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Unequal size of ions in modified Wicke-Eigen model of electric 
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Abstract. Numerous electric double layer models have been developed through the years to capture 
the complex electrode/electrolyte interface. In the present study, the Wicke-Eigen model of electric 
double layer is generalized to incorporate the asymmetric size of cations and anions. Analytical 
expressions for the spatial distribution of ions and water dipoles are derived. Asymmetric and sym-
metric Wicke-Eigen models are analysed. Arguments are given in favour of changing the recently 
adopted name of so-called Bikerman model/equation to Wicke-Eigen model/equation.
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Electric double layer (EDL) created at the charged electrode/
electrolyte interface has been initially modelled by Helm-
holtz (1853, 1879). The Helmholtz model assumes that the 
electrode surface attracts the neighbouring counterions in 
electrolyte solution, which form a single counterion layer 
to balance the electric charge of the electrode. Later, the 
spatial distribution of ions (considered as point-like par-
ticles/charges) near electrode surface have been captured 
using the Boltzmann spatial distribution function (Gouy 
1910; Chapman 1913; Bergethon 1998). Finite size of ions 
has been firstly incorporated in EDL theory by Stern (1924) 
who took into account as a distance of closest approach and 
later further developed within mean-field theory (Bikerman 
1942; Freise 1952; Wicke and Eigen 1952; Eigen and Wicke 
1954). Their work was further upgraded in numerous theo-
retical studies (Kenkel 1984; Nielaba and Forstmann 1985; 
Caccamo et al. 1986; Kjellander and Marcelja 1986; Plischke 
and Henderson 1988; Mier-y-Teran et al. 1990; Bhuiyan et 
al. 1992; Strating and Wiegel 1993; Kralj-Iglič and Iglič 1996; 
Lamperski and Outhwaite 2002). Further modification of 
EDL theory included also orientational ordering of the water 
dipoles near the charged electrode surface (Outhwaite 1976, 
1983; Butt et al. 2003; Abrashkin et al. 2007; Bazant et al. 

2009; Iglič et al. 2010; Gongadze et al. 2011, 2013; Nagy et 
al. 2011; Misra et al. 2013) resulting in the predicted local 
decrease of the relative permittivity (Gongadze et al. 2014; 
Quiroga et al. 2014).

Recently, a  mean-field model of EDL was developed 
(Gongadze and Iglič 2015) (referred as in this paper as 
modified GI model), which takes into account both, the 
orientational ordering of water dipoles, considered within 
modified Kirkwood approach (Fröhlich 1964) as the point-
like dipoles at the centres of the spheres with permittivity 
equal to the square of optical refractive index of water, and 
also asymmetric finite size of anions and cations. Modified 
GI (MGI) model predicts the spatial dependence of relative 
permittivity due to orientational ordering of water dipoles 
in saturation regime and partial depletion of water near the 
charged surface (Gongadze and Iglič 2015). In this paper 
the limit case of the MGI model (Gongadze and Iglič 2015) 
i.e. the modified Wicke-Eigen model, is derived, where the 
finite and asymmetric size of ions are taken into account.

General model

The modified GI model (Gongadze and Iglič 2015), as 
a generalisation of the models of Bikerman (1942), Wicke 
and Eigen (Wicke and Eigen 1952; Eigen and Wicke 1954) 
and Freise (1952), simultaneously takes into account the 
asymmetry of the anion and cation finite sizes and the spatial 
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dependence of the polarisation and relative permittivity. Un-
like the Bikerman model, where the local polarisation does 
not depend on the spatial dependent average orientational 
ordering of water dipoles (Bikerman 1942), the MGI model 
allows to describe the reduction of the dielectric constant due 
to the saturation effect (Gongadze and Iglič 2015) influenced 
also by the volume excluded effect due to the competition 
between counterions and water molecules (Gongadze et 
al. 2014). Following the ideas of Bikerman (1942), Freise 
(1952) and Schlögl (1953), the modification of the GI model 
(Gongadze and Iglič 2012), considering the different size of 
positive and negative ions (Gongadze and Iglič 2015), was 
initially performed by Sin et al. (2015) within an approximate 
approach valid for small volume shares of ions everywhere 
in electrolyte solution only, where the number densities of 
ions and water molecules were obtained implicitly. Very 
recently the GI model was generalized also without taking 
into account the approximation of small volume shares of 
ions everywhere in electrolyte solution (Gongadze and Iglič 
2015). In addition, the expressions for the spatial distribution 
of cations n+(x), anions n–(x) and water dipoles nw(x) in the 
electric double layer were derived analytically (Gongadze 
and Iglič 2015): 
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which results to a dipole moment of p0 = 3.1 D and bulk permittivity of εr,b = 78.5. 
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Modified Wicke-Eigen model 

We assume that the permittivity on the lhs of Eq. 4 is constant everywhere in the electrolyte 
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where εr,b = 78.5. 

The limit equations of the MGI model for constant permittivity and neglected water 

dipole energy (i.e. modified Wicke-Eigen model) were recently derived also by Sin et al. (2015). 

However, within an approximate approach assuming the small volume shares of ions everywhere 

in the electrolyte solution, which is not justified in the region near the charged surface for high 

magnitudes of the surface charge density, σ, of the charged planar surface at x = 0. In addition, 

Sin et al. (2015) did not derive explicit formulas for the number densities of ions and water 

molecules (as are the above Eqs. 10–12, but the ions and water number densities were obtained 

only implicitly. The same limit Poisson differential equation for constant permittivity, neglected 

water dipole energy and small volume shares of ions everywhere in the solution as in Sin et al. 

(2015) were derived also in Popović and Šiber (2013) (again without explicit expression for ion 

and water number densities) following the approach/method of variation of the system free 

energy within lattice statistics described originally by Iglič and Kralj-Iglič (1994), Kralj-Iglič and 

Iglič (1996) and later in the same way also by Borukhov et al. (1997). 

 

Wicke-Eigen Model 

The above equations of the MGI model describe the case where negative and positively charged 

ions occupy more than one lattice site, while single water molecules still occupy just one lattice 

site. In the following, we assume that coions, couterions and water molecules occupy a single 

lattice site, i.e. α+ = α– so Eqs. 10–15 become: 
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site. In the following, we assume that coions, couterions and water molecules occupy a single 
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assuming the small volume shares of ions everywhere in 
the electrolyte solution, which is not justified in the region 
near the charged surface for high magnitudes of the surface 
charge density, σ, of the charged planar surface at x = 0. In 
addition, Sin et al. (2015) did not derive explicit formulas for 
the number densities of ions and water molecules (as are the 
above Eqs. 10–12, but the ions and water number densities 
were obtained only implicitly. The same limit Poisson dif-
ferential equation for constant permittivity, neglected water 
dipole energy and small volume shares of ions everywhere 
in the solution as in Sin et al. (2015) were derived also in 
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𝑊𝑊(𝜙𝜙) = n0𝑒𝑒𝑒𝑒0𝜙𝜙𝜙𝜙 + n0𝑒𝑒−𝑒𝑒0𝜙𝜙𝜙𝜙 + n0𝑤𝑤 = n0𝑤𝑤 + 2n0 cosh(𝑒𝑒0𝜙𝜙𝛽𝛽) (20) 

 

 
𝜀𝜀𝑟𝑟,𝑏𝑏𝜀𝜀0

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2 = 2𝑒𝑒0𝑛𝑛𝑠𝑠𝑛𝑛0

sinh(𝑒𝑒0𝜙𝜙𝛽𝛽)
𝑊𝑊(𝜙𝜙) (21) 

 

where the corresponding macroscopic (net) volume charge density of co-ions and counterions 

ρfree (x) is: 
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The boundary condition at the charged plate, i.e. at x = 0 is:  

 

 𝑑𝑑𝜙𝜙
𝑑𝑑𝑥𝑥|𝑥𝑥=0

= − 𝜎𝜎
𝜀𝜀0𝜀𝜀𝑟𝑟,𝑏𝑏

|
𝑥𝑥=0

(23) 

 

where εr,b = 78.5.  

Eq. 21 has been sometimes named after Bikerman (see for example (Bazant et al. 2009; 

Gongadze et al. 2014) in honour of J. J. Bikerman who was first to study the influence of finite 

size of ions and water polarization on the properties of electric double layer within the mean-field 

approach (Bikerman 1942). However, ion distribution functions Eqs. 17–18 and the 

corresponding volume charge density Eq. 22 were first derived by Wicke and Eigen in 1952 

(Wicke and Eigen 1952; cited also by Freise in his subsequently printed article (Freise 1952)), 

therefore in this article we name Eq. 21 Wicke-Eigen equation, Eqs. 17–19 Eigen-Wicke 

distribution functions and the corresponding model Wicke-Eigen model. 
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Eq. 21 has been sometimes named after Bikerman (see for example (Bazant et al. 2009; 

Gongadze et al. 2014) in honour of J. J. Bikerman who was first to study the influence of finite 
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approach (Bikerman 1942). However, ion distribution functions Eqs. 17–18 and the 

corresponding volume charge density Eq. 22 were first derived by Wicke and Eigen in 1952 

(Wicke and Eigen 1952; cited also by Freise in his subsequently printed article (Freise 1952)), 

therefore in this article we name Eq. 21 Wicke-Eigen equation, Eqs. 17–19 Eigen-Wicke 

distribution functions and the corresponding model Wicke-Eigen model. 
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where εr,b = 78.5.  
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Gongadze et al. 2014) in honour of J. J. Bikerman who was first to study the influence of finite 
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where εr,b = 78.5.  

Eq. 21 has been sometimes named after Bikerman (see for example (Bazant et al. 2009; 

Gongadze et al. 2014) in honour of J. J. Bikerman who was first to study the influence of finite 

size of ions and water polarization on the properties of electric double layer within the mean-field 

approach (Bikerman 1942). However, ion distribution functions Eqs. 17–18 and the 
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The boundary condition at the charged plate, i.e. at x = 0 is: 
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𝑛𝑛−(𝑥𝑥) = 𝑛𝑛0𝑒𝑒𝑒𝑒0𝜙𝜙𝜙𝜙

𝑛𝑛𝑠𝑠
W(𝜙𝜙) (18) 

 

 
𝑛𝑛𝑤𝑤(𝑥𝑥) =

𝑛𝑛0𝑤𝑤𝑛𝑛𝑠𝑠
𝑊𝑊(𝜙𝜙) (19) 

 

 
𝑊𝑊(𝜙𝜙) = n0𝑒𝑒𝑒𝑒0𝜙𝜙𝜙𝜙 + n0𝑒𝑒−𝑒𝑒0𝜙𝜙𝜙𝜙 + n0𝑤𝑤 = n0𝑤𝑤 + 2n0 cosh(𝑒𝑒0𝜙𝜙𝛽𝛽) (20) 
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𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2 = 2𝑒𝑒0𝑛𝑛𝑠𝑠𝑛𝑛0

sinh(𝑒𝑒0𝜙𝜙𝛽𝛽)
𝑊𝑊(𝜙𝜙) (21) 

 

where the corresponding macroscopic (net) volume charge density of co-ions and counterions 

ρfree (x) is: 

 

 𝜌𝜌𝑓𝑓𝑟𝑟𝑒𝑒𝑒𝑒(𝑥𝑥) = 𝑒𝑒0𝑛𝑛+(𝑥𝑥) − 𝑒𝑒0𝑛𝑛−(𝑥𝑥) = −2𝑒𝑒0𝑛𝑛𝑠𝑠𝑛𝑛0
sinh(𝑒𝑒0𝜙𝜙𝛽𝛽)

𝑊𝑊(𝜙𝜙) (22) 
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Gongadze et al. 2014) in honour of J. J. Bikerman who was first to study the influence of finite 

size of ions and water polarization on the properties of electric double layer within the mean-field 

approach (Bikerman 1942). However, ion distribution functions Eqs. 17–18 and the 

corresponding volume charge density Eq. 22 were first derived by Wicke and Eigen in 1952 

(Wicke and Eigen 1952; cited also by Freise in his subsequently printed article (Freise 1952)), 

therefore in this article we name Eq. 21 Wicke-Eigen equation, Eqs. 17–19 Eigen-Wicke 

distribution functions and the corresponding model Wicke-Eigen model. 

 

Results 

 (23)

where εr,b = 78.5. 
Eq. 21 has been sometimes named after Bikerman (see 

for example (Bazant et al. 2009; Gongadze et al. 2014) in 
honour of J. J. Bikerman who was first to study the influence 
of finite size of ions and water polarization on the proper-
ties of electric double layer within the mean-field approach 
(Bikerman 1942). However, ion distribution functions Eqs. 
17–18 and the corresponding volume charge density Eq. 22 
were first derived by Wicke and Eigen in 1952 (Wicke and 
Eigen 1952; cited also by Freise in his subsequently printed 
article (Freise 1952)), therefore in this article we name Eq. 21 
Wicke-Eigen equation, Eqs. 17–19 Eigen-Wicke distribution 
functions and the corresponding model Wicke-Eigen model.

Results

The presented modified Poisson differential equations for 
spatial distribution of electric potential φ(x) (Eqs. 4, 14, 
21) were solved numerically using COMSOL Multiphysics 
5.0 where the boundary condition at x = 0 was taken into 
account. The parameters used in the simulations are bulk 
concentration of ions n0/NA = 0.1 mol/l, α– = 11, α+ = 5 (see 
also Marcus (1988)), dipole moment of water p0 = 3.1 D, 
optical refractive index n = 1.33, bulk concentration of water 
n0w/NA = 55 mol/l, where NA is the Avogadro number.

It was shown, that the calculated differential capacitance 
of the EDL within GI model monotonously increases as 
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a function of the increasing surface potential, while in Wicke-
Eigen model starts to decrease after reaching a  maximal 
value (Freise 1952; Bazant et al. 2009; Gongadze et al. 2014) 
as shown in Fig. 1.

For higher values of the surface potential, the calculated 
MGI differential capacitances (Gongadze and Iglič 2015) 
drop below the corresponding Wicke-Eigen values to very 
small values, in accordance with the experimental results 
(Lockett et al. 2008, 2010). Fig. 1 also shows that considera-
tion of different sizes of positive and negative ions within 
modified Wicke-Eigen model may describe some character-
istics of the experimentally observed asymmetric camel-like 
dependence of the differential capacitance on the surface 
potential/voltage (Grahame 1954; Lockett et al. 2008, 2010).

In this paper the modified Wicke-Eigen model, taking 
into account finite and asymmetric size of ions, was de-
rived as a limit case of more general MGI model of EDL 
(Gongadze and Iglič 2015). The influence of size asym-
metry of cations and anions in electrolyte solution was 
studied in the past also by Freise (1952). However, Freise 
have assumed equal volumes for the anions and cations 
and further that the ratio between the ion volume and 
medium solvent molecule is 2, 1 or ½. Therefore, whilst 
we could study the influence of the ion asymmetry on the 
differential capacitance of EDL, Freise showed only the 
influence of equal ion size of ions. In contrast to a similar 
recent study (Sin et al. 2015), we abandoned the assump-
tion of small volume shares of ions everywhere in elec-
trolyte solution. Furthermore, we derived the analytical 
expressions for spatial dependence of anion and cation 
number densities.

In conclusion, J. J. Bikerman was the first who studied the 
influence of finite size of ions on the properties of electric 
double layer within the mean-field approach (Bikerman 
1942). However, as mentioned above, Bikerman did not 
derive the ion distribution functions (Eqs. 17–18) and the 
corresponding Poisson differential equation for electric po-
tential (Eq. 21), which were actually first derived by Wicke 
and Eigen in 1952 (Wicke and Eigen 1952). Consequently, in 
the present manuscript we correctly assign the Eq. 21 Wicke-
Eigen equation and Eqs. 17–19 Eigen-Wicke distribution 
functions and the corresponding model Wicke-Eigen model 
and not Bikerman equations/model as it was done in some 
previous publications (see for example Bazant et al. (2009), 
Gongadze et al. (2014)). In this paper, the Wicke-Eigen 
model was modified by taking into account the asymmetric 
size of ions. 
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