doi:10.4149/neo_2017_215

Absence of BRAF mutation in pheochromocytoma and paraganglioma

T. VOSECKA¹, A. VICHA¹, T. ZELINKA², P. JENCOVA¹, K. PACAK³, J. DUSKOVA⁴, J. BENES^{5,6}, A. GUHA⁷, L. STANEK⁸, M. KOHOUTOVA⁷, Z. MUSIL^{1,7,*}

¹Department of Pediatric Hematology and Oncology, 2nd Medical School, Charles University and University Hospital Motol, Prague, Czech Republic; ²3rd Department of Medicine– Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague; ³Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, 20892, USA; ⁴Institute of Pathology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague; ⁵Department of Radiology, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague; ⁶Institute of Anatomy, 1st Faculty of Medicine, Charles University in Prague; ⁷Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague; ⁸Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague; ⁸Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague; ⁸Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague; ⁸Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague

*Correspondence: musil.z@seznam.cz

Received May 10, 2016 / Accepted October 4, 2016

Pheochromocytomas and Paragangliomas (PHEO/PARA) are rare endocrine tumors originating from the adrenal medulla. More than 20 genes are involved in the tumorigenesis of these tumors, but a substantial part of the causative genetic events remains unexplained. A recent study has reported the presence of the activating *BRAF* V600E mutation in PCC, suggesting a role for BRAF activation in tumor development. Other studies have not find this mutation. This study investigates the occurrence of the *BRAF* V600E mutation in these tumors.

A cohort of 64 PHEO/PARA were screened for the *BRAF* V600E mutation using direct Sanger sequencing and QRT-PCR. All cases investigated displayed wild-type without V600E BRAF mutation

Taken together with all previously screened tumors up to date, only 1 V600E *BRAF* mutation has been found among 427 PCCs. These findings imply that the V600E *BRAF* mutation is a rare event in PHEO/PARA.

Key words: pheochromocytoma, paraganglioma, BRAF, mutation

B-Raf is a protein produced by the human gene *BRAF* [1, 2]. B-Raf is a 766-amino acid protein composed of three conserved domains characteristics of the Raf kinase family. In active conformation, B-Raf forms dimers via electrostatic interactions of its kinase domains and hydrogen-bonding [3]. Cell growth is directed by signalling from the B-Raf protein, since it is a member of the Raf kinase family of growth signal transduction protein kinases. Hence, it plays a role in regulating the MAP kinase/ERKs signalling pathway, which in turn affects cell division, differentiation, and secretion. Human cancers have been associated with more than 30 mutations of the *BRAF*. In 90% of these cases, thymine is substituted with adenine at nucleotide 1799 (p. V600E) [4].

The frequency of *BRAF* mutations varies widely in human cancers. Higher frequencies are found in melanomas and nevi, hairy cell leukaemia, and Langerhans cell histiocytosis while rarely in other tumors such as non-Hodgkins lym-

phoma, colorectal cancer, astrocytoma, papillary thyroid carcinoma, non-small-cell lung carcinoma, lung adenocarcinoma, and neuroblastoma [5-13]. Furthermore, a high frequency of *BRAF* V600E mutations have been detected in ameloblastoma, a locally infiltrative odontogenic benign neoplasm [14].

To date, only one study has identified a *BRAF* mutation with an incidence of 1,2% (1/85) in pheochromocytoma and paraganglioma (PHEO/PGL) [15]. Paulson et al, summarized data from other studies and did not found V600E *BRAF* mutation in 0,3% (1/336) PHEO/PGL tumors [16, 17].

Similary to neuroblastoma which have incidence of *BRAF* mutation about 1%, PHEO is also tumor of the adrenal gland that arises from chromaffin cells located in the adrenal medulla. PGL arise from extra-adrenal chromaffin cells located in sympathetic (abdomen, pelvis) or parasympathetic (head and neck) ganglions [18, 19]. These tumors may produce and

secrete catecholamines and metanephrines [20-22]. Currently, there are about 20 known genes associated with PHEO/PGL pathogenesis [18, 23-25].

Here, we aimed to assess the presence of the *BRAF* mutation on a large population of PHEOs/PGLs and to further contribute to controversial view whether this mutation may or may not occur in these tumors [18, 26]. Since *BRAF* mutation is a very good treatment target, the presence of this mutation in some of these tumors could result in the use of B Raf inhibitors of metastatic forms for which there has not been effective treatment so far.

Table 1. Clinical and germline mutations characterization

Materials and methods

Our study included 64 patients with PHEO/PGLs (32 men and 32 women, range from 7 to 77 years). Patient's samples were collected from the 3rd Department of Medicine, 1st Faculty of Medicine, Faculty Hospital and Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Prague, Czech Republic. The informed consent was obtained from all involved patients. Clinical characteristics of study objects are described in Table 1.

Num.	Age (y)	sex	PHEO/ PARA	site	Volum (ml)	Metastases	Familiar	Germline mutation of SDHB, SDHD, RET, VHL genes
1	36	F	PHEO	Left	39	No	No	Neg.
2	16	М	PHEO	Right	n.d.	No	No	Neg.
3	12	F	PHEO	Bilateral	n.d.	No	No	VHL: c.602T>C, p.Leu201Pro
4	65	F	PHEO	Right	45	no	No	Neg.
5	45	F	PARA	Retroperitoneum	31	no	No	Neg.
6	13	F	PARA	Retroperitoneum	n.d.	no	No	SDHB: c. 589 – 600 dup. AGC ACC AGC TGC, p. Cys 196 dup. Ser 197 Thr 198 Ser 199 Cys 201
7	68	М	PHEO	Right	70	no	No	Neg.
8	35	F	PHEO	Left	120	no	No	Neg.
9	62	F	PHEO	Right	70	no	No	Neg.
10	7	М	PARA	Mediastinum	24	no	No	VHL: c.376G>A, p.Asp126Asn
11	64	F	PHEO	Left	42	no	No	Neg.
12	14	М	PHEO	Right	n.d.	no	No	Neg.
13	22	F	PHEO	Left	46	no	No	Neg.
14	35	М	PHEO	Left	80	no	No	Neg.
15	31	F	PHEO	Bilateral	10;30	no	No	RET: c.1901G>C, p.Cys634Ser; c.1921G>T, p.Ala641Ser
16	52	М	PHEO	Bilateral	6; hyperplasia	no	No	Neg.
17	59	F	PHEO	Left	63	no	No	Neg.
18	68	М	PHEO	Left	28	no	No	Neg.
19	60	М	PHEO	Right	13	no	No	Neg.
20	15	М	PHEO	Right	n.d.	no	No	Neg.
21	73	F	PHEO	Right	35	no	No	Neg.
22	31	F	PARA	Middle ear	n.d.	no	No	Neg.
23	27	F	PARA	Retroperitoneum	60	no	No	Neg.
24	41	М	PHEO	Left	100	no	No	n.d.
25	76	М	PHEO	Right	60	no	No	Neg.
26	23	М	PARA	Mediastinum	60	bone; GC; neck	Yes	Neg.
27	47	М	PHEO	Left	58	no	No	Neg.
28	13	М	PARA	Rertoperitoneum	86+80	no	No	Neg.
29	26	М	PARA	Retroperitoneum	35	no	No	SDHD: c.361C>T, p.Gln121X
30	65	F	PHEO	Right	50	no	No	Neg.
31	40	М	PHEO	Bilateral	30;14	no	No	Neg.
32	40	М	PHEO	Right	70	no	No	Neg.
33	68	F	PHEO	Right	80	no	No	Neg.
34	67	F	PHEO	Right	60	no	No	Neg.
35	77	F	PHEO	Right	65	no	No	Neg.
36	26	F	PHEO	Left	50	no	No	Neg.
37	20	М	PHEO	Bilateral	70;40	no	No	VHL: c.340+2T>C
38	34	М	PHEO	Right	35	no	No	Neg.
39	27	М	PARA	Neck	n.d.	no	No	SDHD: c.2T>A, p.Met1Lys

Num.	Age (y)	sex	PHEO/ PARA	site	Volum (ml)	Metastases	Familiar	Germline mutation of SDHB, SDHD, RET, VHL genes
40	65	F	PHEO	Left	17	no	No	Neg.
41	15	F	PHEO	Left	n.d.	no	No	Neg.
42	24	М	PHEO	Bilateral	30;6,9	no	No	VHL: c.374A>C, p.His125Pro
43	47	М	PHEO	Right	55	no	No	Neg.
44	60	F	PHEO	Left	665	no	No	Neg.
45	42	М	PHEO	Right	12	liver; bone;lymph nodes; lung	No	Neg.
46	75	F	PARA	Pelvis	50	no	No	Neg.
47	64	F	PHEO	Left	38	no	No	Neg.
48	60	F	PHEO	Bilateral	30;hyperplasia	no	No	Neg.
49	61	М	PHEO	Left	95	no	No	Neg.
50	33	F	PHEO	Right	55	no	No	Neg.
51	57	F	PHEO	Left	60	no	No	VHL: c.351G>A, p.Trp117Ter
52	21	М	PHEO	Bilateral	60;25	no	No	Neg.
53	50	М	PHEO	Right	8	no	No	Neg.
54	28	F	PHEO	Left	55	no	No	Neg.
55	61	F	PHEO	Right	60	no	No	Neg.
56	51	М	PHEO	Right	50	no	No	Neg.
57	9	F		Retroperitoneum	360	no	No	Neg.
58	68	М	PHEO	Left	40	no	No	Neg.
59	14	F		Retroperitoneum	n.d.	no	No	n.d.
60	77	М	PHEO	Left	90	no	No	Neg.
61	66	М	PHEO	Right	55	no	No	Neg.
62	74	F		Zuckerkandel	27	no	No	Neg.
63	59	Μ	PHEO	Left	80	no	No	n.d.
64	59	F	PHEO	Left	110	no	No	Neg.

Table 1. Clinical and germline mutations characterization (continued)

Table1. characterized clinical data and germline mutation status of SDHB, SDHD, VHL and RET genes.

PHEO/PARA-Pheochromocytoma/Paraganglioma; neg.- negative; n.d.- not done, M-male; F- female; GC-glomus caroticum

Genomic DNA was extracted from fresh or frozen peripheral blood using QIAamp DNA Mini Kit (Qiagene, USA). Somatic DNA was extracted from frozen tumour's samples after histological confirmation of PHEO/PGL. DNA was extracted by Puregene Core kit A (Qiagene, USA). Quality of DNA was checked by NanoDrop[™] 2000/2000c Spectrophotometers (ThermoScientific)

Sanger sequencing. PCR primers for *BRAF* gene have been designed based on GenBank sequences using the Primer 3 software including intron-exon boundaries, reverse primer 5'- CTGTTCAAACTGATGGGACCC- 3', forward primer 5'- TGCTTGCTCTGATAGGAAAATG-3'. The BRAF PCR conditions are as follows 25 µl reaction mixture contained 1x PCR buffer (Fermentas), between 50-300 ng of genomic DNA as template, 1.5 mM MgCl2 (Fermentas), 25 pmol of each primer, 200 µM of each deoxynucleotide triphosphate (Fermentas), and 1.0 unit of TaqDNA polymerase (MBI Fermentas). Amplification conditions were included an initial denaturation at 94C° for 3 min., followed by 35 cycles of 45 sec at 94 C°, 45 sec at 60 C°, 1 min. at 72C° and final extension step running 5 min. at 72 C°. DNA fragments were sequenced in both directions using an automatic fluorescent ABI PrismTM 3130 Genetic Analyzer (PE Applied Biosystems) according to the manufacturer's instructions.

QRT-PCR for detection of V600E BRAF mutation. PCR primers and probes (accession No. NG_007873), PCR conditions and results classification were designed by Lang et al. [27]. These primers and probes are targeted against each mutation, and a mutation-unspecific region was used as a reference amplicon. All unlabelled primers were synthesized by EastPort Praha, Czech Republic; and probes (TaqMan) were purchased from Applied Biosystems, Foster City, CA. Real-Time PCR Reference PCR was performed in a 25 µl reaction volume with HotstarTaq DNA polymerase, Qiagene, 900 nmol/L of each BRAF mutation-un-specific primer, 100 nmol/L of the BRAF probe, 112.5 nmol/L of each internal control primer, 25 nmol/L of internal control probe, and 5 µl of DNA of varying concentration. Allele-specific PCRs were performed according to the same protocol but using a concentration of 450 nmol/L of allele-specific primer. All real-time PCRs were performed on a system (TaqMan 7300 PCR System Applied Biosystems, Foster City, CA) under the following thermocycling conditions: 95°C for 10 minutes,

followed by 50 cycles of 90°C for 15 seconds and 60°C for 1 minute. Cycle threshold (Ct) values were recorded for reference PCR and for each allele-specific PCR, and corresponding Δ Ct values (ie, allele-specific Ct minus reference Ct) were calculated.

Results

Somatic activating *BRAF* mutations in exon 15 were investigated in 64 tumor samples. Initially, we used Sanger sequencing. Results for V600E *BRAF* mutation were validated by QRT-PCR. All of these samples were negative for *BRAF* mutation in exon 15.

Discussion

In the present study, which included 66 PHEOs/PGL, we did not confirm the presence of any *BRAF* mutations. This contrasts Luchetti et al., who detected V600E *BRAF* mutation in 1,2% (1/85) of these tumors. Until now, 427 PHEOs/PGLs were investigated for the presence of a *BRAF* mutation, which was only found] in 1 of these tumors, suggesting that the *BRAF* V600E mutation is a extremely rare genetic event in PHEO/PGL and would not serve as a target for new treatment options in metastatic PHEO/PGL.

Previous studies have demonstrated that tumor oncogene activation such as RET, HIF2A, and HRAS in PHEO/PGL may result in tumorigenesis of these tumors [15, 24, 26, 28, 29]. Furthermore, additional gene expression studies suggested that most PHEO/PGLs can be classified into two distinct groups (cluster1 and cluster 2) by transcription profiling: cluster 1 includes tumors that harbour mutations in genes linked to pseudohypoxia (VHL, HIF2A, SDHA, SDHB, SDHC, and SDHD) and cluster 2 contains tumors harbouring mutations in genes that are involved in the kinase signalling characterized by the activation of the PIK3/AKT/mTOR and RAS/RAF/ ERK pathways (RET, NF1, TMEM127, MAX, and HRAS), both converging on the HIF-signaling pathway [30]. The protooncogene RET is a tyrosine kinase receptor primarily expressed in the neural crest cells. RET mutations have been associated with increased activation of PI3K/v-Akt signals. NF1 encodes for the neurofibromin protein, a GTPase- activating protein in the RAS signaling cascade and mTOR signaling pathway. Thus, RET and NF1 mutations lead to activation of the PI3K/ AKT/mTOR and RAS/RAF/MAPK signaling pathways [24]. Thus, RAS/RAF/MAPK signaling pathways genes are a promising aim of mutations in PHEO/PGL. That supposition was confirmed by Luchetti et al. and other which found somatic HRAS mutation in PHEO/PGL [26, 15] very recently Luchetti et al. found V600E BRAF mutation in 1,2% (1/85 cases). We investigated 64 cases without any detection of the V600E BRAF mutation.

In conclusion, our results along with previous results, suggest that the BRAF V600E mutation is an extremely rare genetic event in PHEO/PGL.

Acknowledgements: Study was supported by Ministry of Education of the Czech Republic PRVOUK-P27/LF1/1, PRVOUK P35/ LF1/5, SVV 260257/2016, Ministry of Health, Czech Republic– conceptual development of research organization, University Hospital Motol, Prague, Czech Republic 00064203

References

- [1] SITHANANDAM G, DRUCK T, CANNIZZARO LA, LEUZZI G, HUEBNER K et al. B-raf and a B-raf pseudogene are located on 7q in man. Oncogene 1992; 7: 795–799.
- [2] SITHANANDAM G, KOLCH W, DUH FM, RAPP UR Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 1990; 5: 1775–1780.
- [3] BOLLAG G, TSAI J, ZHANG J, ZHANG C, IBRAHIM P et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature reviews Drug discovery 2012; 11: 873–886. <u>https://doi.org/10.1038/nrd3847</u>
- TAN YH, LIU Y, EU KW, ANG PW, LI WQ et al. Detection of BRAF V600E mutation by pyrosequencing. Pathology 2008; 40: 295–298. <u>https://doi.org/10.1080/00313020801911512</u>
- [5] NAMBA H, NAKASHIMA M, HAYASHI T, HAYASHIDA N, MAEDA S et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 2003; 88: 4393–4397. <u>https://doi.org/10.1210/jc.2003-030305</u>
- [6] SHUKLA N, AMEUR N, YILMAZ I, NAFA K, LAU CY et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 2012; 18: 748–757. <u>https://doi. org/10.1158/1078-0432.CCR-11-2056</u>
- [7] AHMADZADEH A, SHAHRABI S, JASEB K, NOROZI F, SHAHJAHANI M et al. BRAF Mutation in Hairy Cell Leukemia. Oncology reviews 2014; 8: 253. <u>https://doi.org/10.4081/ oncol.2014.253</u>
- [8] EL DEMELLAWY D, YOUNG JL, DE NANASSY J, CHER-NETSOVA E, NASR A Langerhans cell histiocytosis: a comprehensive review. Pathology 2015; 47: 294–301. <u>https:// doi.org/10.1097/PAT.00000000000256</u>
- [9] JOHNSON DB, SOSMAN JA Therapeutic Advances and Treatment Options in Metastatic Melanoma. JAMA oncology 2015; 1: 380–386. <u>https://doi.org/10.1001/jamaoncol.2015.0565</u>
- [10] GAUTSCHI O, MILIA J, CABARROU B, BLUTHGEN MV, BESSE B et al. Targeted Therapy for Patients with BRAF-Mutant Lung Cancer: Results from the European EURAF Cohort. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 2015.
- [11] DE GROOT JF High-grade gliomas. Continuum 2015; 21: 332–344.
- [12] THEELER BJ, ELLEZAM B, MELGUIZO-GAVILANES I, DE GROOT JF, MAHAJAN A et al. Adult brainstem gliomas: Correlation of clinical and molecular features. Journal of the neurological sciences 2015; 353: 92–97. <u>https://doi. org/10.1016/j.jns.2015.04.014</u>

- [13] SORBYE H, DRAGOMIR A, SUNDSTROM M, PFEIFFER P, THUNBERG U et al. High BRAF Mutation Frequency and Marked Survival Differences in Subgroups According to KRAS/BRAF Mutation Status and Tumor Tissue Availability in a Prospective Population-Based Metastatic Colorectal Cancer Cohort. PLoS One 2015; 10:e0131046. <u>https://doi.org/10.1371/journal.pone.0131046</u>
- [14] KURPPA KJ, CATON J, MORGAN PR, RISTIMAKI A, RUHIN B et al. High frequency of BRAF V600E mutations in ameloblastoma. The Journal of pathology 2014; 232: 492–498. <u>https://doi.org/10.1002/path.4317</u>
- [15] LUCHETTI A, WALSH D, RODGER F, CLARK G, MARTIN T et al. Profiling of somatic mutations in phaeochromocytoma and paraganglioma by targeted next generation sequencing analysis. International journal of endocrinology 2015; 2015: 138573. <u>https://doi.org/10.1155/2015/138573</u>
- [16] GELI J, KISS N, KARIMI M, LEE JJ, BACKDAHL M et al. Global and regional CpG methylation in pheochromocytomas and abdominal paragangliomas: association to malignant behavior. Clin Cancer Res 2008; 14: 2551–2559. <u>https://doi. org/10.1158/1078-0432.CCR-07-1867</u>
- [17] PAULSSON JO, SVAHN F, WELANDER J, BRUNAUD L, SODERKVIST P et al. Absence of the BRAF V600E mutation in pheochromocytoma. Journal of endocrinological investigation 2015.
- [18] MARTUCCI VL, PACAK K Pheochromocytoma and paraganglioma: diagnosis, genetics, management, and treatment. Current problems in cancer 2014; 38: 7–41. <u>https://doi. org/10.1016/j.currproblcancer.2014.01.001</u>
- [19] LENDERS JW, DUH QY, EISENHOFER G, GIMENEZ-ROQUEPLO AP, GREBE SK et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014; 99: 1915–1942. <u>https:// doi.org/10.1210/jc.2014-1498</u>
- [20] HAVEKES B, PACAK K Pheochromocytoma. Nature clinical practice Cardiovascular medicine 2008; 5:E1. <u>https://doi.org/10.1038/ncpcardio1131</u>
- [21] DARR R, LENDERS JW, HOFBAUER LC, NAUMANN B, BORNSTEIN SR et al. Pheochromocytoma- update on disease management. Therapeutic advances in endocrinology and metabolism 2012; 3: 11-26. <u>https://doi. org/10.1177/2042018812437356</u>
- [22] EISENHOFER G, LENDERS JW, SIEGERT G, BORNSTEIN SR, FRIBERG P et al. Plasma methoxytyramine: a novel bi-

omarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer 2012; 48: 1739–1749. https://doi.org/10.1016/j.ejca.2011.07.016

- [23] VICHA A, MERCADO-ASIS LB Pacak-zhuang syndrome: a new kid on the block. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists 2014; 20: 1234–1235. <u>https://doi.org/10.4158/endp.20.11. g37v757188j41v24</u>
- [24] VICHA A, MUSIL Z, PACAK K Genetics of pheochromocytoma and paraganglioma syndromes: new advances and future treatment options. Current opinion in endocrinology, diabetes, and obesity 2013; 20: 186–191. <u>https://doi.org/10.1097/ MED.0b013e32835fcc45</u>
- [25] VICHA A, TAIEB D, PACAK K Current views on cell metabolism in SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer 2014. <u>https://doi.org/10.1530/ERC-13-0398</u>
- [26] CRONA J, DELGADO VERDUGO A, MAHARJAN R, STALBERG P, GRANBERG D et al. Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J Clin Endocrinol Metab 2013; 98:E1266–1271. <u>https://doi.org/10.1210/ jc.2012-4257</u>
- [27] LANG AH, DREXEL H, GELLER-RHOMBERG S, STARK N, WINDER T et al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. The Journal of molecular diagnostics : JMD 2011; 13: 23–28. <u>https://doi.org/10.1016/j.jmoldx.2010.11.007</u>
- [28] CRONA J, MAHARJAN R, DELGADO VERDUGO A, STALBERG P, GRANBERG D et al. MAX mutations status in Swedish patients with pheochromocytoma and paraganglioma tumours. Familial cancer 2014; 13: 121–125. <u>https:// doi.org/10.1007/s10689-013-9666-3</u>
- [29] CRONA J, NORDLING M, MAHARJAN R, GRANBERG D, STALBERG P et al. Integrative genetic characterization and phenotype correlations in pheochromocytoma and paraganglioma tumours. PLoS One 2014; 9:e86756. <u>https:// doi.org/10.1371/journal.pone.0086756</u>
- [30] JOCHMANOVA I, YANG C, ZHUANG Z, PACAK K Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. J Natl Cancer Inst 2013; 105: 1270–1283. <u>https://doi.org/10.1093/jnci/djt201</u>