Therapeutic effects of melatonin and quercetin in improvement of hepatic steatosis in rats through suppression of oxidative damage

Esrefoglu M1, Cetin A2, Taslidere E1, Elbe H2, Ates B1, Tok OE1, Aydin MS1

Bezmialem Vakif University, Medical Faculty, Dept. of Histology and Embryology, Istanbul, Turkey.
drmukaddes@hotmail.com

ABSTRACT
BACKGROUND: Non-alcoholic steatohepatitis, a cause of cirrhosis, is characterized by fatty infiltration of the liver, inflammation, hepatocellular damage and fibrosis. The aim of the present study was to investigate the effects of melatonin and quercetin on CCl4-induced steatosis characterized by fatty infiltration of the liver, inflammation, hepatocellular damage and fibrosis.

METHODS: Rats were divided into 5 groups: Ethanol, Olive oil, CCl4, CCl4+Melatonin (CCl4+Mel), CCl4+Quercetin. Rats were sacrificed and livers were removed for being evaluated by histopathological, immunohistochemical and biochemical methods.

RESULTS: In CCl4 group, vacuolization, vascular congestion, haemorrhage, necrosis, and inflammatory infiltration were identified. The mean tissue MDA level was increased, whereas GSH level and SOD and CAT activities were decreased in comparison with ethanol and olive oil groups. MDA levels were decreased in CCl4+Quercetin and CCl4+Mel groups versus CCl4 group. CAT activity of CCl4+Mel group was higher than that of CCl4 and CCl4+Quercetin groups. The mean tissue GSH level of CCl4+Mel group versus CCl4 group was significantly increased.

CONCLUSIONS: By the means of histopathological examination, we suggest that both agents are beneficial against necrotic and apoptotic cell death during steatosis. Thus, melatonin and quercetin might be beneficial in the improvement of hepatic steatosis by supporting conventional therapy in humans (Tab. 1, Fig. 5, Ref. 53).

Text in PDF www.elis.sk.

KEY WORDS: antioxidant, melatonin, quercetin, liver.

EXPERIMENTAL STUDY

Introduction

Non-alcoholic steatohepatitis, a cause of cirrhosis and hepatocellular carcinoma, is characterized by fatty infiltration of the liver, inflammation, hepatocellular damage and fibrosis. Steatosis leads to lipotoxicity, which causes apoptosis, necrosis, generation of oxidative stress and inflammation (1). Hepatocyte apoptosis is an important factor in the development of CCl4-induced liver toxicity and either precedes the onset of necrosis or coexists with it (2). Carbon tetrachloride (CCl4) intoxication results are dependent on dose, steatosis, cirrhosis and hepatoma (3, 4).

CCl4-induced liver damage has been extensively studied and widely used as a model for screening hepatoprotectors. It is well established that CCl4 is metabolized in the liver to highly reactive trichloromethyl radical, which initiate free radical-mediated lipid peroxidation of the cytoplasmic membrane phospholipids and causes functional and morphological changes in the cell membrane leading to accumulation of lipid-derived oxidants causing liver injury (5, 6).

Oxidative stress occurs as the result of the insufficient protective capacity of cellular antioxidant enzyme system against increased production of reactive oxygen species (ROS), which react with almost all cellular biomolecules such as: lipids, nucleic acid and proteins, changing their structure and thus their function, which leads to cell damage. Organisms widely use glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), and a variety of other antioxidants to protect themselves against generation of ROS. In recent years, substantial amounts of data about the efficiency of antioxidant agents against oxidative damage have been obtained from experiments with rodents. For assessment of biological effects of ROS, the tissue levels of malondialdehyde (MDA), as indicator of lipid peroxidation, and the levels/activities of antioxidant enzymes including SOD, GSH, GSH-Px, and CAT are useful. In the present study, we detected tissue MDA and GSH levels and SOD and CAT activities in addition to histopathological examination in the evaluation of the effects of melatonin and quercetin against CCl4-induced hepatitis steatosis. Additionally, we evaluated the number of apoptotic cells as well as proliferating cells in order to determine tissue damage versus tissue regeneration.

As the oxidative stress is a common pathogenetic mechanism contributing to initiation and progression of stress-induced organ
injury, antioxidants represent a logical therapeutic and preventive strategy for the treatment of the stress-induced organ damage. Many natural compounds have the ability to scavenge ROS, thereby reducing oxidative stress directly, or they may offer an indirect protection by activating endogenous defense systems. In fact, induction of enzymes relevant in cell defense system seems conceivable.

Melatonin is a direct scavenger of free radicals and the most powerful known antioxidant. It exerts its protective effects by increasing antioxidant enzyme levels/activities (7–11) or inhibiting pro-oxidative enzymes via its action on melatonin receptor (12, 13). The quercetin (3,5,7,3′,4′-pentahydroxyflavone), one of the well-recognized flavonoids, is also a potent antioxidant (14). Flavonoids are primarily found in vegetables, fruits, red wine, green tea, and onion (15). Herein, we tried to investigate the effects of melatonin and quercetin, two powerful antioxidant agents, on CCl₄-induced steatohepatitis.

Materials and methods

Animals and experimental protocol

Thirty-five female Wistar albino rats (3–4 months old) weighing 220–240 g obtained from the Experimental Animal Research Center of Inonu University were used in the present study. The animals were housed in individual cages for 10 days in a well-ventilated room with a 12:12-hour light/dark cycle at 21 °C. Animals were fed with standard rat chow and tap water ad libitum. The experiments were performed in accordance with the Guidelines for Animal Research from National Institute of Health and were approved by the Committee on Animal Research at Inonu University, Malatya, Turkey.

Rats were divided into 5 groups, each containing 7 rats as follows: Ethanol group: (administered by 5% ethanol, 1 ml/day/ip), Olive oil group (administered by olive oil, 0.5 ml/every other day/ip), CCl₄ group (administered by 0.5 ml/kg CCl₄ dissolved in 0.5 ml/kg olive oil, for 10 days/every other day/ip), CCl₄+Melatonin (CCl₄+Mel) (administered by 10 mg/kg/day/ip, melatonin dissolved in 5% ethanol, injected 24 hours after administrations of CCl₄ for 10 days), CCl₄+Quercetin (CCl₄+Quer) group (administered by 25 mg/kg/day/ip, quercetin dissolved in 5% ethanol, injected 24 hours after administrations of CCl₄ for 10 days), 24 hours after the last dose of CCl₄ at 10th day, rats were sacrificed by ketamine anaesthesia and livers were removed and divided into two portions. One part of the samples was used for histopathological examination, whereas the other was used for evaluation of the oxidative stress parameters by biochemical methods.

Histopathological evaluation

The liver tissues fixed in 10 % formalin for 24 h were embedded in paraffin. Tissue sections cut at 5 μm stained with haematoxylin-eosin (H-E) method. Samples were examined using a Leica DFC280 light microscope and a Leica Q Win Image Analysis system (Leica Microsystems Imaging Solutions Ltd., Cambridge, UK). Assessment of tissue alterations in 20 different fields for each section was conducted by an experienced histologist, who was unawares of the treatment. Under 10X magnification, sections were examined for the alterations including vacuolization, vascular congestion, haemorrhage, inflammatory infiltration and necrosis. Each alteration was scored as follow: 0 = normal, 1 = mild, 2 = moderate and 3 = severe, with a maximum score of 15.

TUNEL method for detecting apoptosis

TUNEL method was used in accordance with the user’s manual of the manufacturer (Apoptag plus Peroxidase in situ Apoptosis Kit, Chemicon International, Cat: S7101). The procedure was following: Sections were incubated with proteinase K for 5 min, washed with distilled water and incubated with 3% hydrogen peroxide in PBS for 5 min. Later, sections were washed with PBS, put in the equilibrium buffer for 30 min and incubated in TdT enzyme at 37 °C for 1 hour. They were agitated in washing buffer for 15 s, washed in PBS, put into anti-digoxigenin conjugate for 30 min and then washed with PBS. After incubation with peroxidase for 6 min, they were washed with destilled water, stained with Mayer’s haematoxylin and covered with mounting medium. In each section, TUNEL positive cells on 20 similar areas were counted under 20X magnification.

Proliferating cell nuclear antigen (PCNA) staining

Cell proliferation analysis was performed on paraffin-embedded sections using the PCNA Staining Kit (Invitrogen, Cat: 93–1143) following the manufacturer’s protocol. Paraffin-embedded liver sections were dewaxed by treating the slides in 2 changes of xylene for 5 minutes each and were rehydrated. Endogenous peroxidase activity was quenched by using 3 % hydrogen peroxide in PBS for 20 min. The slides were incubated with ready-to-use blocking solution for 10 minutes and then incubated with biotinylated monoclonal anti-PCNA antibody (ready-to-use) for 1 hour. After washing, sections were incubated with Streptavidin-Peroxidase (ready-to-use) for 10 minutes at room temperature, followed by incubation with 3, 3’-diaminobenzidine (DAB) for 5 minutes. Slides were finally counterstained with Mayer’s haematoxylin and covered with mounting medium. Number of cells expressing PCNA was counted on 10 representative fields under 20X magnification.

Analysis of tissue regeneration versus apoptosis status

We calculated the tissue regeneration index (TRI) by dividing the mean PCNA positive cells to the mean TUNEL positive cells of each groups. Higher index value showed us a higher number of proliferating cells and/or fewer number of apoptotic cells.

Biochemical evaluation

Preparation of Tissue Homogenates: Tissues were homogenized (PCV Kinematica Status Homogenizator) in ice-cold phosphate buffered saline (pH 7.4). The homogenate was sonified with an ultrasonifier (Bronson sonifier 450) by 3 cycles (20-s sonications and 40-s pause on ice). The homogenate was centrifuged (15,000 xg, 10 min, 4 °C) and cell-free supernatant was subjected to enzyme assay immediately.

Determination of Protein: Protein levels of the tissue samples were measured by the Bradford method (16). The absorbance mea-
Determination of Malondialdehyde (MDA) Levels: The analysis of lipid peroxidation was carried out as described (17) with a minor modification. The reaction mixture was prepared by adding 250 μL homogenate into 2 ml reaction solution (15% trichloroacetic acid: 0.375% thiobarbituric acid: 0.25 N HCl; 1:1:1, w/v) and heated at 100 °C for 15 min. The mixture was cooled to room temperature, centrifuged (10,000 g for 10 min) and the absorbance of the supernatant was recorded at 532 nm. 1,1,3,3-tetramethoxypropane was used as MDA standard. MDA results were expressed as nmol/mg protein.

Measurement of Catalase Activities: CAT activity was measured at 37 °C by following the rate of disappearance of hydrogen peroxide (H₂O₂) at 240 nm (ε₂₄₀ = 40 M⁻¹ cm⁻¹) (19). One unit of catalase activity is defined as the amount of enzyme catalysing the degradation of 1 μmol of H₂O₂ per min at 37 °C and specific activity corresponding to transformation of substrate (in μmol) (H₂O₂) per min per mg protein. The activity of CAT was determined as U/mg protein.

Measurement of Superoxide Dismutase (SOD) Activities: SOD (Cu, Zn-SOD) activity in the supernatant fraction was determined using xanthine oxidase/cytochrome c method (20), where 1 unit (U) of activity is the amount of enzyme needed to cause half-maximal inhibition of cytochrome c reduction. The amount of SOD in the extract was determined as U/mg protein, utilizing a commercial SOD as the standard.

Statistical evaluations

Statistical analysis was carried out using the SPSS for Windows version 13.0 (SPSS Inc., Chicago, Ill., USA) program. All data are expressed as the arithmetic mean ± Standard error (SE). Normality for continued variables in groups was determined by the Shapiro Wilk test. Since the variables of biochemical results did not show a normal distribution (p < 0.05), Kruskal–Wallis and Mann Whitney U tests were used for the comparison of variables among the studied groups. For histopathological evaluation, data were obtained from TUNEL and PCNA analysis, one-way analysis of variance (ANOVA) test was used. The p < 0.05 was regarded as significant.

Results

Liver of ethanol and olive oil groups were normal in histological appearance. In CCl₄ group, vacuolization (Figs 1A–D), vascular congestion (Fig. 1C), haemorrhage, necrosis (Figs 1A, 1D), and inflammatory infiltration were identified mainly in the central to middle part of hepatic lobule. CCl₄ administration resulted in severe steatosis. Numerous ‘ballooning’ cells grouped so that separate zones of liver parenchyma, giving an appearance of ‘Swiss cheese’ were observed (Figs 1A–B). The histopathological alterations including mainly steatosis were apparently proved in CCl₄+Mel and CCl₄+Quer groups (Figs 1E, 1F; respectively).

Tab. 1. Mean MHDSs, mean tissue MDA and GSH levels and SOD and CAT activities of all groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>MHDSs</th>
<th>MDA (nmol/mg pr)</th>
<th>SOD (U/mg pr)</th>
<th>CAT (U/mg pr)</th>
<th>GSH (nmol/g pr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>0.57±0.53</td>
<td>0.16±0.01</td>
<td>7.94±0.36</td>
<td>121.05±8.72</td>
<td>4.18±0.31</td>
</tr>
<tr>
<td>Olive oil</td>
<td>0.28±0.48</td>
<td>0.26±0.02</td>
<td>8.89±0.45</td>
<td>118.29±8.93</td>
<td>3.97±0.45</td>
</tr>
<tr>
<td>CCl₄</td>
<td>12.00±1.00b</td>
<td>0.56±0.04c</td>
<td>7.08±0.38</td>
<td>62.36±5.91c</td>
<td>1.78±0.16d</td>
</tr>
<tr>
<td>CCl₄ + Mel</td>
<td>1.71±1.11c</td>
<td>0.41±0.02d,e</td>
<td>7.96±0.46</td>
<td>94.2±8.65c</td>
<td>2.72±0.29f</td>
</tr>
<tr>
<td>CCl₄ + Quer</td>
<td>4.00±1.82</td>
<td>0.23±0.02b</td>
<td>7.88±0.31</td>
<td>66.02±4.48b</td>
<td>2.69±0.29i</td>
</tr>
</tbody>
</table>

*p = 0.0001 vs Ethanol, †p = 0.0001 vs Olive oil, ‡p = 0.0001 vs CCl₄, §p = 0.0000 vs Ethanol, †p = 0.0000 vs Olive oil, †p = 0.0002 vs Olive oil, †p = 0.0002 vs CCl₄, ‡p = 0.0000 vs CCl₄, †p = 0.004 vs CCl₄, ‡p = 0.01 vs Ethanol, †p = 0.02 vs Olive oil, ‡p = 0.01 vs CCl₄ + Mel, †p = 0.04 vs CCl₄, ‡p = 0.0009 vs Olive oil, †p = 0.003 vs Ethanol, †p = 0.002 vs Ethanol, †p = 0.008 vs Olive oil
with occasional areas showed lipid vacuolization and vascular congestion. Mean histopathological damage scores (MHDSs) were 0.57 ± 0.53 in ethanol, 0.28 ± 0.48 in olive oil, 12.00 ± 1.00 in CCl$_4$, 1.71 ± 1.11 in CCl$_4$+Mel and 4.00 ± 1.82 in CCl$_4$+Quer groups. MHDSs of CCl$_4$ group was significantly higher than those of ethanol and oil groups ($p = 0.0001$). MHDSs of CCl$_4$+Mel and CCI$_4$+Quer groups were significantly lower than that of CCl$_4$ group, but significantly higher than that of ethanol and oil groups ($p = 0.0001$). The severity of tissue damage in CCl$_4$+Quercetin group was higher than CCl$_4$+Mel group suggesting that melatonin provided a higher protection than quercetin. MHDSs of all groups are summarized in the Table 1.

CCl$_4$ administration resulted in significant increases in the numbers of the cells undergoing both proliferation and apoptosis. The mean PCNA positive cell numbers of ethanol, olive oil, CCl$_4$, CCl$_4$+Mel and CCl$_4$+Quer groups were 23.5 ± 9.07, 25 ± 3.16, 796 ± 99.8, 180 ± 66 and 128 ± 41.3; respectively. The mean TUNEL positive cell numbers of ethanol, olive oil, CCl$_4$, CCl$_4$+Mel and CCl$_4$+Quer groups were 16.25 ± 3.75, 15 ± 4.35, 47.75 ± 2.75, 31.8 ± 5.12 and 31 ± 4.66; respectively. The mean PCNA positive cell number in CCl$_4$ administered group was significantly higher than those of ethanol, olive oil, CCl$_4$+Mel and CCl$_4$+Quer groups ($p < 0.001$) (Figs 2, 3). The mean TUNEL positive cell number in CCl$_4$ administered group was also significantly higher than those of ethanol and olive oil groups ($p < 0.01$). Melatonin and quercetin administration reduced apoptosis; however, significant importance was not detected among the groups (Figs 2, 4). Additionally, the mean TRI of ethanol, olive oil, CCl$_4$, CCl$_4$+Mel and CCl$_4$+Quer groups were 1.44, 1.68, 16.67, 5.65, 4.12; respectively (Fig. 5).

In CCl$_4$ group, the mean tissue MDA level was increased, whereas GSH level and SOD and CAT activities were decreased significantly in comparison with ethanol and/or olive oil groups.
However, MDA level was decreased in the CCl4+Quercetin and CCl4+Mel groups, when compared with the CCl4 group (p = 0.0002, p = 0.000; respectively). The mean tissue CAT (p = 0.0000) and SOD (p = 0.0002) activity were decreased in CCl4 group versus ethanol/olive oil groups. CAT activity of CCl4+Mel group was higher than that of CCl4 (p = 0.004) and CCl4+Quercetin (p = 0.01) groups. The mean tissue GSH level of CCl4 group versus ethanol/olive oil groups was significantly decreased (p = 0.000), whereas the mean tissue GSH level of CCl4+Mel group versus CCl4 group was significantly increased (p = 0.04). Although GSH level of CCl4+Quercetin group was lower than that of CCl4 group, quercetin administration had no statistically significant effect on the mean tissue GSH level. These results indicated that melatonin and quercetin were able to inhibit lipid peroxidation and the production of MDA, and stimulate the production of antioxidant enzymes. In regard to the results of antioxidant enzymes, it seems that melatonin is more effective than quercetin in the treatment of hepatic steatosis. The mean tissue MDA and GSH levels and CAT activities of all groups are summarized in Table 1.

Discussion

In the present study, rats were administered CCl4 by oral route to prepare hepatic steatosis model. Administration of CCl4 to rats was shown to cause oxidative stress in liver and oxidative damage was associated with a significantly higher level of MDA, but lowered the activities of antioxidant enzymes; CAT, SOD, and level of GSH. Increased MHDs and MDA levels in CCl4 administered rats indicated that liver architecture was damaged.

The histological evidence induced by CCl4 is known as hepatocellular necrosis, fatty changes, ballooning degeneration, and mononuclear cell infiltration (21). Long-term administration of CCl4 causes chronic liver injury, and is a widely accepted model to produce hepatic fibrosis (22, 23). Our microscopic examination revealed that CCl4 administration resulted in necrosis and severe steatosis. By melatonin and quercetin administration, histopathological picture of livers was relieved.

It has been known for a long time that a part of the liver injury caused by CCl4 may have originated through the free radical reactions to the metabolism of CCl4 in the liver and subsequent initiation of lipid peroxidation (24). Liver injuries induced by CCl4 are mediated through the formation of reactive intermediates such as trichloromethyl radical (CCl3•) and its derivative trichloromethyl peroxy-radical (CCl3OO•), generated by cytochrome P450 of liver microsomes (25). These highly reactive derivatives interact with membrane lipids leading to their peroxidation, which produces MDA as the final product along with other metabolites (26). Membrane disintegration, loss of membrane-associated enzymes (27, 28) and necrosis are some of the consequences of CCl4-induced lipid peroxidation.

ROS play important roles in apoptosis initiated in mitochondria (29, 30). It has been reported that GSH suppression and MDA increase are inducers of mitochondrial permeability transition (31). Leading to the release of several different factors relevant to apoptosis (32). Significant increases in the amounts of various caspase types including caspase 3 and caspase 8 were observed when the hepatocytes were exposed to CCl4 (33). We detected a significant increase in TUNEL positive, as well as, PCNA positive cell numbers in CCl4 administered group. Liver has a high capacity to regenerate itself under the inducing effects of various factors including oxidative stress. Following any injury, hepatocytes can maintain regeneration by rapid proliferation. DNA synthesis has been shown to peak in the first 40–44 hours after partial hepatectomy (34). Hepatocytes are capable to reform the hepatic architecture by 69 successive divisions (35). We suggest that increased number of PCNA positive cells represents CCl4-induced proliferative activity of the hepatocytes. Thus, the highest number of TUNEL positive cells was detected in this group.

Müller et al (36) stated that CCl4 intoxication was similar to the hepatitis in case of the triglycerides catabolism. This situation could be also attributed to the reduction of lipase activity, which could lead to decrease in triglyceride hydrolysis (37). On the other hand, it can be assumed that hypercholesterimea in CCl4 intoxicated rats has resulted in damage of hepatic parenchyma cells that lead to disturbance of lipid metabolism in liver (38).

Organisms are well protected against the free radical damages by their own endogenous antioxidants, which are either antioxidant enzymes such: SOD and CAT or organic chemical compounds such as: ascorbic acid, tocopherols and GSH. The coordinate action of antioxidant system is very critical for the detoxification of free radicals. GSH is supposed to be a highly effective extra-and intracellular antioxidant compound that neutralizes hydrogen peroxide and hydroperoxide by its scavenging and antioxidant properties. SOD reduces the concentration of highly reactive superoxide radical by converting it to H2O2, whereas CAT decomposes H2O2 and protect the tissues from highly reactive hydroxyl radicals (39). SOD and CAT are the major antioxidant enzymes responsible for the elimination of ROS. These enzymes are highly sensitive to lipid peroxide or ROS (40, 41). This may account for the much lower SOD and CAT activities in the liver of the CCl4-treated rats relative to the normal healthy rats.
Melatonin is not only a direct antioxidant, but also an indirect antioxidant through enhancement of antioxidant enzyme activities in liver (42). In the present study, melatonin was found to be more beneficial than expected on hepatic steatosis. While the microscopic sections of rats administered CCl₄ were full of vacuolated hepatocytes, we randomly saw such hepatocytes in sections from melatonin treated rats. Moreover, MHDS and MDA levels of CCl₄+Mel group were significantly lower than that of CCl₄ group. As expected, melatonin supported cellular antioxidant defense system by increasing mainly the hepatic CAT activity and GSH level. Recently, Tulu et al (43) also found melatonin at a dose of 20 mg/kg/day melatonin was effective in acute and chronically administered CCl₄-induced hepatic damage including hepatic steatosis. Kus et al (44) also found melatonin effective at the dose of 25mg/kg for 1 month in healing of CCl₄-induced liver damage including necrosis, fibrosis, mononuclear cell infiltration, and fatty degeneration. They reported a normal lobular appearance except for a mild hydropic degeneration of hepatocytes in melatonin-administered group. Similar to their results, histological picture of the sections from CCl₄+Mel was nearly normal in our study. Additionally, we detected decreased numbers of PCNA and TUNEL positive cells in melatonin administered group versus CCl₄ administered group. It is clear that melatonin is beneficial against necrotic as well as apoptotic cell death. On the other hand, we suggest that decrease in the number of PCNA positive cells resulted in the improvement of inducing effect such as: oxidative stress rather than a failure in the proliferative capacity of hepatocytes. A few recent studies on high fat diet-induced fatty liver disease agreed that melatonin is a potent therapeutic agent against steatosis (45, 46). Pan et al (46) reported that melatonin reduced liver total cholesterol and triglycerides levels and increased SOD and glutathione peroxidase activities. It is a fact that limited studies on the effects of melatonin on hepatic steatosis have been performed so far.

Flavonoids are naturally occurring phenolic compounds, nearly ubiquitous in plants, and have long been recognized to possess antioxidant, hepatoprotective, anti-inflammatory, anti-allergic, anti-thrombotic, antiviral and anticarcinogenic activities (14). Long ago, Afanas’ev et al (47) reported that quercetin is able to suppress free radical process at three stages: the formation of superoxide ion, the generation of hydroxyl (or cryptohydroxyl) radicals in the Fenton reaction and the formation of lipid peroxys-radicals. All flavonoids including quercetin were shown to be chelating agents capable of producing stable complexes with transition metal ions (Fe²⁺, Fe³⁺, Cu²⁺). The cytoprotective effect of flavonoids is in strong positive correlation with their antiradical activity to O₂* (48). Janbaz et al (49) showed that pre-treatment of rats with quercetin reduced the death rate to 30% by its hepatoprotective activity against CCl₄ intoxication. We detected decreased numbers of TUNEL positive cells in quercetin administered group versus CCl₄ administered group. It is clear that quercetin is beneficial against necrotic as well as apoptotic cell death. On the other hand, we suggest that decrease in the number of PCNA positive cells results in the improvement of inducing effect such as: oxidative stress rather than a failure in the proliferative capacity of hepatocytes. Several studies have found quercetin beneficial in non-alcoholic steatohepatitis by significantly decreasing lipoperoxidation, DNA damage, and histopathological alterations including macrovesicular steatosis, ballooning and inflammatory process (50, 51). Zhou et al (51) suggested that quercetin might be helpful to delay the progression of non-alcoholic fatty liver disease possibly by adjusting the balance of inflammatory cytokines including IL-18 and IL-10. Vidyashankar et al (52) reported quercetin-induced increases in SOD, CAT and glutathione peroxidase activities in the culture media. We detected increases in the mean tissue CAT and SOD activities and significant increase in GSH level. Kobori et al (53) reported that chronic dietary intake of quercetin reduced liver fat accumulation associated with Western-style diet in mice and improved systemic parameters of metabolic syndrome, probably mainly through decreasing oxidative stress and reducing expression of genes related to steatosis.

As a conclusion, while quercetin seems to be more beneficial in reducing lipid peroxidation, melatonin seems to be more effective to support cellular antioxidant enzyme system. By the means of histopathological examination, we think that both agents are beneficial against necrotic and apoptotic cell death during steatosis. Nevertheless, we suggest that melatonin and quercetin might be beneficial in the improvement of hepatic steatosis, at least by supporting conventional therapy in humans.

References

11. Esrefoglu M, Iraz M, Ates B, Gul M. Melatonin and CAPE are able to prevent the liver from oxidative damage in rats: an ultrastructural and biochemical study. Ultrastruct Pathol 2012; 36: 171–178.

42. Liu F, Ng TB. Effect of pineal indoles on activities of the antioxidant defense enzymes superoxide dismutase, catalase, and glutathione reductase, and levels of reduced and oxidized glutathione in rat tissues. Biochem Cell Biol 2000; 78: 447–453.

46. Pan M, Song YL, Xu JM, Gan HZ. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J Pineal Res 2006; 41: 79–84.

Received January 23, 2017.
Accepted February 21, 2017.