC, SFN, TGFB1, TGFB2, CCNE2, CCNE1, CDKN2A, RAD21, MCM7, 
CCNA2, MYC, CDC7, CDC6, CDK1, SKP2, CDK6, RB1, CDK4, CDC25C, CDK2, CDC25A, CDKN1A, 
CCND3, PCNA, BUB1B, ABL1

1.81E-12

hsa05219:Bladder cancer 17 E2F1, EGFR, E2F3, IL8, MMP9, RB1, CDK4, MMP2, MMP1, VEGFB, VEGFC, TYMP, CDKN1A, 
CDKN2A, VEGFA, THBS1, MYC

6.49E-11

hsa05212:Pancreatic cancer 21 E2F1, EGFR, E2F3, TGFBR1, TGFB3, CDK6, NFKB1, RB1, CDK4, STAT3, TGFB1, TGFB2, AKT1, 
VEGFB, VEGFC, CDKN2A, VEGFA, TGFA, PIK3CA, CHUK, AKT3

8.22E-11

hsa05220:Chronic myeloid 
leukemia

20 E2F1, E2F3, TGFBR1, TGFB3, NFKBIA, CDK6, NFKB1, RB1, CDK4, TGFB1, TGFB2, AKT1, CDKN1A, 
CDKN2A, PIK3CA, ABL1, CRK, MYC, CHUK, AKT3

1.48E-09

hsa04512:ECM-receptor  
interaction

21 IBSP, COL4A2, COL4A1, TNC, ITGB4, ITGA2, ITGA3, ITGA4, HMMR, LAMA1, CD44, ITGA6, 
ITGA5, LAMA5, ITGAV, ITGB6, LAMC2, COL1A1, THBS1, FN1, SPP1

1.37E-09

hsa04060:Cytokine-cy-
tokine receptor interaction

36 IL1R1, CCL2, PDGFA, CCR1, CXCL2, TGFB3, CXCR1, CCL7, TGFB1, IL10, TGFB2, TNFRSF11B, 
CXCR4, IFNG, IL1B, CSF1R, EGFR, IL18R1, IL6, BMP2, FLT1, IL8, TGFBR1, MET, IL6R, CCL11, 
VEGFB, INHBA, VEGFC, CCR7, TNFSF10, CCR5, CXCL13, CCR3, VEGFA, NGFR

3.94E-09

hsa05215:Prostate cancer 20 E2F1, EGFR, E2F3, HSP90AA1, PDGFA, NFKBIA, NFKB1, RB1, PTEN, CDK2, AKT1, CCNE2, 
CCNE1, IGF1R, CDKN1A, HSP90B1, TGFA, PIK3CA, CHUK, AKT3

2.44E-08

KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate

Table 1b. Top10 KEGG pathways enriched with down-regulated DEGs

KEGG PATHWAY Count of 
genes

Genes FDR

hsa05200:Pathways in cancer 21 AR, FGF7, FGFR3, BRAF, ERBB2, CYCS, PPARG, MLH1, RAF1, KIT, CTNNA1, WNT1, 
CDKN1B, KRAS, CDKN2B, MAPK3, NKX3-1, RARB, EGF, AKT2, APC

7.69E-06

hsa05213:Endometrial cancer 10 KRAS, BRAF, ERBB2, MAPK3, MLH1, RAF1, EGF, CTNNA1, AKT2, APC 3.91E-06
hsa04012:ErbB signaling pathway 11 CDKN1B, KRAS, ERBB4, BRAF, ERBB3, ERBB2, MAPK3, RAF1, RPS6KB1, EGF, AKT2 2.56E-05
hsa05223:Non-small cell lung cancer 9 FHIT, KRAS, BRAF, ERBB2, MAPK3, RAF1, RARB, EGF, AKT2 3.81E-05
hsa05215:Prostate cancer 10 AR, CDKN1B, KRAS, BRAF, ERBB2, MAPK3, NKX3-1, RAF1, EGF, AKT2 1.70E-04
hsa05221:Acute myeloid leukemia 8 KRAS, BRAF, MAPK3, PIM1, RAF1, RPS6KB1, KIT, AKT2 4.87E-04
hsa05219:Bladder cancer 7 FGFR3, KRAS, BRAF, ERBB2, MAPK3, RAF1, EGF 6.13E-04
hsa04910:Insulin signaling pathway 10 KRAS, SLC2A4, TSC1, BRAF, MAPK3, FASN, RAF1, RPS6KB1, RPS6, AKT2 2.93E-03
hsa05210:Colorectal cancer 8 KRAS, BRAF, MAPK3, CYCS, MLH1, RAF1, AKT2, APC 3.53E-03
hsa05218:Melanoma 7 FGF7, KRAS, BRAF, MAPK3, RAF1, EGF, AKT2 8.16E-03

KEGG: Kyoto Encyclopedia of Genes and Genomes; FDR: false discovery rate
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Table 2a. Relationship of 3 hub genes with clinical outcome of patients with tumors

Gene GEO accession GEO dataset Cancer Type GENE (Probe ID) P-value Effect Sign 
RB1 GSE26712 a gene signature predicting for survival in suboptimally 

debulked patients with ovarian cancer 
ovarian cancer 203132_AT 9.28E-04 Negative 

RB1 GSE2034 breast cancer relapse free survival breast cancer 211540_S_AT 1.90E-03 Positive 
RB1 GSE13876 survival related profile, pathways and transcription factors 

in ovarian cancer 
ovarian cancer 5050 1.17E-02 Negative 

RB1 GSE25065 validation cohort for genomic predictor of response and 
survival following neoadjuvant taxane-anthracycline 
chemotherapy in breast cancer 

breast cancer 203132_AT 4.48E-02 Positive 

RB1 GSE16181 human meningioma fixed tumour tissue meningioma 73 0.0451 Negative 
HSP90AA1 GSE3494 an expression signature for p53 in breast cancer predicts muta-

tion status, transcriptional effects, and patient survival 
breast cancer 214328_S_AT 0.00238 Negative 

HSP90AA1 GSE11121 the humoral immune system has a key prognostic impact 
in node-negative breast cancer 

breast cancer 214328_S_AT 0.00265 Negative 

HSP90AA1 GSE17536 metastasis gene expression profile predicts recurrence and 
death in colon cancer patients (moffitt samples) 

colon cancer 211968_S_AT 0.00432 Negative 

HSP90AA1 GSE1456 gene expression of breast cancer tissue in a large population-
based cohort of swedish patients 

breast cancer 210211_S_AT 0.00535 Negative 

HSP90AA1 GSE2034 breast cancer relapse free survival breast cancer 214328_S_AT 0.00575 Negative 
HSP90AA1 GSE17538 experimentally derived metastasis gene expression profile 

predicts recurrence and death in colon cancer patients 
colon cancer 211968_S_AT 0.0112 Negative 

HSP90AA1 GSE24450 183 breast tumors from the helsinki univerisity central 
hospital with survival information 

breast cancer ILMN_2373515 0.0128 Negative 

HSP90AA1 GSE10846 prediction of survival in diffuse large b  cell lymphoma 
treated with chemotherapy plus rituximab 

diffuse large b cell  
lymphoma 

211969_AT 0.0133 Positive 

HSP90AA1 GSE30929 whole-transcript expression data for liposarcoma liposarcoma 211969_AT 0.015 Negative 
HSP90AA1 GSE39671 expression data from untreated cll patients chronic lymphocytic 

leukemia 
211968_S_AT 0.0163 Positive 

HSP90AA1 GSE17705 endocrine sensitivity index validation dataset breast cancer 211969_AT 0.0332 Negative 
HSP90AA1 GSE30760 cervical cancer cervical cancer CG10833014 0.0361 Negative
EGFR GSE16181 human meningioma fixed tumour tissue meningioma 352 2.71E-10 Negative 
EGFR GSE25055 discovery cohort for genomic predictor of response and 

survival following neoadjuvant taxane-anthracycline 
chemotherapy in breast cancer 

breast cancer 201984_S_AT 6.28E-05 Negative 

EGFR GSE30929 whole-transcript expression data for liposarcoma liposarcoma 211607_X_AT 0.000485 Positive 
EGFR GSE25065 validation cohort for genomic predictor of response and 

survival following neoadjuvant taxane-anthracycline 
chemotherapy in breast cancer 

breast cancer 201983_S_AT 0.0017 Negative 

EGFR GSE10846 prediction of survival in diffuse large b  cell lymphoma 
treated with chemotherapy plus rituximab 

diffuse large b cell  
lymphoma 

201983_S_AT 0.00239 Positive 

EGFR GSE30682 search for a gene-expression signature of breast cancer local 
recurrence in young women 

breast cancer ILMN_1798975 0.00455 Negative 

EGFR GSE14764 a prognostic gene expression index in ovarian cancer ovarian cancer 211551_AT 0.00523 Negative 
EGFR GSE17538 experimentally derived metastasis gene expression profile 

predicts recurrence and death in colon cancer patients 
colon cancer 210984_X_AT 0.00532 Positive 

EGFR GSE22762 an eight-gene expression signature for the prediction of survival 
and time to treatment in chronic lymphocytic leukemia 

chronic lymphocytic 
leukemia 

201983_S_AT 0.00832 Negative 

EGFR GSE17536 metastasis gene expression profile predicts recurrence and 
death in colon cancer patients (moffitt samples) 

colon cancer 210984_X_AT 0.0113 Positive 

EGFR GSE19783 molecular characterization of breast cancer subtypes derived 
from joint analysis of high throughput mirna and mrna data 

breast cancer A_23_P215790 0.0126 Negative 

EGFR GSE13213 relapse-related molecular signature in lung adenocarcino-
mas identifies patients with dismal prognosis 

lung cancer A_23_P215790 0.0213 Negative 

EGFR GSE21653 a gene expression signature identifies two prognostic sub-
groups of basal breast cancer 

breast cancer 210984_X_AT 0.0383 Positive 

EGFR GSE18166 genome-wide profiling of astrocytic gliomas astrocytic gliomas 34391 0.0405 Positive 
EGFR GSE24080 maqc-ii project: multiple myeloma (mm) data set multiple myeloma 210984_X_AT 0.0446 Positive 
EGFR GSE17705 endocrine sensitivity index validation dataset breast cancer 201984_S_AT 0.0486 Positive

GENE (Probe ID): the probe identity of datasets in which expression of input gene is significantly associated with the clinical outcome of patients with tumor; 
Effect sign, indicate whether the input gene is positively or negatively associated with the clinical outcome of patients .
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By means of literature-mining, we found that up-regulated 
angiopoietin (ANGPT)-1 and ANGPT2 have been reported to 
be associated with prognosis of OSCC patients. ANGPT2 ex-
pression displayed marked difference (logFC = 1.124, adjusted 
p-value= 1.03e-20) between OSCC and normal samples, while 
the expression difference of ANGPT1 was relatively small 
(logFC = 0.204, adjusted p-value = 0.025), indicating that 
ANGPT2 might be a critical gene in OSCC.

PPI network and PPISURV analysis. The constructed PPI 
network contained 332 proteins encoding by OSCCDEG and 
1059 pairs of protein interactions. The top 3 proteins sorted 
by degree were epidermal growth factor receptor (EGFR, 
degree = 41), heat shock protein 90AA1 (HSP90AA1, degree 
= 41), retinoblastoma protein1 (RB1, degree = 35). Besides, 
there were direct links between ANGPT1 and integrin alpha-5 
(ITGA5), and between ANGPT2 and vascular endothelial 
growth factor A (VEGFA) (Supplementary Figure 1).

As shown in Table 2a, the result of PPISURV analysis de-
lineated that the 3 proteins were associated with the clinical 
outcome of patients with diverse tumors. Of note is that the 
expression of EGFR was significantly associated with the sur-
vival rates of patients in 16 gene expression datasets covering 
various tumors such as colorectal cancer, breast cancer and 
lung cancer. In 8 of the 16 gene expression datasets, EGFR was 
negatively correlated with prognosis of patients. In addition 
to that, interacted partner proteins of EGFR were remarkably 
overlapped with the survival rates-related genome of 14 tumor 
gene expression datasets (Table 2b).

Moreover, ANGPT2 was associated with prognosis of 
patients in 8 gene expression datasets. In 7 of the 8 gene expres-
sion datasets negative associations were observed. ANGPT1 
was associated with prognosis of patients in 10 datasets with 
negative associations observed in 4 datasets.

PPI network module identification and functional 
analysis. From the PPI network, three network modules were 
identified. Among the three modules, the largest module 
included 24 proteins and 42 pairs of protein interactions, 
in which EGFR was the hub protein (Figure 1) and was 
significantly associated with positive regulation of cell com-
munication according to the result of GO function analysis 

Figure 1. The largest network module with hub protein EGFR. White node 
represents protein encoded by up-regulated gene; Gray node represents 
protein encoded by down-regulated gene; a link represents each pairwise 
protein interaction with interaction score≥ 0.4.

Table 2b. Correlation of interacted partner genes of 3 hub genes with clinical outcome of patients with tumors

Gene Interaction source Number of partners Significant  
(p-value<0.05) hits

Best p-value

RB1 Reactome, HPRD, NCI_ NATURE, IntAct, PhosphoSitePlus 220 17 2.41E-06
EGFR Reactome, HPRD, NCI_ NATURE ,IntAct, PhosphoSitePlus, HumanCyc 1385 14 0.00015
HSP90AA1 Reactome, HPRD, NCI_ NATURE, IntAct 382 11 4.12E-08

Interaction source, interaction data source; Number of partners, the number of interaction partner genes of the input gene; significant hits: the number of 
tumor gene expression datasets with survival rates-related genome overlapped with genes that encoded interaction partner proteins; Best P-value, the minimum 
p-value of all p-values arising from datasets with overlapped genome; 

Figure 2. The second largest network module with hub protein FN1. White 
round node represents protein encoded by up-regulated gene; Gray node 
represents protein encoded by down-regulated gene; a link represents each 
pairwise protein interaction with interaction score≥ 0.4.
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(Table 3, adjusted P-value = 8.3e-5). As shown in Figure 2, the 
second largest module had 13 proteins and 16 pairs of protein 
interactions, with fibronectin1 (FN1) as the hub node. Throm-
bospondin (THBS1) was also included in the module. Genes 
involved in the module was significantly enriched in the GO 
function term, angiogenesis (adjusted P-value = 8.3e-5). The 
third one included 13 protein interaction pairs and 11 proteins 
among which the hub protein was proliferating cell nuclear 
antigen (PNCA) (Figure 3). The third network module was 
significantly related with DNA metabolic process (adjusted 
P-value = 6.8e-6).

Discussion

OSCC is linked to remarkable mortality and morbid-
ity, persecuting the health of people. In this study, 5177 
up-regulated DEGs and 6081 down-regulated DEGs were 
identified between OSCC and control samples. We gained 

704 genes related to OSCC from MalaCards database, out 
of which 302 were up-regulated, while 149 were down-
regulated. Furthermore, 451 DEGs overlapped with the 
704 genes were defined as “OSCCDEG”. Up-regulated OS-
CCDEG were significantly enriched in cell cycle pathway, 
while down-regulated OSCCDEGs were primarily associated 
with ERBB pathway. In the PPI network, 3 hub proteins 
were identified: EGFR1, RB1 and HSP90AA1.The result of 
PPISURV analysis showed that the 3 proteins were associ-
ated with the survival rates of several tumors. From the PPI 
network, three network modules were identified, followed 
by GO enrichment analysis.

EGFR, also termed ErbB-1, belongs to ErbB family and 
is the cell-surface receptor that binds to EGF. It has long 
been established that EGFR could serve as predictor for the 
prognosis of patients with OSCC [22]. Furthermore, a 2012 
report has found that overexpression of EGFR located on 
membrane and in cytoplasm might be closely associated with 
the prognosis of OSCC at early stage [23]. Similarly, in the 
study, the result of PPISURV analysis showed that the expres-
sion of EGFR was significantly associated with the survival 
rates of various types of tumors such as colorectal cancer, 
breast cancer and lung cancer. Besides, the involvement of 
EGFR in OSCC has been confirmed by other analyses, in 
which EGFR was hub node in the PPI network and the first 
largest module. Genes of the first largest module were linked 
to positive regulation of cell communication. Consistently, 
ErbB signaling pathway was associated with down-regulated 
OSCCDEG. These findings suggest that EGFR might par-
ticipate in modulating cell communication that affects the 
OSCC development.

Fibronectin1 encoded by gene FN1 is an important 
constituent of ECM that binds to integrin. It takes part in 
a diversity of activities such as cell adhesion, proliferation 
and differentiation [24]. Kaspar et al. have reported that 
deregulated expression of fibronectin was partly responsible 
for morphological alterations of tumors and involved in 
the development of carcinoma [25]. In OSCC, fibronectin1 
participates in regulating the migration and invasion of 
cancer cells [26], and could serve as a potential biomarker 
for this carcinoma [27]. Consistently, this study showed 
that FN1 was identified as a hub gene in the second largest 
network module extracted from the PPI network, which 
was closely associated with angiogenesis. These findings 

Table 3. GO biological processes significantly associated with 3 network modules

Module p-value Corrected
p-value

Number 
of genes

GO Biological Process Genes in test set

module 1 2.91E-13 2.86E-10 12 positive regulation of cell communication EGFR|IGF1R|ERBB4|ERBB3|RIPK1|ERBB2|LGALS1|TLR2|
TGFA|ADAM17|KIT|EGF

module 2 1.52E-07 8.38E-05 5 angiogenesis COL4A1|PDGFA|ITGA5|THBS1|FN1
module 3 2.25E-08 6.89E-06 7 DNA metabolic process CDC7|TYMS|CDC6|XPC|MCM7|MGMT|PCNA

GO, gene ontology

Figure 3. The third network module with hub protein PCNA. White 
round node represents protein encoded by up-regulated gene; Gray node 
represents protein encoded by down-regulated gene; a link represents each 
pairwise protein interaction with interaction score≥ 0.4.
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lead to a conclusion that FN1 might affect OSCC-related 
angiogenesis.

ANGPT1 and ANGPT2 were angiopoietins encoded by 
ANGPT1 and ANGPT2, respectively, both of which inter-
acts with TEK receptor tyrosine kinase and are involved in 
angiogenesis and vascular remodeling [28, 29]. Emerging 
studies have suggested that expression of ANGPT2 was re-
lated to the OSCC-related angiogenesis, vessel maturation, 
lymphangiogenesis and prognosis of patients with OSCC 
[30, 31]. Consistently, in the current study, ANGPT2 and 
ANGPT1 was identified DEGs for OSCC, and both were as-
sociated with prognosis of tumor patients according to the 
result of PPISURV analysis. Besides, interactions between 
ANGPT1 and ITGA5, and between ANGPT2 and VEGFA 
were observed in the PPI network. Moreover, in the second 
largest network module, THBS1 was also observed, directly 
interacting with FN1. THBS1 was an adhesive glycoprotein, 
participating in angiogenesis as well. It has been found that 
in the remodeling of heart, disruption of THBS1 results in 
inhibition on the up-regulation of ANGPT2, whereas THBS1 
stimulation leads to increase of ANGPT2 in macrophage [32].
There findings reveal that THBS might regulate the expression 
of ANGPT2 and VEGFA, and then instruct the angiogenesis 
in OSCC.

Proliferating cell nuclear antigen (PCNA) is a homotrimer 
that acts as a  processivity factor involved in DNA replica-
tion and DNA repair. PCNA protein resides in nucleus, and 
functions as a cofactor of DNA polymerase delta [33]. It has 
long been reported that PCNA could serve as a proliferation 
marker of OSCC [34]. Furthermore, a recent report suggested 
that PCNA expression located at the invasive front of OSCC 
was closely associated with the prognosis of patients [35]. In 
consistence, in the present study PCNA was determined as the 
hub protein in the third network module in which the genes 
were significantly linked to DNA metabolic process. We could 
infer that PCNA might affect the proliferation of cancer cells 
via modulating DNA metabolism.

Conclusion

In summary, this study suggested that ErbB pathway and 
cell cycle pathway might play major roles in OSCC, and 
EGFR, FN1, PCNA, ANGPT1 and ANGPT2 could be potential 
biomarkers for prognosis prediction of OSCC. These findings 
would contribute to the development of novel potent therapies 
that target the molecular biomarkers identified in this study. 
Inevitably, there are limitations in this study due to the small 
sample size. In vitro and in vivo studies are required to further 
validate the results from this study.

Supplementary information is available in the online version 
of the paper.
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Supplementary Figure 1. Protein-protein interaction network. White nodes denote proteins encoded by up-regulated DEGs; Gray nodes denote 
pro¬teins encoded by down-regulated DEGs; Square nodes denote important proteins; a link denotes an interaction between proteins with 
interaction score ≥ 0.4.


