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Abstract. The hippocampal mossy fibers contain a substantial quantity of loosely-bound zinc in 
their glutamatergic presynaptic vesicles, which is released in synaptic transmission processes. De-
spite the large number of studies about this issue, the zinc changes related to short and long-term 
forms of potentiation are not totally understood. This work focus on zinc signals associated with 
chemically-induced mossy fiber synaptic plasticity, in particular on postsynaptic zinc signals evoked 
by KCl depolarization. The signals were detected using the medium affinity fluorescent zinc indicator 
Newport Green. The application of large concentrations of KCl, 20 mM and 60 mM, in the extracel-
lular medium evoked zinc potentiations that decreased and remained stable after washout of the first 
and the second media, respectively. These short and long-lasting enhancements are considered to be 
due to zinc entry into postsynaptic neurons. We have also observed that following established zinc 
potentiation, another application of 60 mM KCl only elicited further enhancement when combined 
with external zinc. These facts support the idea that the KCl-evoked presynaptic depolarization 
causes higher zinc release leading to zinc influx into the postsynaptic region.
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Introduction

Zinc is one of the most important divalent cations that are 
present in the mammalian forebrain (Frederickson 2000; 
Sensi et al. 2011). Only a small amount of zinc is concen-

trated in the presynaptic boutons of zinc-containing neu-
rons (Frederickson 1989), being the larger fraction of zinc 
found in metalloproteins, which form complexes with zinc 
with very high-affinity (Jacob et al. 1998). One of the most 
important zinc releasable pools is found in hippocampal 
mossy fibers (Choi et al. 1998), which have large boutons 
and are located very close to the apical dendrites of CA3 
neurons, suggesting that they are part of a uniquely strong 
synapse (Bischofberger et al. 2006). Mossy fiber synapses se-
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quester, accumulate and release zinc from their glutamater-
gic presynaptic vesicles that contain the zinc transporter 
ZnT-3, which pumps zinc into the vesicles and is expressed 
exclusively in the brain (Palmiter et al. 1996; Frederickson 
et al. 2005). The depolarization of zinc-containing neurons 
leads to calcium-dependent glutamate and zinc co-release 
via the exocytosis of their vesicles (Howell et al. 1984; 
Perez-Clausell and Danscher 1986). Large depolarizations, 
evoked by electrical or chemical stimulation, can result in 
the formation of long-term potentiation (LTP) (Bliss and 
Collingridge 1993; Bortolotto and Collingridge 1993). 
This form of synaptic plasticity consists of a  long lasting 
enhancement of synaptic transmission and is considered to 
be involved in learning and memory processes in the brain 
(Malenka and Bear 2004). LTP can be induced by high-
frequency stimulation (tetanus) and also by the application 
of large amounts of extracellular potassium in hippocampal 
slices (Fleck et al. 1992; Bernard et al. 1994; Roisin et al. 
1997) and in dissociated neuronal cultures (Appleby et 
al. 2011). Potassium-induced LTP shares some properties 
with tetanus-induced LTP in hippocampal CA1 area (Fleck 
et al. 1992; Bernard et al. 1994). For example, the popula-
tion EPSP amplitudes had similar enhancements in both 
cases (Fleck et al. 1992). Other forms of chemically-evoked 
LTP include the TEA-LTP (Suzuki and Okada 2009) and 
also LTP induced by the application of 4-amino pyridine, 
mediated by the inhibition of voltage-dependent potas-
sium channels, which causes significant cell depolarization 
(Bancila et al. 2004). The depolarization associated with 
chemically-induced LTP may activate simultaneously all 
potentiable mossy fiber synapses (Zhao et al. 2012). It was 
observed that the induction of tetanically-evoked mossy 
fiber LTP in CA3 hippocampal area, is accompanied by 
significant zinc release from mossy fibers (Quinta-Ferreira 
et al. 2004; Qian and Noebels 2005; Quinta-Ferreira and 
Matias 2005; Matias et al. 2010). Thus, intense high-
frequency stimulation causes an increase of zinc in the 
synaptic cleft, which may reach 10–100 μM, and also an 
enhancement of postsynaptic intracellular zinc (Vogt et al. 
2000; Li et al. 2001a, 2001b; Ueno et al. 2002; Paoletti et al. 
2009). Potassium-induced depolarization evokes, as well, 
a postsynaptic zinc increase (Li et al. 2001a, 2001b; Ketter-
man and Li 2008), which may, at least in part, be explained 
by zinc entry through voltage-gated calcium channels and 
calcium-permeable glutamate receptors, as observed ap-
plying exogenous zinc in cell cultures (Sensi et al. 1997; 
Marin et al. 2000). Cytoplasmic zinc enhancements were 
also observed in non-neuronal cells, following membrane 
potassium depolarization (Slepchenko and Li 2012). In both 
cortical and non-neuronal cells, there is also evidence that 
zinc is taken up in intracellular stores upon stimulation, 
being considered that it could be stored in the endoplasmic 
reticulum, the Golgi apparatus and mitochondria (Saris and 

Niva 1994; Sensi et al. 2000; Stork and Li 2010; Qin et al. 
2011; Sensi et al. 2011). Because of its complexity and the 
large number of mechanisms involved, the characteriza-
tion of zinc dynamics associated with chemically-induced 
synaptic potentiation remains to be clarified.

The aim of this work was to address intracellular zinc 
changes associated with potassium-evoked mossy fiber syn-
aptic plasticity in CA3 hippocampal area. For this purpose, 
hippocampal slices were loaded with the permeant form of 
the zinc selective fluorescent probe Newport Green (NG) 
(Haugland 1996) being the cells depolarized with different 
concentrations of extracellularly applied KCl.

Most of the present findings have been reported in ab-
stract form.

Materials and Methods

Data were collected in the synaptic system mossy fibers – CA3 
pyramidal cells of hippocampal slices obtained from pregnant 
Wistar rats (10–13 weeks old). The animals were sacrificed 
by cervical dislocation and the isolated brain was rapidly 
cooled (5–8°C) in artificial cerebrospinal fluid (ACSF). The 
slices (400 mm thick) were cut transversely and transferred 
to a  container with ACSF at room temperature, saturated 
with a gas mixture (95% O2, 5% CO2). They remained there 
at least 1 hour before being used in an experiment. The ACSF 
medium had the following composition (in mM): NaCl 124; 
KCl 3.5; NaHCO3 24; NaH2PO4 1.25; MgCl2 2; CaCl2 2 and 
D-glucose 10; pH 7.4. The slices were subsequently trans-
ferred to the experimental chamber where they were perfused 
with ACSF, at a rate of 1.5 to 2 ml/min, at temperatures in 
the range 30–32°C. The KCl solutions consisted of ACSF with 
higher concentrations of KCl, 20 mM and 60 mM. In some 
experiments ZnCl2 (1 mM) was added to the 60 mM KCl 
medium. All media were perfused for periods of 10–30 min.

Experimental setup and optical measurements 

The measurement of optical signals was performed using 
a fluorescence microscope (Zeiss Axioskop) with a transfluo-
rescence arrangement, including a halogen light source (12 V, 
100 W), a narrow band (10 nm) excitation filter (480 nm) 
and a high-pass emission filter (>500 nm). The light was col-
lected by a water immersion lens (40×, N.A. 0.75) and then 
focused on a photodiode (Hammamatsu, 1 mm2), passing its 
signal through a current/voltage converter (I/V) with a 1 GΩ 
feedback resistance. The signals were digitally processed by 
means of a 16 bit analog/digital converter, at a frequency of 
0.017 Hz and analyzed using the Signal ExpressTM software 
from National Instruments. For measuring zinc changes 
the hippocampal slices were incubated for 1 h in a medium 
containing the permeant form of the zinc indicator Newport 
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Green (NG) (5 μM). This solution was obtained dissolving 
1 mg NG in 250 µl of DMSO and then diluting 5 µl of this 
mixture (DMSO+NG) in 5 ml of ACSF containing 5 µl of 
pluronic acid F-127. This indicator has a moderate affinity 
for zinc (Kd ~ 1 μM) and a relatively low affinity for calcium 
(Kd > 100 mM (Haughland 1996). The optical data consist 
of fluorescence values represented at 1 minute intervals, in 
ACSF or in a KCl medium. The signals were corrected for the 
autofluorescence component, evaluated as the average of ten 
data points obtained from an equivalent region of dye-free 
slices, perfused with the normal solution. All measurements 
are presented as mean ± SEM. Statistical significance was 
evaluated using the Mann-Whitney U test (p < 0.05).

Drugs used were NG, Pluronic acid F-127 (Life technolo-
gies, Carlsbad, CA); DMSO (Sigma-Aldrich, Sintra, PT). 

All experiments were carried out in accordance with the 
European Communities Council Directive. All efforts were 
made to minimize animal suffering and to use only the num-
ber of animals necessary to produce reliable scientific data. 

Results

The fluorescence signals were collected from the stratum 
lucidum of CA3 hippocampal area, as shown in Fig. 1A. It 
was observed that dye-free slices have a significant autofluo-
rescence, triggered by 480 nm incident light and detected 
for wavelengths above 500 nm. In order to evaluate the 
contribution of autofluorescence to the signals detected from 
NG-containing slices, both types of data are indicated in Fig. 
1B. It can be noticed that autofluorescence is a major part of 
the total fluorescence, representing about 75% of it. Thus, 
all signals were corrected subtracting the autofluorescence 
component, which was obtained from non-incubated slices. 

The remaining fluorescence is due to the formation of the 
NG-zinc complex (Fig. 2A). Since the permeant form of 
NG is hydrolyzed in the intracellular medium, becoming 

Figure 1. Diagram of the hippocampal slice, autofluorescence and basal fluorescence. A. Schematic representation of the hippocampal 
slice. The circle indicates the region from where the optical signals were recorded. B. Fluorescence from non-incubated and from Newport 
Green containing slices. Autofluorescence (open symbols) and fluorescence signals from slices incubated with 5 mM of the zinc indicator 
Newport Green (closed symbols) (n = 16). The points represent the mean ± SEM. mf, mossy fibers; DG, dentate gyrus.

Figure 2. Pooled data of KCl-induced zinc changes obtained with 
Newport Green. Application of 20 mM KCl (A, n = 3) and 60 mM 
KCl (B, n = 7) evoked a rise in the NG fluorescence that was re-
verted upon washout (p < 0.05). All values were normalized by the 
average of the first 10 responses and represent the mean ± SEM. F, 
fluorescence; F0, autofluorescence.

A B
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charged, it cannot permeate the vesicular membranes and 
is thus unable to detect presynaptic zinc in the vesicles (Li et 
al. 2001b). For this reason, it is considered that the corrected 
optical signals have a postsynaptic origin. 

The perfusion of the medium containing 20 mM KCl 
caused a rise in the zinc signals to 119 ± 5%, at 35–40 min 
(n = 3, p < 0.05), that is partially reverted after a 30 min pe-
riod, upon returning to the initial ACSF solution, as shown 
in Fig. 2A. However, the medium with a higher concentration 
of KCl, 60 mM, evoked a zinc potentiation that is maintained 
following washout. In Fig. 2B it can be observed that the am-
plitude of the zinc signals obtained in the presence of 60 mM 
KCl increased to 184 ± 14%, at 35–40 min (n = 7, p < 0.05). 
These signals remained stable following the withdrawal of 
KCl, revealing the establishment of a KCl-induced persistent 
zinc potentiation measuring 181 ± 13%, at 65–70 min (n = 7), 
with respect to baseline. 

The following experiments were designed to study the effect 
of repeated applications of the KCl media considered before. 
A second addition of 20 mM KCl caused similar zinc changes 
to those induced by the first one, i.e. an enhancement in the 
presence of that medium followed by a decrease in its absence 
(Fig. 3A). In the case of the 60 mM KCl solution the repeated 
perfusion did not induce further potentiation (Fig. 3B). The 
results in Fig. 3C rule out the possibility of saturation of the 
indicator (NG) by zinc, since the application of extracellular 
zinc (1 mM) accompanying KCl (60 mM) resulted in further 
zinc potentiation that was maintained upon returning to ACSF. 

Discussion 

In this study we observed zinc signals associated with 
potassium-induced depolarization of hippocampal mossy 

Figure 3. Zinc signals during consecutive 
applications of KCl media. A. Repeated 
perfusion of 20 mM KCl induced similar 
transient potentiations (n  =  3, p  < 0.05). 
B. Subjecting the slices a  second time to 
60  mM KCl caused no further zinc en-
hancement (n = 3, p > 0.1). C. Subsequent 
zinc potentiations in slices exposed first to 
KCl (60 mM) and then to a mixture of KCl 
(60  mM) and ZnCl2 (1 mM) (n  =  2, p  < 
0.05). All values were normalized by the 
mean of the first 10 responses and repre-
sent the mean ± SEM. F, fluorescence; F0, 
autofluorescence.

A

B

C
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fibers. It has been shown that zinc is released from these 
fibers into the extracellular medium when electrical stimuli 
are delivered (Li et al. 2001a; Quinta-Ferreira et al. 2004; 
Khan et al. 2014; Vergnano et al. 2014) and that it enters to 
postsynaptic neurons following intense electrical or chemi-
cal stimulation (Vogt et al. 2000; Li et al. 2001a, 2001b; Ueno 
et al. 2002; Ketterman and Li 2008). The exposition of the 
slices to a high concentration of exogenous potassium caus-
es an enhancement of the measured fluorescence signals, 
considered to be associated with postsynaptic zinc changes 
(Li et al. 2001b; Ketterman and Li 2008). The potassium-
induced increase in the postsynaptic zinc concentration 
may be explained by a rise in synaptic activity, caused by 
the potassium-evoked shift of the presynaptic membrane 
potential. In the presence of the 20 mM and 60 mM KCl 
solutions, the resting values increase to about –54 mV and 
–33 mV, respectively, thus leading to cell depolarization 
(Bancila et al. 2004). This causes intense co-release of gluta-
mate and zinc, followed by zinc entry into the postsynaptic 
area, through several types of receptors and channels. The 
subsequent depolarization of the spine region evoked by 
glutamate binding to postsynaptic AMPA, NMDA and 
calcium permeable AMPA/kainate receptors causes the 
opening of their channels and also of voltage dependent 
T- and L-type calcium channels which are located in the 
same membrane. Except for the AMPA channels, all the 
others are permeable to zinc. For the calcium permeable 
AMPA/kainate channels, the permeability ratio PCa /PZn 
was about 1.8 (Weiss and Sensi 2000; Jia et al. 2002). This 
allows zinc entry to the postsynaptic region through the 
mentioned zinc permeant channels, namely L- and T-type 
VDCCs, NMDA and calcium permeable AMPA/kainate 
receptors (Sensi et al. 1997, 1999; Takeda et al. 2009). There 
is also experimental evidence that zinc can be released from 
intracellular stores following the blockade of postsynaptic 
endoplasmic reticulum calcium pumps (Stork and Li 2010). 
In the present work, after removal of the KCl solution, the 
zinc signals decreased in the 20 mM medium and remained 
unchanged in the 60 mM one. It was also observed that, 
after the induction of the long-lasting zinc potentiation, 
another application of KCl (60 mM) did not induce further 
zinc enhancement. However, when KCl (60 mM) was added 
in combination with extracellular zinc (1 mM), a second 
zinc potentiation was elicited, with similar magnitude. The 
mossy fiber boutons contain a  huge amount of synaptic 
vesicles (~16,000), with about 20 active zones, being up to 
1400 vesicles ready to undergo exocytosis (Hallermann et al. 
2003; Rollenhagen and Lubke 2010). However, the inexist-
ence of the second potentiation in the absence of exogenous 
zinc might be due to the lack of additional ready releasable 
vesicles, caused by the previous intense release. Overall the 
results suggest that the evoked zinc potentiations are due 
to zinc entry in the postsynaptic area. 

It was previously shown that KCl depolarization induces 
LTP in CA1 hippocampal area (Fleck et al. 1992; Bernard 
et al. 1994; Roisin et al. 1997). That potentiation may be 
evoked by an enhancement of the glutamate release process 
or may be due to persistent modifications of postsynaptic 
channels permeabilities eventually by an increase in the 
number of AMPA receptors in the hippocampal neurons 
(Malenka and Bear 2004). Thus, the potassium-induced 
long-lasting potentiation, that is a form of LTP, may be ex-
pressed pre- or postsynaptically. There are a large number of 
studies that characterize mossy fiber LTP as presynaptically 
expressed, being mediated by enhanced glutamate release 
(Johnston et al. 1992; Malenka and Bear 2004). However, 
some studies are in favor of the hypothesis of a postsyn-
aptic locus for mossy fiber LTP expression (Yamamoto et 
al. 1992; Yeckel et al. 1999; Quinta-Ferreira et al. 2004; 
Suzuki and Okada 2009). The main argument in favor of 
the presynaptic nature for mossy fiber LTP is the reduction 
of the paired-pulse ratio (the ratio of the amplitude of the 
second excitatory postsynaptic response to that of the first 
in two consecutive pulses), i.e. of paired-pulse facilitation, 
which is inversely correlated with the transmitter release 
probability (Zalutsky and Nicoll 1990; Zucker and Regehr 
2002). However, changes in paired-pulse ratio are not 
exclusively mediated by modifications of the presynaptic 
release probability. For example, they can be influenced by 
postsynaptic receptor desensitization and lateral diffusion 
(Frischknecht et al. 2009). Further support for the presyn-
aptic locus of mossy fiber LTP comes from quantal analysis, 
since the failure rate is negatively correlated with the aver-
age release probability. Thus, a lower failure rate after LTP 
induction means a higher probability of glutamate release 
(Malinow and Tsien 1990). However, that conclusion can 
only be achieved assuming a constant number of synapses. 
The discovery of postsynaptically silent synapses provided 
an explanation for the mentioned lower failure rate after 
LTP (Isaac et al. 1995). More experimental evidence in favor 
of the presynaptic hypothesis for the expression of mossy 
fiber LTP is the effect of cAMP which mediates presynaptic 
mossy fiber LTP processes (Tong et al. 1996). Assuming 
a  purely presynaptic locus for mossy fiber LTP, the zinc 
released from mossy fibers should rise after electrically- 
or chemically-induced depolarization, since it is generally 
accepted that zinc is co-released with glutamate. However, 
there are experimental results showing that zinc release is 
not enhanced after high-frequency mossy fiber stimula-
tion (Budde et al. 1997; Quinta-Ferreira et al. 2004) and 
also following exposure to high-potassium concentrations 
(Ketterman and Li 2008). Thus, the lack of enhancement 
of zinc release after LTP induction argues in favor of the 
contribution of postsynaptic mechanisms for the expression 
of mossy fiber LTP. Furthermore, the fact that the blockade 
of postsynaptic T-type VDCCs prevents the expression of 
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this form of LTP is another strong argument in line with 
the postsynaptic hypothesis (Suzuki and Okada 2009). As 
expected, in CA1 hippocampal area, it was already shown 
that the potassium-induced LTP is mainly mediated by 
postsynaptic mechanisms (Roisin et al. 1997). The possible 
postsynaptic expression of mossy fiber LTP might be medi-
ated by zinc influxes into postsynaptic neurons. However, 
there is still controversy about the role of zinc in mossy 
fiber LTP, existing studies in favor (Lu et al. 2000; Li et al. 
2001a) and against it (Vogt et al. 2000; Matias et al. 2006). 
The reason for these different results may be the variety of 
experimental approaches used that may lead to different 
intracellular zinc availability and metal/chelator complexes, 
some of which are potentially toxic (Armstrong et al. 2001). 
Another possible explanation is that the chelators used 
may be neuroprotective or neurotoxic, in pathological or 
normal situations (Cuajungco and Lees 1997; Armstrong et 
al. 2001). Further support for the role of zinc in mossy fiber 
LTP comes from the existence of signal transduction path-
ways that are modulated by zinc (Frederickson and Bush 
2001). Our results support the idea that the zinc signals are 
due to the formation of postsynaptic zinc-NG complexes, 
since they increase with extracellular zinc that may perme-
ate the postsynaptic membrane. They also suggest that the 
zinc potentiation associated with a long-term enhancement 
of synaptic activity is expressed postsynaptically.
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