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Identification of prognostic risk factors of acute lymphoblastic leukemia 
based on mRNA expression profiling

C. LI1,2,‡, L. KUANG3,4,‡, B. ZHU1,2, J. CHEN1,2, X. WANG1,2, X. HUANG1,2,*

1Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, People’s Republic 
of China; 2Department of Hematology, Affiliated Medical School of University of Electronic Science and Technology, Chengdu, Sichuan, People’s 
Republic of China; 3Nursing School, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China; 4Nephrology Division, Sichuan Acad-
emy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, People’s Republic of China

*Correspondence: huanghhhs@qq.com
‡Contributed equally to this work.

Received July 19, 2016 / Accepted December 12, 2016

We aim to identify prognosis risk factors in acute lymphoblastic leukemia (ALL). mRNA microarray data of adult ALL 
patients were downloaded from TCGA database, whose mRNAs were isolated from bone marrow aspirate fluid mononuclear 
cells. Then the differentially expressed genes (DEGs) between good and poor prognosis samples were screened. Following 
that, the sample dependency network was constructed based on the Pearson connection coefficients of DEGs in the samples. 
The prognosis-related genes were collected using logistic regression analysis. A classifier for predict the prognosis of ALL 
patients was established, which was validated in another independent dataset GSE13280 including 173 ALL samples. A total 
of 578 down-regulated and 637 up-regulated DEGs for worse prognosis were identified. A sample dependency network was 
established, comprising 100 samples combined by 246 lines. 13 prognosis-related genes were selected to constructed the 
prognosis classification model, which had an overall precision of 82.7% on distinguishing prognosis status of ALL patients. 
Total 4 genes were found as the prognosis risk factors in predicting the prognosis of ALL samples, including ALPK1, ACTN4, 
CALR, and ZNF695. ALPK1, ACTN4, CALR, and ZNF695 were identified as the potential prognosis risk factors in adult ALL.
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Acute lymphoblastic leukemia (ALL) is the most common 
childhood cancer and a major cause of illness and death in 
adults [1]. The causation of ALL is the cooperation of various 
oncogenic lesions in T and B progenitor cells, includes the le-
sions that impact the capacity of unlimited self-renewal and 
lesions that lead to stage-specific development arrest [2, 3]. 
With modified therapies based on patient pharmacogenomics 
and pharmacodynamics, the 5-year survival rate of ALL has 
increased significantly over the past 10 to 15 years, and it is 
about 87.5% for patients younger than 15 years and 61.1% for 
adolescent patients [4, 5]. Even though most patients can be 
cured, innovative approaches are still needed to gain further 
improvement in prognosis while reducing adverse effects.

Recent genome-wide study on leukaemic cell DNA profiles 
have identified certain genetic and sequence mutations that 
influence the responsiveness to treatment and mutations that 
serve as the therapeutic targets and prognosis markers for ALL 

patients. For instance, the co-inheritance of IKZF1, ARID5B, 
CEBPE, and CDKN2A are found to be the influence factor for 
childhood ALL, and it may impose an effect on the response to 
treatment [6, 7]. IKZF1 alternation is associated with the worse 
prognosis in Down syndrome ALL and BCR-ABL1 positive 
and negative ALL [8-10]. The methylation of p21 and p57 were 
found to be associated with dismal outcome in ALL [11, 12]. 
Deletion of CDKN2 is a predictor for poor prognosis in the 
prognosis of adult B-lineage ALL patients [13]. Ezh2 controls 
the survival signaling in early T cell precursor ALL [14]. High 
expression of CREB is associated with a lower overall survival 
in adult ALL patients [15].

Genomic classifier identified via microarray data analysis 
can provide prognostic and predictive insight into the clini-
cal features of diseases [16]. A three-gene classifier has been 
established to stratify early-stage non-small-cell lung cancer 
patients with significantly different prognosis [17]. Another 
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three-gene expression signature showed the ability to predict 
the survival of squamous cell carcinoma of lung in early stage 
[18]. Zhu et al found a predictive gene signature for adjuvant 
chemotherapy in resected lung cancer [19]. Expression pro-
filing of leukemic blasts can accurately identify the known 
prognostic subtypes of ALL [20].

In this study, the microarray data of ALL patients were 
downloaded to identify the prognosis risk factors, the accuracy 
and precision of identified gene signature was then verified 
on another independent dataset. Survival analysis was also 
performed to test the prognostic value of the identified genes.

Material and methods

Microarray data. A total of 173 microarray data of bone 
marrow aspirate fluid mononuclear cells from adult acute 
lymphocytic leukemia patients were downloaded from TCGA 
database (http://cancergenome.nih.gov/). These data were 
divided into two groups according to the survival status of 
the patients: good prognosis group (survival time longer 
than 3 months, N=59) and poor prognosis group (survival 
time shorter than 3 months, N=114). Next, the level 3 data 
were processed based on the following platform: TCGA_
LAML_exp_HiSeqV2_PANCAN-2014-08-22. After the log 
transformation, the data were normalized using the Z score 
method [21].

Identification of DEGs. The differentially expressed genes 
(DEGs) between good and poor expression group were iden-
tified using Limma method [22], the threshold was p< 0.05 
and log |FC(fold change)|>1. To test the classification effects 
of DEGs on good and poor prognosis samples, hierarchical 
clustering analysis was conducted using Cluster v3.0 and 
visualized by TreeView [23].

Dependency network construction. To explore the 
expression differences and connections between good and 
poor prognosis samples, the Pearson correlation coefficients 
between them were calculated. The threshold for significant 
correlation was |p|<0.05. Next, these correlations were visual-
ized via cytoscape software as the sample dependency network 
[24].

Enrichment analysis. To investigate the underlying 
mechanism of the prognosis in ALL, the function and path-
way enrichment of the DEGs were conducted using molecule 
annotation system V3.0. FDR (false discovery rate, the adjust 
P) <0.05 was the cut-off for significant terms. Genes in the 
identified significant terms were conducted logistic regres-
sion analysis, and genes with p<0.05 were recognized as the 
prognosis-related genes.

Prognosis classifier construction. Prognosis classifier was 
constructed using the prognosis-related genes using random 
forest algorithm under following parameters: the number of 
trees in the forest, estimator=1000; criterion, the entropy gain 
algorithm [25]. The classifier was trained using 172 samples, 
and verified using the other 1 sample to test its precision. To 
further explore the prediction effect of the prognosis-related 

genes on the prognosis of ALL patients, microarray data 
GSE13280 were downloaded from GEO database, which in-
cludes 44 samples of bone marrow aspirate fluid mononuclear 
cells from ALL patients. Total 22 responsive samples (patients 
responded to early treatment of IR-induced DNA damage) and 
22 resistant samples (patients did not response to IR-induced 
DNA damage) were eligible.

Survival analysis. The selected prognosis-related genes 
were used to conduct survival analysis on the downloaded 
RNA seq data of 179 ALL patients from TCGA. Firstly, self-
regression method was applied to identify the combination 
values of the 13 prognosis-related genes. In self-regression 
process, genes were randomly removed in the iterations of 
the overall genes, and the contribution value (coefficient) was 
obtained by comparing the original p values of genes. Next, 
the top 5 genes with higher coefficients were applied in com-
bination with the prognosis status of samples downloaded to 
conduct survival analysis.

Results

Classification effect of DEGs. To identify the genes may 
associated with prognosis of the samples, DEGs between good 
and poor expression ALL samples were screened using Limma 
method. A total of 578 down-regulated and 637 up-regulated 
genes were identified (Figure 1). Next, clustering analysis were 
conducted to explore the distinguish effect of the DEGs to all 
samples with different prognosis status. The results revealed 
that all 173 samples were clustered into 3 types (displayed as 
orange, blue and purple in Figure 2), and samples with simi-
lar prognosis status were in the same cluster. However, some 
good prognosis samples exhibited similar gene expression 
levels as the poor prognosis samples, indicating a high risk 
of recurrence.

Figure 1. Distribution of DEGs (differentially expressed genes). X-axis 
represents log |FC(fold change)| of gene expressions, y-axis represents log 
p values. DEGs are marked in blue, while non-DEGs are marked in green.
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are not always exhibiting different gene expressions. To find 
out the connections between patient prognosis and gene 
expressions, Pearson correlation coefficient between samples 
at gene expression levels were calculated. In the dependency 
network of significantly connected samples (Figure 3), there 
were 100 nodes (samples) and 246 lines (connections). Most 
samples with similar prognosis exhibited positive connec-
tions, while gene expression levels of different prognosis 
samples differed remarkably. However, there were also ex-
ceptions, with different prognosis samples showing positive 
connections (eg. connection of TCGA-AB-2845-03 with 
TCGA-AB-2946-03 and TCGA-AB-3000-03), and prog-
nosis-similar samples showing negative connections (eg. 
connection of TCGA-AB-2805-03 with TCGA-AB-2897-03 
and TCGA-AB-2979-03). Therefore, individual differences 
might be another influencing factor to prognosis in ALL.

Enrichment analysis. The function and pathways changes 
caused by differential gene expressions are normal ways 
interrupting disease development. To explore the deeper in-
fluence of DEGs to patients’ prognosis, function and pathway 
enrichment analysis was conducted. Significantly enriched 
terms of up-regulated genes included antigen processing and 
presentation via MHC class I, immune response, chronic 
myeloid leukemia and natural killer cell mediated cytotoxic-
ity (Table 1 and Table 2), indicting that the chronic disease 

Figure 2. Sample clustering results. Green represents good prognosis sam-
ples, and red represents poor prognosis samples. The color changing from 
green to red represents the change from down-regulation to up-regulation 
of DEGs. Orange, blue and purple are the clustered 3 types of samples, with 
poor prognosis samples dominated in blue types.

Table 1. Significant functional terms of up-regulated genes

GO Term Count p value FDR
GO:0002474 antigen processing and presentation via MHC class I 29 9.15E-58 1.42E-56
GO:0044419 interspecies interaction between organisms 35 7.23E-51 7.88E-50
GO:0019882 antigen processing and presentation 29 2.23E-49 2.21E-48
GO:0006355 regulation of transcription, DNA-dependent 58 2.26E-45 1.45E-44
GO:0006350 transcription 50 2.50E-34 1.36E-33
GO:0006955 immune response 33 5.11E-32 2.53E-31
GO:0055114 oxidation reduction 28 7.46E-30 3.39E-29
GO:0006468 protein amino acid phosphorylation 18 1.98E-15 5.52E-15
GO:0015031 protein transport 18 1.29E-14 3.51E-14
GO:0007165 signal transduction 32 7.44E-13 1.89E-12

Table 2. Significant pathway terms of up-regulated genes

Pathway Count p value FDR
Focal adhesion 10 9.48E-06 5.05E-05
Chronic myeloid leukemia 6 3.90E-05 1.27E-04
Phosphatidylinositol signaling system 6 4.20E-05 1.32E-04
Leukocyte transendothelial migration 7 7.18E-05 1.95E-04
Prostate cancer 6 9.58E-05 2.38E-04
Regulation of actin cytoskeleton 9 9.60E-05 2.38E-04
Axon guidance 7 1.13E-04 2.72E-04
Alzheimer‘s disease 8 1.26E-04 2.84E-04
Citrate cycle (TCA cycle) 4 1.58E-04 3.47E-04
Natural killer cell mediated cytotoxicity 7 1.63E-04 3.48E-04

Sample dependency network. When comparing patients 
with different prognosis, not only the gene expression dif-
ferences, but also the phenotypes of patients should be 
considered. Normally, patients with similar phenotypes 
exhibit similar gene expression patterns, that is, positive 
connection. However, patients with different phenotypes 
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Figure 3. Sample dependency network. Good prognosis samples are expressed in triangle, while poor prognosis samples are expressed in circular. The 
positive connections are marked in solid line, while the negative connections are marked in dotted lines.

Table 3. Significant functional terms of down-regulated genes

GO Term Count p value FDR
GO:0006350 transcription 63 1.29E-55 3.10E-54
GO:0006355 regulation of transcription, DNA-dependent 60 4.50E-54 9.45E-53
GO:0019941 modification-dependent protein catabolism 25 3.88E-29 4.28E-28
GO:0007165 signal transduction 37 4.99E-20 3.99E-19
GO:0000122 negative regulation of transcription 12 1.55E-16 1.04E-15
GO:0006468 protein amino acid phosphorylation 17 5.76E-16 3.72E-15
GO:0006508 proteolysis 17 4.94E-13 2.52E-12
GO:0015031 protein transport 15 8.62E-13 4.26E-12
GO:0007049 cell cycle 15 5.00E-12 2.27E-11
GO:0007018 microtubule-based movement 8 5.38E-12 2.38E-11

processing and higher natural killer cell-mediated cytotoxicity 
immune response may be connected with good prognosis in 
ALL. Significantly enriched terms of down-regulated genes 
included ubiquitin mediated proteolysis, cell cycle, and wnt 
signaling pathway (Table 3 and Table 4), suggesting good 

prognosis patients may exert slower cell proliferation and 
good cell differentiation.

Prognosis-related genes and prognosis classifier. Genes in 
the significant function and pathway terms were conducted lo-
gistic regression analysis, to identify the DEGs associated with 
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prognosis. 13 prognosis-related genes were identified: ALPK1, 
UBE2J1, ZNF695, ACTN4, CLK3, KLKB1, CALR, MED12, 
ASAH2, PIK3R5, FBXL5, CXCR6, and DNAH10 (Table 5).

The 13 prognosis-related genes were utilized to construct 
a prognosis classification model. 172 samples were used as the 
training data, while the rest 1 sample was used as the predic-
tion data. The training result of the classifier showed an overall 
precision of 82.7%, and the classification precision for good 
prognosis samples was 71.2%, for poor prognosis samples 
was 88.6% (Table 6), suggesting a better classification effect 
on poor prognosis samples.

Table 4. Significant pathway terms of down-regulated genes

Pathway Count p value FDR

Ubiquitin mediated proteolysis 13 9.80E-12 1.23E-09
Small cell lung cancer 7 1.66E-06 2.47E-05
Wnt signaling pathway 8 8.00E-06 8.39E-05
Cell cycle 7 1.44E-05 1.35E-04
Prostate cancer 6 2.59E-05 1.98E-04
Aminosugars metabolism 4 3.76E-05 2.63E-04
Systemic lupus erythematosus 7 4.93E-05 3.10E-04
Melanogenesis 6 6.65E-05 3.57E-04
T cell receptor signaling pathway 6 8.64E-05 4.19E-04
Hedgehog signaling pathway 4 5.42E-04 0.001821

Figure 4. Boxplot of 9 prognosis-related genes in GSE13280. Blue bars represent treatment responsive samples, and red bars represent resistant samples. 
X-axis shows the prognosis-related gene, y-axis shows their expression levels.

Figure 5. Overall survival analysis. The survival curve of patients without 
any alterations of the 5 genes is marked in red, and the survival curve of 
patients with expression alterations of the 5 genes is marked in blue. X-axis 
shows survival time, y-axis shows patient percentage.

Among all 13 genes, 9 genes were found differentially 
expressed in 22 responsive and 22 resistant ALL samples 
downloaded from GEO database GSE13280 (Figure 4): 
KLKB1, ALPK1, ACTN4, CXCR6, ASAH2, DNAH10, ZNF695, 
PIK3R5, and CALR. The prognosis classifier was also tested 
using these 9 genes. The training result of the classifier 
showed an overall precision of 81.82% to predict the prog-
nosis. Moreover, the classification precision of the classifier 
for responsive samples was 86.4%, for resistant samples was 
77.3% (Table 7), suggesting a better classification effect on 
treatment sensible samples.

Survival analysis. To testify the portability and robustness 
of the prognosis classifier, the classification effect was also 
tested on the RNA-seq samples from 179 ALL patients down-
loaded from TCGA database. Firstly, 5 genes with the higher 
coefficients among 13 prognosis-related genes were selected, 
and they were ALPK1, ZNF695, ACTN4, CALR, and FBXL5. 
Then, the survival analysis based on the expressions of these 
5 genes were conducted. Overall analysis result is shown in 
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Figure 5, and patients with different survival times could be 
distinguished (p =0.000534).

Discussion

Using the microarray data of bone marrow aspirate fluid 
mononuclear cells from adult ALL patients, 578 down-reg-
ulated and 637 up-regulated genes between good and poor 
prognosis samples were identified. From the clustering analysis 
results, we noticed that DEGs cannot be used as the progno-
sis specific biomarkers, so further analysis was conducted to 
identify more specific genes in ALL. Based on the Pearson 
connection coefficients of these DEGs, a  sample depend-
ency network comprised of 100 samples was also established. 
Normally, samples with similar prognosis exhibited positive 
connections, however, in the sample dependency network, 
there was also few prognosis-similar samples showed nega-
tive connections, suggesting the expression differences are the 
influential factor for prognosis. Thus, prognosis specific genes 
are more likely to be the predictive factors for ALL.

Chronic myeloid leukemia and natural killer cell mediated 
cytotoxicity were the significantly enriched pathways of up-
regulated gene, indicating that the enhanced chronic progress 
and cytotoxicity are favorable factors for prognosis in ALL. 
Similarly, the enriched ubiquitin mediated proteolysis, cell 
cycle, and Wnt signaling pathways suggested lower prolifera-
tion speed and better differentiation in good prognosis ALL 
patients.

Totally, 13 prognosis-related genes were selected based on 
the significantly enriched function and pathway terms. The 
verification on the established classifier showed an overall 
precision of 82.7%, a precision of 71.2% to good prognosis 
samples, and a precision of 88.6% to poor prognosis, indicating 
a better distinguishing effect on poor prognosis samples. By 
further verification on another two sets of microarray profiles, 
four genes showed the close connection with the prognosis 
status in ALL patients, and they were ALPK1, ZNF695, ACTN4, 
and CALR.

ALPK1 (α-kinase 1) belongs to α-kinase family, which ex-
erts crucial roles in the sorting and polarization of protein in 
epithelial cells. ALPK1 was reported to be involved in epithelial 
cell polarity and exocytic vesicular transport towards the apical 
plasma membrane [26]. ALPK1 has been implicated in female 
cancers such as breast and ovarian cancers [27], and recog-
nized as one of the critical genes to inhibit differentiation of 
bi-potential tumor-initiating cells in human breast cancer [28]. 
Despite the lack of direct evidence, the finding in this study 
warranted the prognostic roles of ALPK1 in ALL patients.

ACTN4 is a gene located on human chromosome 19q, and 
actinin-4 protein could be used to access the invasion and 
movement capacities of cancer cells [29]. It is reported that pa-
tients with the amplifications of ACTN4 have worse outcomes 
than those without amplification [30]. Copy number increase 
of ACTN4 is an indicator for the unfavorable outcome in pa-
tients with salivary gland carcinoma [31] and an predicator for 

chemoradiotherapy efficacy in patients with locally advanced 
pancreatic cancer [32]. Although ALL is not solid tumor, the 
finding in this study indicted that ACTN4 may play a similar 
role in predicting prognosis in ALL.

CALR is a  gene encoding calreticulin protein, which 
a  multi-functional Ca2+-binding protein chaperone mostly 
localized in endoplasmic reticulum [33]. CALR mutations 
have been recognized as an important diagnostic marker for 
myeloproliferative neoplasms [33].

It is reported that ZNF695 (zinc finger 965) methylation 
predicts a  response to definitive chemoradiotherapy in es-
ophageal squamous cell carcinoma [34]. The findings in this 
study show a potential correlation between ZNF695 and the 
prognosis of ALL patients. 

In conclusion, ALPK1, ACTN4, CALR, and ZNF695 were 
identified as the potential prognosis risk factors in acute 
lymphoblastic leukemia, which may promote to understand 

Table 5. Prognosis-related genes selected via logistic regression

Gene B SE Wals  
coefficient Df (p value) Exp (B)

ALPK1 0.825 0.335 6.059 1 0.014 2.281
UBE2J1 0.979 0.304 10.397 1 0.001 2.662
ZNF695 1.077 0.286 14.197 1 0.000 2.937
ACTN4 1.075 0.327 10.787 1 0.001 2.930
CLK3 -1.329 0.336 15.654 1 0.000 0.265
KLKB1 0.552 0.268 4.236 1 0.040 1.737
CALR -1.137 0.329 11.963 1 0.001 0.321
MED12 -1.19 0.344 11.992 1 0.001 0.304
ASAH2 0.785 0.341 5.294 1 0.021 2.192
PIK3R5 1.788 0.42 18.155 1 0.000 5.975
FBXL5 -1.997 0.465 18.464 1 0.000 0.136
CXCR6 -1.201 0.331 13.154 1 0.000 0.301
DNAH10 0.725 0.301 5.783 1 0.016 2.064

B: regression coefficient; SE: standard error; Df: degree of freedom.

Table 6. Classification result in TCGA dataset

Predict

Class Good Poor Percent

Observe
Good 42 17 71.2
Poor 13 101 88.6

Overall percent 82.7

Table 7. Classification result in GSE13280 microarray dataset

Predict

Class Responsive Resistant Percent

Observe
Responsive 19 3 86.4
Resistant 5 17 77.3

Overall percent 81.82
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the mechanism of ALL and to develop novel therapeutic 
strategies. Further researches should be performed to clarify 
their exact roles in ALL. 
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