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In this review, we intend to explore the potential therapeutic effects of exosomes released from mesenchymal stem/stromal 
cells (MSCs). MSCs gained credibility as a therapeutic tool due to their potential to differentiate into many cell types like osteo-
blasts, chondrocytes, adipocytes, muscular, endothelial, cardiovascular, and neurogenic cells. They possess potent wound healing 
activity due to their immunosuppressive and anti-inflammatory properties. MSCs are tested in large number of clinical trials 
for treatment of diseases, which do not have adequate therapy at present. MSCs engineered to express suicide genes in preclini-
cal studies have shown promising tumor targeting therapeutic tool for malignancies difficulty treatable at present. It has been 
increasingly observed in many different kinds of regenerative medicine and in MSCs mediated prodrug gene therapy for cancer 
that the intravenously administered of MSCs did not necessarily engraft at the site of injury or tumor. The therapeutic effect was 
exerted mainly through a paracrine action of rich secretome released from the cells. The main biocomponent of secretome are 
exosomes – naturally occurring membrane nanoparticles of 30-120 nm in diameter that mediate intercellular communication 
by delivering biomolecules like mRNA, miRNA into recipient cells. These nanosized exosomes derived from MSCs promise to 
be a new and valuable therapeutic strategy in regenerative medicine and cancer therapy compared with transplanted exogenous 
MSCs. Advantage of nanosized exosomes compared with administration of exogenous MSCs is multiple. Exosomes are easier 
to preserve and be transferred, have lower immunogenicity and therefore are safer for therapeutic administration.
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Mesenchymal stem cells (MSCs) were assigned as cells 
responsible for repair and maintenance of used and damaged 
tissues keeping cellular homeostasis in the body. They are 
frequently called mesenchymal stromal cells because they are 
supporting other stem cells in tissues, for example in the bone 
marrow by forming stroma support for hematopoietic stem 
cells. Originally they were thought to be stem cells based on 
their ability to differentiate to a variety of cell types in vitro. 
MSCs were regarded multipotent having the potential to dif-
ferentiate into many cell types. The definition of MSCs is up 
to now based on an internationally approved set of criteria 
including plastic adherence, tri-lineage in vitro differentia-
tion ability and expression of various MSC surface markers 
[1]. MSCs gained credibility as a therapeutic tool due of their 
potential to differentiate into many cell types like osteoblasts, 

chondrocytes, adipocytes, muscular, endothelial, cardiovas-
cular, and neurogenic cells. In addition to their direct role in 
tissue regeneration, MSCs have potent wound healing activ-
ity due to their immunosuppressive and anti-inflammatory 
properties. MSCs can be isolated and easy expanded from 
tissues like bone marrow, adipose tissue, umbilical cord, pla-
centa, dental pulp and others. Very wide range of therapeutic 
applications are tested in large number of clinical trials for 
treatment of diseases, which do not have adequate therapy at 
present. MSCs clinical studies are in progress around the world 
for clinical conditions such as multiple sclerosis, amyotrophic 
lateral sclerosis, stroke, acute and chronic heart failure, rheu-
matoid arthritis and osteoarthritis, Crohn’s disease, kidney or 
liver chronic disease, sepsis, spinal cord contusions, critical 
limb ischemia and others. As of May 2017, the public clinical 
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trials database (as shown on http://www.clinicaltrials.gov with 
“mesenchymal stem cells” used as the search term) showed 719 
clinical trials related to MSCs involvement [2].

Reparatory process is induced by action of MSCs’ secretome

It has been increasingly observed in many different kinds 
of regenerative medicine that the transplanted MSCs did 
not necessarily engraft and differentiate at the site of injury. 
When MSCs were intravenously administered, up to 80  % 
of the injected cells were found in the lungs within a  few 
minutes after injection with a half-life of about 24 hours and 
practically complete disappearance after 4 days in animal 
model [3, 4]. The observed biodistribution patterns were 
confirmed by studies in humans. In patients with mammary 
carcinoma [5], the therapeutic effect was exerted by inducing 
the endogenous natural reparatory processes with noticeable 
improvement 6-8 weeks later. This was found not compatible 
with direct action of transplanted cells in tissue regenera-
tion as it was believed previously. MSCs biodistribution data 
confirmed the importance of secreted factors from the cells 
into conditional medium (CM), some acting mainly through 
a paracrine action. It has been recognized that MSCs release 
a  rich secretome containing massive amounts of cytokines, 

chemokines and growth factors, together with extracellular 
exosomes that might be responsible at least to some degree for 
transfer of regulatory gene products needed for the paracrine 
and endocrine induction of reparatory processes. It is now 
well recognized that exosomes from various cells including 
tumor cells because of their easy cells internalization can act 
in trans-tissue manner [6]. MSCs exosomes act mainly as 
tissue stromal support and help maintain tissue homeostasis, 
Timmers et al. have shown the reduction of myocardial infarct 
size by human MSCs conditioned medium (CM) administered 
intravenously and intracoronary in a porcine model at first 
[7]. It was proved that purified exosomes were responsible 
for the reduced infarct size in an animal model of myocardial 
ischemia/reperfusion injury [8]. Therefore, MSCs act through 
paracrine mechanisms to trigger regenerative processes [9]. 
The main component within the secretome are exosomes, 
which transfer bioactive molecules (mRNAs and microRNAs) 
as a cargo between cells [10, 11]. It was suggested by Caplan 
[12, 13] that the name of MSCs should be changed to Medicinal 
Signalling Cells to more accurately reflect the fact that these 
cells home in on sites of injury or disease. These cells make 
therapeutic drugs in situ by secretion of bioactive factors that 
suppress the local immune system, inhibit scar formation 
and apoptosis, enhance angiogenesis, and stimulate mitosis 
and differentiation of tissue-intrinsic reparative stem cells. 
It is, indeed the combined action of MSCs’s secretome and 
secreted exosomes triggering the patient’s own site-specific 
and tissue-specific resident stem cells to construct a new tis-
sue and/or repair the damaged one. The content of exosome’s 
cargo, specifically mRNA, in the induced reparatory process 
plays an important role.

Nanoparticles released by MSCs

Most cell types release extracellular vesicles as membrane-
surrounded structures. Three main classes, exosomes (30-120 
nm), shedding microvesicles (100–1000 nm) and apoptotic 
bodies (50–4000 nm) have been recognized. Exosomes, unlike 
the other extracellular vesicles are the only secreted vesicles 
to have an endosomal biogenesis [14]. They are micro mem-
brane vesicles that possess several properties related to the 
stabilization of cellular homeostasis. Originally, they were 
recognized as nanoparticles secreting cellular waste [15] and 
this behavior can be used for therapeutic purpose [16]. MSCs 
exosomes are useful tools for easier delivery of drugs [17]. 
We have proved that they can include ferromagnetic mate-
rial into their cargo forming thus nanoparticles suitable for 
hyperthermia tumor therapy [unpublished]. Exosomes are 
secreted by most cell types upon fusion of multivesicular bod-
ies with the plasma membrane. Schematic picture of exosome 
formation is depicted in Figure 1. Intercellular communication 
mediated by transfer of functional biomolecules like mRNA, 
miRNA, DNA and proteins is the main function of exosomes 
[18]. Ability to transfer gene informative molecules especially 
exosomes released from MSCs is the basis of many applica-

Figure 1. Schematic picture depicting MSCs exosome formation. Exosomes 
are secreted by MSCs upon fusion of multivesicular bodies with the plasma 
membrane. Their cargo contains functional biomolecules like mRNA, 
miRNA, DNA and proteins. Besides that, they secrete cellular waste. 
This behavior is used for therapeutic purposes, like for easier delivery of 
drugs or therapeutic gene modified MSCs release exosomes with mRNA 
of relevant gene. The figure is not drawn to scale.

http://www.clinicaltrials.gov


811MSC EXOSOMES

tions in regenerative medicine. Exosomes of MSCs together 
with their secretome have been identified as tools behind the 
immunomodulatory effects [19-21], induction of angiogenesis 
[22-25], cell proliferation [26], antiapoptotic effect [27, 28] and 
anti-inflammatory effect [29]. Experimental data suggest that 
MSCs exosomes might be therapeutically useful in such lethal 
medical complications as the acute kidney injury [30]. Despite 
the exact mechanism of in vivo action of exogenously admin-
istered stem/stromal mesenchymal cells-derived exosomes are 
not fully elucidated [reviewed in [31], several clinical studies 
with MSCs extracellular vesicles (Evs) are in progress. Analysis 
of results of the older phase I clinical trials of exosomes-based 
therapies revealed that no serious acute events have been as-
sociated with EVs administration [32, 33].

MSCs induced mechanisms of regenerative process 

The involvement of MSCs exosomes and components 
released from their cargo in the recipient cells rest in modulat-
ing multiple cellular pathways. The activation of regenerative 
process is rather a complex mechanism. Differential expression 
analysis in porcine adipose tissue-derived MSCs revealed 4 
miRNAs, 255 mRNAs, and 277 proteins enriched in exosomes 
versus cells [34]. Perhaps the interactions between mRNA and 
miRNA targeting transcription factors and proteins capable 
of modifying multiple cellular pathways may be a  selective 
mechanism driving so many various MSCs-based repairs. In 
addition, MSCs exosomes may in the inflammation micro-
environment support extracellular matrix remodeling and 
angiogenesis. Regenerative medicine experience suggests that 
MSCs are naturally found as pericytes localized on vein walls 
of the vascularized tissues. In order to heal injured tissues 
without scarring, MSCs are released at sites of the injury, where 
they secrete large quantities of bioactive factors and exosomes 
that are immunomodulatory thus preventing autoimmunity 
and inhibit lymphocyte surveillance of the injured tissue. 
The exosomes in concord with MSCs secretome target tissue 
intrinsic progenitor cells. Consequently, ischemia-caused ap-
optosis is prevented, and angiogenesis is stimulated. Healing 
process continues through cell division of the natural intrinsic 
regenerative cells [12]. The consecutive steps in wound healing 

process triggered by presumptive coordinated actions of MSCs 
secretome through paracrine/autocrine/endocrine manner 
are listed in Table1. To the human MSCs healing activity is 
contributing the antibacterial effect mediated in part by the 
secretion of human cathelicidin hCAP-18/LL-37 [35]. MSCs 
exosomes are partly involved in antibacterial activity through 
the expression of keratinocyte growth factor by mRNA in the 
site of injury [36]. Recently it was reported that MSCs can com-
municate with their microenvironment through bidirectional 
exchange of mitochondria. The apoptosis of damaged cells was 
prevented through delivery of their own mitochondria [37]. 
It was established that MSCs use tunneling nanotubes as the 
means to transfer mitochondria to injured cell [38].

Tumor trophic behavior of MSCs engineered to express 
suicide genes

MSCs recognize tumor as a not-healing wound [39]. MSCs 
migrate to it and frequently became a part of tumor stroma 
with consequences like tumor growth modification, confer of 
drug resistance and transition to tumor associated fibroblasts 
[40, 41]. We used MSCs tumor trophic behavior to develop 
two prodrug suicide gene therapy systems for cancer mediated 
by MSCs. We have shown that MSCs transduced with yeast 
cytosinedeaminase::uracil phosphoribosyltransferase gene 
(yCD::UPRT) by retroviral infection can convert nontoxic 
5-fluorocytosine (5-FC) to the effective cytotoxic compound 
5-fluorouracil [42]. MSCs engineered to express thymidine 
kinase of Herpes simplex virus is the second therapeutic 
system we have developed [43]. In this system the prodrug 
ganciclovir is converted by cellular enzymes to ganciclovir 
triphosphate that inhibits DNA synthesis of recipient cells. 
Suicide gene transduced MSCs have the advantage of being 
stable with an effective production of the prodrug-converting 
enzyme under the control of a  strong retroviral promoter 
from the DNA provirus integrated into the cellular DNA. 
Vector construction allows for antibiotic selection of the 
transduced cells yielding pure populations of transduced cells 
[44]. Elimination of non-transduced cells is rather important, 
MSCs can potentially support tumor cell growth by secreted 

Table 1. MSCs involvement in natural wound healing

The prominent paracrine factors involved: Reference
Pericytes present on the walls of veins of vasculature are activated 
to act as MSCs

Activation of platelet-derived growth factor-beta receptor [55]

MSC-secretome suppress the local immune system and apoptosis Prostaglandin E2 and IL-6 [56]
Secreted bioactive factors inhibit fibrosis (scar formation) Platelet-derived growth factor, insulin-like growth factor-1, IL-8, 

hepatocyte growth factor
[57]

Angiogenesis is enhanced Vascular endothelial growth factor (VEGF), hepatocyte growth 
factor (HGF), monocyte chemotactic protein-1 (MCP-1),  
angiopoietin-1.

[58]

MSCs exosomes internalize cells surrounding wound [26]
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cytokines and growth factors. The attractiveness of these 
therapeutic systems lies in the conversion of a not toxic prod-
rug to a cytostatic drug directly within the tumor mass, thus 
avoiding systemic toxicity [45]. In addition, the genetically 
modified MSCs designated as Therapeutic Stem cells (ThSc) 
have sustained tumor-tropism and the prodrug administra-
tion not only eliminates tumor cells, but consequently kills 
the more resistant therapeutic cells as well, thereby eliminat-
ing them from the host [46]. Compared with conventional 
chemotherapy, yCD::UPRT/5-FC MSCs mediated therapeutic 
system exhibited no significant systemic adverse effects.

MSCs transduced with yCD::UPRT gene release exosomes 
with mRNA of the suicide gene in their cargo

In preclinical studies with human melanoma cells [46], 
prostate cancer cells [47] implanted subcutaneously to immu-
nocompromised nude mice and with intravenously injected 
ThSc significant tumor growth inhibition was observed. These 
data were not compatible with the known biodistribution of 
intravenously administered cells, where 80 percent of MSCs end 
in lungs [3]. Biodistribution measurements of intravenously 
injected labeled MSCs revealed that cells are immediately 
entrapped in lung tissue and then clear to the liver within 
one day [48]. The high tumor inhibiting activity of intrave-
nously administered ThSc was explained when we found that 
suicide gene transduced MSCs release exosomes with mRNA 
of suicide gene in their cargo [49, 50]. Analysis of CM from 
yCD::UPRT-AT-MSCs revealed the presence of exosomes with 
mRNA of the yCD::UPRT gene and free translated enzyme. 
We have proved that all yCD::UPRT gene transduced human 
MSCs derived from various tissues like adipose, bone mar-

row, dental pulp, umbilical cord and menstrual blood derived 
endometrial regenerative cells release exosomes with mRNA 
of yCD::UPRT gene into CM. Thus the efficacy of prodrug 
gene therapy for cancer mediated by MSCs in the presence of 
5-FC was found to act not only through bystander effect, but 
is potentiated by internalized exosomes as well. The exosomes 
inhibit growth of human tumor cell lines and human primary 
glioblastoma cells in a dose dependent manner in vitro. Growth 
of tumor cells with CM additions with and without prodrug 
5-FC monitored in real time was found very informative. It 
revealed that for translation of suicide protein from mRNA 
delivered by exosomes present in the CM was needed about 
30 hours. In addition, the tumor cell growth comparison of 
cells influenced by control medium versus control medium 
with CM additions has shown the growth stimulation caused 
by secretome in a dose dependent manner. Tumor cell killing 
by 5-fluorouracil formed intracellulary form the prodrug was 
a dose dependent manner as well (Figure 2). Therapeutic exo-
some involvement was likely responsive for curative therapy of 
rat glioblastoma treated with intracerebral administration of 
human yCDy-UPRT cells [51]. Accumulating evidence indi-
cates that cancer therapy using MSCs exosomes have multiple 
advantages over cell therapy. CM or exosomes are stable after 
intravenous administration and exhibit a superior safety profile. 
Since MSCs have the remarkable tendency to home to tumors, 
exosomes produced by MSCs may retain the homing proper-
ties of their parent cells. Dental pulp derived MSCs being of 
neural crest-derived cells might serve as an example. We have 
recently shown that dental pulp-derived MSCs can migrate to 
intracerebral glioblastomas after intranasal administration [50]. 
Number of studies of regenerative medicine field has shown 
that nanoparticles produced by MSCs exert their therapeu-
tic effects in several diseases, suggesting that MSC-derived 

Figure 2. Exosomes in conditional medium kill prostate cancer cells PC3 in a dose dependent manner. Growth curves of PC3 cells treated with CM from 
yCD::UPRT-AT-MSCs in presence and/or absence of 5-FC. PC3 cells (3 x 103) were plated in wells of the 96 well plate. Next day, indicated μg of CM were 
added to growth medium in each well either with prodrug 5-FC or without 5-FC. The course of growth/inhibition was monitored by the Incucyte system.
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nanoparticles – exosomes may be a promising alternative to 
cell therapy. MSCs engineered to express suicide genes release 
exosomes. Their cargo contains suicide gene mRNA. Internali-
zation of these exosomes in recipient cancer cells was found 
responsible for the growth inhibiting effect. Thus the prodrug 
suicide gene therapy mediated by MSCs is converted to the 
prodrug cancer suicide gene therapy mediated by therapeutic 
MSC exosomes. Nanoparticles released from tumor cells pos-
sess many diverse biological functions. Tumor cells secreted 
exosomes might support neoplastic growth, invasion, and 
metastasis [52]. Moreover; exosomes from human lung-, liver- 
and brain-tropic tumor cells are organ specific, preferentially 
penetrate resident cells at their predicted destination [53]. The 
tumor-derived exosomes up taken by organ-specific cells pre-
pare the pre-metastatic niche [53, 54]. All these findings might 
have application in prodrug gene cancer therapy mediated by 
exosomes targeted to organ specific metastases.

Advantage of nanosized exosomes compared with admin-
istration of exogenous MSCs is multiple. Exosomes are easier 
to preserve and transferred have lower immunogenicity and 
therefore are safer for therapeutic administration.
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