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Abstract

The government mandated fuel efficiency standards for automobile manufacturers reinforce
the incentives to reduce the fuel consumption of their vehicles and minimize CO2 greenhouse
emission, which requires developing the lighter vehicles, while preserving product performance
and cost objectives. One of the effective means to address this challenge has been the design
and application of lightweight materials including AMNCs for the automotive parts. Multiple
methods have been introduced to manufacture AMNCs such as compocasting in which the
reinforcement particles are added to a solidifying melt while being agitated by the electro-
magnetic field in EMS apparatus. The slurry is then poured into the die cavity and squeezed
during the solidification.
This research employs ANFIS-PSO in order to optimize the parameters in compocast

processing of AMNCs. The objective function is calculated and minimized by ANFIS and
PSO, respectively. The optimized electromagnetic stirring process was used to produce the
AMNCs with superior wear resistance.

K e y w o r d s: compocasting, AMNCs, electromagnetic, nanocomposites

1. Introduction

Automotive industry requires materials with low
density, excellent mechanical properties, and high
wear resistance [1–4]. Aluminum alloys are popular,
but prove to be relatively soft for many applications
and therefore do not meet all the requirements for tri-
bological purposes [5–7]. In general, composites are
the materials manufactured by adding two or more
materials which are in physically and/or chemically
distinct phases [8, 9]. Ceramic particles including TiC,
SiC, B4C, Al2O3, Mg2Si, etc. [10–12] in micron sizes
are added to the aluminum in order to improve its
wear resistance, while particles in nano size enable en-
hancement in both mechanical and tribological prop-
erties [13]. Aluminum matrix nanocomposites (AM-
NCs) are used where the application requires high
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tensile strength, hardness, toughness including pistons
and cylinder liners, brake drums and discs [14–18].
There are various methods to manufacture Al matrix
composites such as powder metallurgy, electroplating
and electroforming, stir casting, pressure infiltration,
squeeze casting, spray deposition, semi-solid powder
processing, etc. Compocasting is a method in which
the reinforcement particles are added to a solidifying
melt while being agitated [19–22]. The primary solid
particles formed in the semi-solid slurry reduce ag-
glomeration of the reinforcing particles. This will re-
sult in better distribution of the reinforcement parti-
cles and a globular structure. It is now being reviewed
as one of the manufacturing methods of composite
materials due to its superior advantage over a form-
ing process. Agitation can be made by mechanical vi-
bration, mechanical stirring, electromagnetic stirring
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(EMS) and cooling slope techniques. Electromagnetic
stirring is one of the common ways to create globular
structure in metals. In this method, the desired metal
is stirred in the range of semi-solid temperature by ro-
tating Lorentz force resulted from the magnetic field
of coils and consequently the dendritic cast structure
is transformed into a globular structure [16, 23–26].
Shabani et al. [25] showed that the globular structure
of the alloy is affected by the parameters such as in-
tensity of magnetic stirring and cooling rate. Different
aluminum alloys have been used as the matrix. Al-Si
alloy is the materials choice for compocasting via EMS
due to its good castability and ability to generate a
semi-solid alloy structure without cavities and defects.
The structure of the cast alloy contains primary α-Al
dendritic phase and eutectic regions containing Si par-
ticles in the α-Al matrix. Mechanical properties of this
alloy are determined by the shape, size and distribu-
tion of Si particles [23–25].
Theory of particle swarm optimization (PSO) has

attracted many attentions in last few years [27]. The
PSO algorithm is similar to how societies of animals
with no leader behave. Typical examples are bird
flocking and fish schooling where animals go after
a member of the group with the closest position to
the target (potential solution). The groups reach their
best condition simultaneously through communication
among members who already have a better situation
[28–32]. The ones with a better condition supervise
the flocks, and the rest follow them simultaneously to
that place. This repeatedly occurs until the best con-
ditions or source of a food are discovered. The process
of PSO algorithm in finding optimal values follows the
work of this animal society. Particle swarm optimiza-
tion consists of a swarm of particles, where particle
represents a potential solution [33–35].
A neural network is a nonlinear dynamic computa-

tional system where, rather than relying on a number
of predetermined assumptions, data is used to form
the model [36–40]. Neural networks have tradition-
ally been viewed as simplified models of neural pro-
cessing in the human brain [41–43]. Adaptive neuro-
fuzzy inference system (ANFIS) belongs to the class of
adaptive networks, which are functionally equivalent
to fuzzy inference systems (FIS). The FIS is a conven-
tional computing framework in accordance with the
concepts of fuzzy set theory, fuzzy if-then rules, and
fuzzy reasoning. The ANFIS enables simulation and
analysis of the correlation between the input and out-
put data through a hybrid learning to find optimal
parameters of a given FIS [44–46]. It is trained with-
out the expert knowledge, which is usually needed for
the standard fuzzy logic design. The main advantage
of the ANFIS is that ANFIS totally bypasses the re-
peated application of complex iterative processes for
new cases presented to it. Although a fewminutes are
required for the training, it takes only a few microsec-

onds for the test to be completed. Because of these
attractive features, ANFIS has been applied to many
areas in the literature [44, 46].
Study of literature shows no previous attempt in

using an electromagnetic stirrer device to obtain a
uniform distribution of the particles. It is of interest
to optimize the possessing in an attempt to obtain a
high wear resistant nanocomposite with a stable tri-
bolayer on the wearing surface and fine equiaxed wear
debris. Finally, the wear behavior of optimized pro-
cessed composites is evaluated.
An investigation is carried out on the influence of

applied load, sliding speed, wearing surface, hardness,
reinforcement fracture toughness, and morphology as
the critical parameters in relation to the wear regime.

2. Experimental

The Al-Si alloy (chemical composition: 7 % Si,
0.3 % Mg, 0.3 % Zn, 0.3 % Cu, 0.3 % Fe and the
rest Al) and TiC nanoparticles have been selected
as the matrix and the reinforcement, respectively. It
has been evident that small size of particles results
in their high tendency for agglomeration at various
stages during processing. This problem is expected
to pose a major obstacle for uniform distribution of
TiC nanoparticles in the melt as they have large spe-
cific surface area and high interfacial energy. In order
to overcome this problem, ameliorate the wettability
of TiC nanoparticles with the melt, reduce their ag-
glomeration, and attain a uniform distribution of TiC
nanoparticles in the matrix, a special technique was
used for introduction of nanoparticles into the melt.
Nanoparticles were injected into the melt in the form
of a mixture of TiC nanoparticles and Al powder.
The powders were mixed and then pressed into the
disc shape. The diameter and height of each disk were
10 mm and 3mm, respectively. The alloy was melted
in a resistance furnace at 720◦C and then degassed
for 10min with argon gas through a graphite lance.
The discs were then added using an electromagnetic
stirrer device to obtain a uniform distribution of the
particles. The temperature was lowered to convert the
liquid into a semisolid slurry. The slurry was immedi-
ately poured into the die cavity and squeezed during
the solidification. The current was varied 0, 50 and
100 A while voltage was kept constant and equal to
220 V. Size and volume percentage of TiC nanopar-
ticles and the casting temperature are the optimized
parameters obtained using ANFIS-PSO model. Fig-
ure 1 shows the distribution of electromagnetic field
in EMS apparatus. For comparison, conventional liq-
uid sand cast samples were poured at 720◦C without
electromagnetic stirrer device treatment.
The samples are solution treated at a temperature

of 545◦C for 4 h and quenched in water to room tempe-
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Fig. 1. Distribution of electromagnetic field in EMS appa-
ratus.

rature. T6 heat treatment is done at 155◦C for 6 h to
reach the peak aging condition. Samples for the metal-
lographic examination were cut, ground, and polished
down to 0.5 m and etched using Keller’s agent. The
microstructures were observed and analyzed with an
optical microscope and SEM. Hardness values of the
samples were measured on the polished samples at a
load of 100 g. An image analyzer was used to measure
the average diameter of the primary α-Al particles us-
ing a mean line incept method defined as

Average diameter = L/N, (1)

where L is the overall length of measured series lines,
N is the number of particles passed through by the
measured lines. This evaluation was repeated until 500
grains in several images were counted.
The shape factor of a particle in this study was

defined as

Shape factor = 4πA/P 2, (2)

where A and P represent the sectional area and the
perimeter of the primary phase in the microstructure,
respectively.
Dry sliding wear tests were performed using a pin-

on disc-type wear apparatus. The slider disc was case-
hardened steel with 63 HRC to a depth of 3 mm. The
composites were formed into pin having 6mm diam-
eter and 35mm height. The pins were put in contact
with the slider. Both surfaces were polished to 0.5 mm
and ultrasonically cleaned prior to testing. The tests
were carried out for different sliding distances under
a normal load of 20 N. The weight losses were calcu-
lated from the differences in weight of the specimens
measured before and after the tests with a precision
of ± 0.1 mg using an analytical balance. A separate
specimen was used to measure the weight loss for each
sliding distance. The wear test was interrupted at reg-
ular intervals, and the incremental weight loss of the

Fig. 2. Schematic diagram of the abrasion wear test.

sample was recorded. After each increment and be-
fore weighing, the disc and the pin were cleaned in an
ultrasonic bath with acetone and hot wind dried be-
low 100◦C. Figure 2 shows a schematic diagram of the
abrasion wear test. The wear tests were conducted up
to the total sliding distance of 2000 m.

3. Adaptive neuro-fuzzy inference system

Among different fuzzy inference systems, Takagi-
-Sugeno (TS) system is successfully used for fuzzy
modeling. An ANFIS system may be accounted as an
implementation of a TS system in neural-network ar-
chitecture [43, 44]. Five layers are used to form the
ANFIS model, each layer with a couple of nodes de-
scribed by a node function. The circles in the network
represent nodes with no variable parameters, while the
squares show nodes with adaptive parameters to be
determined by the network during training [46]. The
nodes in the first layer represent fuzzy sets in fuzzy
rules. It has parameters that control the shape and
the location of the center of each fuzzy set which are
called premise parameters. In the second layer, ev-
ery node computes the product of its inputs [46]. In
Layer 3, normalization of the firing strength of the
rules occurs by calculating the ratio of the ith rule’s
firing strength to the sum of all rules firing strengths.
Nodes in the fourth layer are adaptive, where each
node function represents a first-order model with con-
sequent parameters [47]. Layer 5 is called the output
layer where each node is fixed. It computes the overall
output as the summation of all the inputs from the
previous layer. Optimizing the values of the adaptive
parameters is the most important step for the per-
formance of the adaptive system. Especially, the sup-
posed parameters in Layer 1 and the consequent pa-
rameters in Layer 4 need to be determined. Jang pro-
posed a hybrid learning algorithm for determining the
parameters of an ANFIS model [48]. A hybrid learning
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algorithm uses the gradient descent and least-square
techniques for optimizing the network parameters [44].
The least-squares estimation can be used to determine
consequent parameters, assuming that the Layer 1 pa-
rameters are fixed. Then, the Layer 4 parameters can
be fixed, and a back propagation approach is used to
fit the premise parameters in Layer 1. Iterating be-
tween the Layer 1 parameters and the Layer 4 pa-
rameters optimization, the optimal values for all free
parameters are computed.

4. Particle swarm optimization

The PSO algorithm was first proposed by Kennedy,
inspired by the natural flocking and swarming behav-
ior of birds and insects. The concept of PSO gained
in popularity due to its simplicity. Like other swarm-
-based techniques, PSO consists of a number of indi-
viduals refining their knowledge of the given search
space [49, 50]. The individuals in a PSO have a po-
sition and velocity and are denoted as particles. The
PSO traditionally has no crossover between individ-
uals, has no mutation and particles are never substi-
tuted by other individuals during the run. The PSO
algorithm works by attracting the particles to search
space positions of high fitness [33, 34]. Each particle
has a memory function and adjusts its trajectory ac-
cording to two pieces of information, the best position
that it has so far visited, and the global best posi-
tion attained by the whole swarm [31]. If the whole
swarm is considered as a society, the first piece of in-
formation can be seen as resulting from the particle’s
memory of its past states, and the second piece of in-
formation can be seen as resulting from the collective
experience of all members of the society [21, 29, 49].
Like other optimization methods, PSO has a fitness
evaluation function that takes each particle’s position
and assigns it a fitness value. The position of highest
fitness value visited by the swarm is called the global
best. Each particle remembers the global best, and
the position of highest fitness value that has person-
ally visited, which is called the local best [34].
A swarm consists of N particles moving around

in a D-dimensional search space. The ith particle at
the tth iteration has a position Xi = (Xi1,. . ., XiD), a
velocity, Vi = (Vi1,. . ., ViD), the best solution achieved
so far by itself (pbest) Pi = (Pi1,. . ., PiD). The best
solution achieved so far by the whole swarm (gbest)
is represented by Pg = (Vg1,. . ., VgD). The position of
the ith particle at the next iteration will be calculated
according to the following equations [21, 29, 30]:

V t+1
id = wV t

id + c1rand()(Pid −Xt
id)+

+ c2rand()(Pgd −Xt
id), (3)

Xt+1
id = V t+1

id +Xt
id, (4)

Fig. 3. The flowchart of PSO model.

where c1 and c2 are two positive constants, called cog-
nitive learning rate and social learning rate, respecti-
vely; rand is a random function in the range [0, 1]; w is
inertia factor which linearly decreases from 0.9 to 0.4
through the search process. In addition, the velocities
of the particles are confined within [Vmin, Vmax]D. If
an element of velocities exceeds the threshold Vmin or
Vmax, it is set equal to the corresponding threshold
[51]. The iterative PSO approach can be described as
follows:
1. Initial positions and velocities for all agents are

generated. The current position of each particle is
stored as Pi. The Pi with the best value is designated
as Pg, and this value is stored.
2. The next position for each particle is generated

using Eqs. (3) and (4).
3. The objective function value is calculated for the

new positions of each particle. If an agent achieves a
better position, its Pi value is replaced by the current
value.
4. As in step 1, a Pg value is selected from the new
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Fig. 4. The structure of the ANFIS in the present model.

set of Pi values. If the new Pg value is better than the
previous Pg value, the previous Pg value is replaced
by the new Pg value.
5. Repeat steps 2–4 until the number of iterations

reaches a predetermined value.
Figure 3 shows the flowchart of PSO model which

has been used in this investigation.

5. Optimization

The ANFIS editor presents eight different types of
membership functions for decision-makers to use in
problems: Triangular, Trapezoidal, Generalized bell,
Gaussian curve, Gaussian combination, P-shaped, Dif-
ference between two sigmoid functions, and Product
of two sigmoid functions. The most significant step in
the model is defining fuzzy membership function and
corresponding value. Gaussian and bell membership
functions are most popular methods for specifying the
fuzzy set because of their smoothness and concise no-
tation. Both membership functions have advantages
of being smooth and non-zero at each point. The bell
membership function has one more parameter than
Gaussian membership function, so it can approach
non-fuzzy set if the free parameter is tuned. There-
fore, the Gaussian membership function has been con-
sidered. There are only two choices for the output
membership function: constant and linear since AN-
FIS only operates on Sugeno-type systems. For the
sake of performance, the constant membership func-
tion was chosen. Among samples, 70 % were used for

training and the remaining 30% were used for testing
and validation. The samples were chosen randomly.
After determining the number and type of member-
ship functions, the ANFIS model is structured as illus-
trated in Fig. 4. Even though the ANN coupled with
fuzzy logic seems to be useful, there exists a drawback
for this hybrid model, since it imposes stringent re-
quirements on the quality of training dataset as the
learning becomes entirely data driven. The hybrid al-
gorithm has been applied to the membership function
of each input. The advantage of the hybrid method
is that it uses back propagation for a parameter as-
sociated with input membership function and least
square estimation for parameters associated with out-
put membership. Each input was normalized into a
range of [0, 1].
Consequently, the trained model might behave er-

ratically in unseen input conditions and becomes unin-
terpretable in the case that the training dataset is not
adequate. From this operation with ANFIS, the objec-
tive function is calculated which was then minimized
by PSO. Final optimized parameters of the process are
2.3 volume percentage of TiC, 94 nm average particle
size of TiC, 619◦C casting temperature, 2.5 % poros-
ity, elongation percentage is 3 % and 189MPa yield
strength.

6. Optimized experimental results

Figure 5 shows the effect of various electromagnetic
currents on the microstructure of the compocast Al re-
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Fig. 5. Effect of various electromagnetic currents on the microstructure of the compocast Al reinforced with 2.3 % nano-
TiC: (a) conventional liquid sand cast, (b) 50 A, (c) 100 A.

inforced with 2.3 % nano-TiC. The microstructure of
this alloy contains coarse dendritic α-Al and continu-
ous eutectic network (Si particles and α-Al). Figure 5a
shows the conventional liquid sand cast sample with
dendritic primary α-Al and coarse arms in which the
electromagnetic current is not imposed. Figures 5b,c
show the microstructure of Al alloy obtained at the
different electromagnetic field. The maximum spheric-
ity and medium mean diameter of the globules are
obtained by I = 100A (Fig. 5c). When the EMS cur-
rent is 50 A, the morphology of primary α-Al particles
turned out to be coarse, while the microstructure of Al
alloy processed at 100 A consists of primary α-Al par-
ticles with globular-like fine grain size. With increasing
electromagnetic current, the solid phases are ripened
and therefore small eutectic areas are merged together
becoming as an intergranular phase. This phenomenon
increases the thickness of eutectic regions.
Figure 6 shows the average diameter and shape fac-

tor of primary phase in the semisolid Al alloy prepared
at the different electromagnetic field. One can see that,
when the electromagnetic field is not applied, the pri-
mary α-Al phase is coarse with an average diameter
of more than 77 µm and a rather low shape factor of
0.21. With the increase of the electromagnetic field,
the average diameter decreases from 52 to 40 µm and
the average shape factor of the particles increases from
0.52 to 0.69.
The energy density of the magnetic field represents

pressure acting orthogonally to the magnetic field and
toward the center of the melt. So, the resulting pres-
sure difference imposed on the melt causes forced con-
vection as soon as the action of the electromagnetic
force is exerted. In the conventional sand cast, the
molten metal begins to solidify as it comes in contact
with the mold wall. However, in the case of electro-
magnetic stirring, many initial solidified nuclei form-
ing on the wall of the mold in a heterogeneous nucle-

Fig. 6. Effect of various electromagnetic currents on aver-
age diameter (a) and shape factor (b) of primary phase in

semisolid A356 Al alloy slurry.
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Fig. 7. The microstructure of the Al reinforced with 2.3 % nano-TiC particulates: (a) conventional liquid sand cast and
(b) compocast (100 A).

Fig. 8. SEM of Al reinforced with 2.3 % nano-TiC particulates: (a) SE, (b) BSE in the conventional liquid sand cast, (c)
SE, and (d) BSE in compocast (100 A).

ation pattern are easily broken off by vibrating forces
and would be transported into the entire liquid metal.
Thus, the number of nuclei in the melt is increased.
During growth, if the melt is held out of an electro-
magnetic field, the primary dendrites grow up, and
the secondary dendritic arms develop unrestrainedly,
so the solid advances in the form of dendrites to form
the coarse grains. In contrast, in the case of electro-
magnetic stirring, application of an EMS to melt will

produce a forced convection. The secondary dendritic
arms may detach from the primary dendrites, and
the melt rushes to the top of the primary dendrites
at the solid/liquid interface so that the primary den-
drites can be fractured. Therefore, the fractured tips
of the columnar dendrites or the broken-off dendrite
branches promote the formation of an equiaxed struc-
ture with fine grains, and the broken pieces can be
carried by the forced convection into the bulk melt,
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Ta b l e 1. The hardness of the Al matrix nanocomposite
reinforced with 2.3 % nano-TiC produced by a variety of

electromagnetic fields

Al Sand EMS 50 A EMS 100 A

Hardness (BHN) 71 76 80

acting as nuclei. Here it should be pointed out that
the Joule heat induced by the induction current also
affects the solidification process. If the induction cur-
rent passes through the melt, the most Joule heat will
be generated at the solid/liquid interface of the den-
drite root because the difference in electrical resistivity
is the largest, which will spheroidize the dendrites and
change their shape into globular.
In aluminum-silicon alloy, the secondary dendrite

arm spacing (SDAS), the shape and distribution of eu-
tectic silicon particles and secondary phases all control
the tensile properties of pore-free castings. The pres-
ence of Fe-rich secondary phases affects the mechani-
cal properties of Al-Si alloy, in particular, the ductility
of the alloy. The amount and number of Fe-rich inter-
metallics strictly depend on the magnesium content
and solidification process.
Figure 7 shows the microstructure of the Al ma-

trix reinforced with 2.3 % nano-TiC particulates. The
good combination of strength and elongation of com-
pocast samples is mainly derived from the extremely
low porosity, fine size and equiaxed morphology of the
Fe-containing intermetallic compounds, and perhaps
more importantly, the fine and uniform microstruc-
ture throughout the entire sample. This is a direct re-
sult of the unique solidification behavior of Al-alloys
during the compocast process. The Al alloy which is
used in this study contains 0.3 wt.% Fe. SEM micro-
graphs (BSE) confirm the presence of Fe-containing
intermetallic compound, which has a fine particle size
and a compact morphology (Fig. 8d). This is very dif-
ferent from the Fe-containing intermetallic compound
observed in the sand cast samples which usually ap-
pear as large plates or needles (Fig. 8b). Fine and
spherical Fe-containing intermetallic particles are less
harmful to mechanical properties, particularly ductil-
ity.
The most important factor in the fabrication of

MMCs is the uniform dispersion of the reinforcements.
Figure 9 represents typical SEM images of this com-
posite in conventional liquid sand cast and EMS with
I = 100 A. Figure 9b shows the uniform distribution of
TiC particles through the matrix alloy. It is assumed
that electromagnetic field improves the wetting kinet-
ics in the liquid aluminum which results in uniform
distribution of TiC particles. It is believed that strong
mechanical bonding made between Al and TiC parti-

Fig. 9. The microstructure of the Al reinforced with 2.3 %
nano-TiC particulates: (a) conventional liquid sand cast

and (b) compocast.

cles combined with EMS process help to disperse them
more uniformly in the liquid.
Table 1 shows the hardness of the EMS Al ma-

trix composite reinforced with 2.3 % nano-TiC pro-
duced by a variety of electromagnetic fields. The high-
est value of hardness is obtained by addition of 2.3 %
TiC nanoparticles and using an electromagnetic cur-
rent of I = 100A which is attributed to a finer den-
dritic microstructure and uniform distribution of TiC
nanoparticles. The hardness of this alloy is enhanced
by precipitation of Mg2Si in the supersaturated Al
solid solution.
Figure 10 shows the weight loss as a function of

sliding distance at an applied load of 20 N. It is noted
that the weight loss of the EMS composite is less than
that of conventional cast composite. The weight loss
increases with increase in sliding distance and has a
declining trend with increasing the electromagnetic
field. This result is consistent with the rule that in
general, materials with higher hardness have better
wear and abrasive resistance. It is known that the wear
loss is inversely proportional to the hardness of alloys
[10, 52]. In the case of conventional cast composite,
the depth of penetration is governed by the hardness
of the specimen surface and applied load [53]. But,
in the case of EMS composite, the depth of penetra-
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Fig. 10. The weight loss as a function of sliding distance.

tion of the harder asperities of hardened steel disc is
primarily governed by the protruded hard and fine ce-
ramic reinforcements that disperse in the overall ma-
trix and also fine dendrites. Thus, the major portion
of the applied load is carried by particles. The role
of the reinforcement particles is to support the con-
tact stresses preventing high plastic deformations and
abrasion between contact surfaces and hence reduce
the amount of worn material [54].
The wear surface of the conventional cast com-

posite under the applied load of 20 N is depicted in
Fig. 11a. The conventional cast matrix alloy is much
softer than the counter body material and during slid-
ing counter body penetrates into the matrix alloy pro-
ducing deep grooves and causing extensive plastic de-
formation of the surface, which results in great mate-
rial loss and significant wear rate. The worn surfaces
also contain the evidence of adhesive wear in the form
of adhesive pits. On the other side, the large scale of
the matrix alloy is transferred to the counter body.
The flow of materials along the sliding direction, gen-
eration of cavities due to delamination of surface mate-
rials and tearing of surface material is also noted in
this figure. Worn surface EMS (100 A) composite at
an applied load of 20 N is shown in Fig. 11b. It indi-
cates the formation of continuous wear grooves, rel-
atively smooth mechanically mixed layers, and some
damaged regions. However, the degree of cracks forma-
tion on the wear surface is not much. The wear sur-
face is characterized by the formation of parallel lips
along the continuous groove marking. The sliding sur-
face features a transfer layer of compacted wear which
reaches a critical thickness before being detached lead-
ing to the formation of wear debris. The load, slid-
ing speed determine the extent of this transfer layer,

Fig. 11. SEM images of the wear surface of Al reinforced
with 2.3 % nano-TiC particulates: (a) conventional liquid

sand cast and (b) compocast.

which increases with increasing load due to the higher
frictional heating and a higher level of compaction.
Morphology of wear debris collected during the tests
is also shown in Fig. 12. Debris formed during the
wear mostly from the pin material. Sharp edge, plate-
like particles are dominant. Among the wear debris
of the composite at higher specific loads. plastic flow
of material could be observed on the surface of these
plate-like particles. Therefore, plate-like wear debris
with sharp edges prevail at higher specific load, which
are typical for adhesive wear. Moreover, the presence
of the rod-like particles is an indication of severe wear.

7. Conclusions

This work shows the usefulness of an intelligent
way to predict the performance of Al matrix compos-
ites using particle swarm optimization. The optimum
parameters are used in the experimental procedure.
EMS plays an important role in the formation of non-
dendritic primary α-Al particles in Al alloy slurry. It
can be seen that the increase in EMS current causes
smaller and rounder primary α-Al particles. The max-
imum sphericity and medium mean diameter of the
globules are obtained by I =100 A.
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Fig. 12. Morphology of wear debris of Al reinforced with
2.3 % nano-TiC particulates: (a) conventional liquid sand

cast and (b) compocast.

A comparative study on abrasive wear behavior of
nano-TiC reinforced aluminum metal matrix compos-
ite has been carried out in the present investigation.
The mass loss of the pin was used to study the effect
of TiC addition on the wear resistance of the compos-
ite materials. The TiC particulates increase the bulk
hardness of the base Al alloy. In general, EMS com-
posites offer superior wear as compared to the sand
cast irrespective of applied load and sliding speed.
The wear properties of EMS compocast samples ben-
efit from the refinement of the primary α-Al phase
and uniform distribution of eutectic Si particles. The
reason for lower wear rate in EMS composites can be
attributed to their high hardness as compared to the
conventional cast, resulting in a lower real area of con-
tact and therefore lower wear rate. One of the com-
mon features observed on the worn surfaces of both
base conventional cast and EMS composite is the for-
mation of grooves and ridges running parallel to the
sliding direction.
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Ceramics International, 41, 2015, p. 10488.
doi:10.1016/j.ceramint.2015.04.136

[23] Mazahery, A., Shabani, M. O.: Tribology Transac-
tions, 56, 2013, p. 342.
doi:10.1080/10402004.2012.752552

[24] Rahimipour, M. R., Tofigh, A. A., Shabani, M. O.,
Davami, P.: Tribology in Industry, 36, 2014, p. 220.

[25] Shabani, M. O., Mazahery, A.: Ceramics International,
39, 2013, p. 1351. doi:10.1016/j.ceramint.2012.07.073

[26] Chen, Q., Chen, G., Han, L., Hu, N., Han, F., Zhao, Z.,
Xia, X., Wan, Y.: Journal of Alloys and Compounds,
656, 2016, p. 67. doi:10.1016/j.jallcom.2015.09.135

[27] Lam, Y.-K., Tsang, P. W. M., Leung, C.-S.: Neu-
ral Computing and Applications, 22, 2013, p. 1349.
doi:10.1007/s00521-012-0959-5

[28] Mazahery, A., Shabani, M. O.: Powder Technology,
245, 2013, p. 146. doi:10.1016/j.powtec.2013.04.035

[29] Rahimipour, M. R., Tofigh, A. A., Mazahery, A., Sha-
bani, M. O.: Neural Computing and Applications, 24,
2014, p. 1531. doi:10.1007/s00521-013-1375-1

[30] Shabani, M. O., Mazahery, A.: Metallurgist, 56, 2012,
p. 414. doi:10.1007/s11015-012-9591-y

[31] Tofigh, A. A., Shabani, M. O.: Ceramics International,
39, 2013, p. 7483. doi:10.1016/j.ceramint.2013.02.097

[32] Sudheer, C., Maheswaran, R., Panigrahi, B. K.,
Mathur, S.: Neural Computing and Applications, 24,
2014, p. 1381. doi:10.1007/s00521-013-1341-y

[33] Mazahery, A., Shabani, M. O.: Powder Technology,
249, 2013, p. 530. doi:10.1016/j.powtec.2013.08.005

[34] Shabani, M. O., Mazahery, A.: JOM, 65, 2013, p. 272.
doi:10.1007/s11015-012-9591-y

[35] Mazahery, A., Shabani, M. O.: Kovove Mater., 51,
2013, p. 333. doi:10.4149/km-2013-6-333

[36] Li, B., Pan, Q., Yin, Z.: Journal of Alloys and Com-
pounds, 584, 2014, p. 406.
doi:10.1016/j.jallcom.2013.09.036

[37] Mazahery, A., Shabani, M. O.: Russian Metallurgy
(Metally), 2011, 2011, p. 699.
doi:10.1134/S0036029511070196

[38] Shabani, M. O., Alizadeh, M., Mazahery, A.: Fatigue
and Fracture of Engineering Materials and Structures,
34, 2011, p. 1035.
doi:10.1111/j.1460-2695.2011.01592.x

[39] Tofigh, A. A., Rahimipour, M. R., Shabani, M. O.,
Alizadeh, M., Heydari, F., Mazahery, A., Razavi, M.:
Journal of Manufacturing Processes, 15, 2013, p. 518.
doi:10.1016/j.jmapro.2013.08.004

[40] Shabani, M., Alizadeh, M., Mazahery, A.: Fatigue &
Fracture of Engineering Materials & Structures, 34,
2011, p. 1035. doi:10.1111/j.1460-2695.2011.01592.x

[41] Zeng, W., Chen, N.: Journal of Alloys and Com-
pounds, 257, 1997, p. 266.
doi:10.1016/S0925-8388(97)00032-7

[42] Mazahery, A., Shabani, M. O.: Metallurgical and
Materials Transactions A: Physical Metallurgy and
Materials Science, 43, 2012, p. 5279.
doi:10.1007/s11661-012-1339-6

[43] Shabani, M. O., Mazahery, A.: Indian Journal of En-
gineering and Materials Sciences, 19, 2012, p. 129

[44] Tofigh, A. A., Rahimipour, M. R., Shabani, M. O.,
Davami, P.: Journal of Composite Materials, 49, 2015,
p. 1653. doi:10.1177/0021998314538871

[45] Rajabloo, T., Ghafarinazari, A., Seyed Faraji, L.,
Mozafari, M.: Journal of Alloys and Compounds, 607,
2014, p. 61. doi:10.1016/j.jallcom.2014.03.124

[46] Shabani, M. O., Rahimipour, M. R., Tofigh, A. A.,
Davami, P.: Neural Computing and Applications, 26,
2015, p. 899. doi:10.1007/s00521-014-1724-8

[47] Shamshirband, S., Malvandi, A., Karimipour, A.,
Goodarzi, M., Afrand, M., Petković, D., Dahari,
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