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The study aimed to screen potential key genes, and their targeted miRNAs and transcription factors (TFs) that were related 
to diffuse large B-cell lymphoma (DLBCL), and explore potential therapeutic targets for the progression of DLBCL. Dataset 
GSE56315 extracted from human tonsils was downloaded from Gene Expression Omnibus. Limma package was used to iden-
tify differential expression genes (DEG) between DLBCL and normal human tonsils samples, and the function and pathway 
enrichment analyses were performed. Then, functional interaction (FI) networks analyses of DEGs were implemented, and 
modules were extracted. Additionally, DLBCL-related miRNAs were predicted based on miR2disease database. Thereafter, 
TF-target DEGs and miRNAs targeted genes were respectively obtained. Finally, the integrated network of TF-target-miRNA 
was constructed. A total of 4,495 DEGs were identified between DLBCL and NHT samples. Among them, 114 up-regulated 
DEGs were contained in 8 modules of FI network, while 189 down-regulated DEGs were contained in 12 sub-modules. In 
addition, most DEGs were enriched in the function of “DNA binding” and pathways of “chemokine signaling pathway”, 
“phosphatidylinositol signaling system” and “RNA degradation”. Moreover, 19 miRNAs related with DLBCL were downloaded 
from Mirwalk2. Furthermore, miRNAs of miR-21-5p, miR-155 and miR-17-5p, the TF of STAT1, and DEGs such as NUF2, 
CCR1, PIK3R1, SMC1A, FOXK1 and CNOT6L had high degrees in the integrated networks of TF-target-miRNA. DEGs like 
NUF2, CCR1, PIK3R1, SMC1A, FOXK1 and CNOT6L might be closely associated with the pathogenesis of DLBCL.
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Diffuse large B-cell lymphoma (DLBCL), a  heterogeneous 
group of malignant proliferation of mature B cells, is one com-
mon kind of Non-Hodgkin’s lymphoma (NHL) and accounts 
for 30% of NHL [1, 2]. In addition, DLBCL can be classified 
into two subgroups, germinal center B cell-like (GCB) and 
activated B cell-like (ABC) subgroups, based on the cDNA 
microarrays [3]. The incidence rate of DLBCL is about 10-15 
of 100,000 people annually in the United States and most of 
them are men [4]. Additionally, inflammatory response is an 
important action in the development of DLBCL, and other 
genetic and environmental factors may also contribute to 
the acceleration of lymphomagenesis in DLBCL. Current 
treatment of DLBCL is typically combined chemotherapy. 
However, the relapse rate of DLBCL patients is nearly 40% 
[5]. Therefore, it is necessary to further develop new methods 
after comprehensive understanding pathogenic mechanisms 
of DLBCL from molecular level.

At present, the DLBCL related gene markers and molecular 
basis are partially understood. Several gene markers have been 
reported to be associated with the development of DLBCL. 
For instance, V-Myc avian myelocytomatosis viral oncogene 
homolog (MYC) is overexpressed in patients with DLBCL 
and contributes to tumorigenesis via repression of miR-17-92 
cluster expression [6]. In addition, the down-regulated expres-
sion of miR-34a which increases its targets of p53, forkhead 
box p1 (FOXP1) and b-cell CLL/lymphoma 2 (BCL2), serves 
as a  crucial prognostic marker of DLBCL in daily clinical 
work [7]. Similarly, Banham et al have found that the high 
expression of FOXP1 transcription factor (TF) may be closely 
linked with pathogenesis of DLBCL [8]. Furthermore, B lym-
phocyte-induced maturation protein 1 (BLIMP1), as a tumor 
suppressor gene, is inactivated by deletions or mutation in 
patients with DLBCL, and the inactivation of BLIMP1 lead 
to lymphomagenesis by obstruction B cells differentiation [9]. 
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Moreover, some pathways have been recently identified to be 
associated with the lymphomagenesis of DLBCL. The activa-
tion of nuclear factor kappa B (NF-κB) pathway is a hallmark 
of the ABC subtype of DLBCL, and may result in a change of 
the tumor cell proliferation and survival of DLBCL [10, 11].

Despite these informative findings, the gene and molecular 
mechanism involved in DLBCL is still obscure, and it needs to 
be further elucidated, which contributes to the clinical therapy 
and diagnosis of DLBCL. A previous study by Dybkaer et al 
hypothesizes to provide new diagnostic and prognostic tests 
for DLBCL based on subset-specific B-cell-associated gene sig-
natures (BAGS) [12], and they have demonstrated that CD58, 
LMO2, several histocompatibility complex class II-signature 
and stromal-1-signature genes that may have a positive in-
fluence on prognosis of BAGS-assigned centrocyte subtype. 
However, they failed to comprehensively use those BAGS data 
to screen the key genes of DLBCL. In the present study, we re-
analyzed their expression profile via a series of bioinformatics 
methods and the purpose of this study was to identify the key 
DLBCL related gene targets for providing important reference 
of further therapy and diagnosis of DLBCL.

Materials and methods

Data resource. All the data used in this study were down-
loaded from Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo/) website with the accession number of 
GSE56315 [12], which based on the platform of Affymetrix 
Human Genome U133 Plus 2.0 Array. A total of 122 samples 
were consisted in this profile, including 89 DLBCL samples 
and 33 normal human tonsils (NHT) samples.

Data preprocessing. Firstly, the raw probel-level data in 
CEL format were downloaded. Then, preprocessing of ex-
pression profile data were conducted by using Affy package 
in R  language, such as format transformation of raw data, 
missing data filling, background correction by MAS method 
and normalization using quartile method [13].

Differentially expressed genes (DEGs) analysis and hi-
erarchical clustering. Following the data preprocessing, the 
DEGs between DLBCL and NHT samples were analyzed by 
non-paired t test implemented in Linear Models for Microar-
ray Analysis (limma, http://www.bioconductor.org/packages/
release/bioc/html/limma.html) package in R [14], and multiple 
testing adjustment were performed by Benjamini & Hochberg 
method to adjust the original P-value into the false discovery 
rate (FDR) [15]. The FDR < 0.01 and |log2 fold change (FC)| 
≥ 2 were chosen as the cut-off criteria to filter DEGs. Then, 
the pheatmap package in R  (http://cran.r-project.org/web/
packages/pheatmap/index.html) was used to perform cluster-
ing analysis [16].

Function and pathway enrichment analyses of DEGs. 
The Multifaceted Analysis Tool for Human Transcriptome 
(MATHT, http://www.biocloudservice.com) is an online tool 
for Gene Ontology (GO) function [17], and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG, http://www.genome.jp/

kegg/) pathway analyses [18]. In this study, the MATHT tool 
was used to perform GO and KEGG enrichment analyses for 
the up-regulated and down-regulated DEGs, respectively, both 
with the cut-off criterion of P < 0.05.

Gene functional interaction (FI) analysis. The Reac-
tomeFIViz is a  Cytoscape app that allows further network 
analysis based on Reactome gene pathway annotations, and 
the networks were divided into modules with the Reactome-
FIViz built-in “cluster FI network” tool [19]. In addition, 
ReactomeFIViz can calculate the pearson correlation coef-
ficient (PCC) of each module. Then, modules were obtained 
with the parameter of MCLclustering size = 10. Moreover, 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID, http://david.abcc.ncifcrf.gov) was used 
to perform pathway enrichment analysis for each module 
gene set [20].

The integrated network construction of TF-target-
miRNA. At first, the miRNAs related to DLBCL were searched 
from miR2disease (http://www.mir2disease.org/) database, and 
the validated target genes of 19 DLBCL-related miRNAs were 
downloaded from Mirwalk2 [21]. Then, these target genes 
and up-regulated or down-regulated DEGs were overlapped, 
respectively, using Venn diagram analysis, to select potential 
miRNA-DEG interactions. The iRegulon plugin (http://iregu-
lon.aertslab.org.) in Cytoscape is aimed to detect enriched TF 
motifs and their optimal sets of direct targets [22]. In our study, 
iRegulon plugin was used to search the TFs of the miRNA-
targeted genes based on the following parameters: minimum 
identity between orthologous genes: 0.05; maximum FDR 
on motif similarity: 0.001. The output result was Normalized 
Enrichment Score (NES), and the higher the score was, the 
more reliable of the prediction. The TF-target interactions with 
NES > 4 were selected, and then these targets were overlapped 
with DEGs, to identify the TFs of DEGs. Finally, the predicted 
TF-target-miRNA networks were constructed for up-regulated 
and down-regulated DEGs, respectively, by using Cytoscape 
software (http://www.cytoscape.org/) [23].

Results

DEGs screening and hierarchy cluster analysis. Based on 
the aforementioned criteria, a total of 4,495 DEGs were iden-
tified between DLBCL samples and NHT samples, including 
2,224 up-regulated genes and 2,271 down-regulated genes in 
DLBCL samples. Additionally, the hierarchy cluster analysis 
revealed that the DEGs could correctly differentiate the two 
kinds of samples with correlated expression profiles, indicating 
that the DEGs could be applied to further analysis (Figure 1).

Function and pathway enrichment analyses of DEGs. 
Using the MATHT online tool, enrichment analyses in-
dicated that the up-regulated DEGs were significantly 
related to functions such as “immune response”, “ribosome”, 
“chemotaxis” and “taxis”, and pathways such as “chemokine 
signaling pathway” (e.g., CCR1) and “cytokine-cytokine 
receptor interaction” (Figure 2). In addition, the down-
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regulated DEGs were signifi cantly related to functions such 
as “non-membrane-bounded organelle” and “DNA binding’’ 
(e.g., FOXK1), and pathways such as “ribosome” and “spli-
ceosome” (Figure 3, Table 1).

  Gene FI network of DEGs. As a result, a total of 8 modules 
of the FI network were obtained for the up-regulated DEGs 
(Figure 4A), including 114 nodes corresponding with 357 
interactions. In those modules, the top 3 important modules 
were purple module with 24  DEGs (average PCC = 0.7801), 
green module with 18 DEGs (average PCC = 0.7362) and rose 
red module with 17 DEGs (average PCC = 0.8412). While, 
a total of 12 modules were obtained for the down-regulated 
DEGs, including 189 nodes corresponding with 1391 inter-
actions (Figure 4B). Among those down-regulated modules, 
the top 3 important modules were respectively purple module 
with 39 DEGs (average PCC = 0.8211), green module with 
24 DEGs (average PCC = 0.8532) and rose red module with 
17 DEGs (average PCC = 0.8762) (Table 2).

Pathway enrichment analysis of the module gene sets. 
Based on the DAVID database, only gene sets from 10 mod-
ules were enriched in corresponding KEGG pathways, among 
which 5 modules were from up-regulated DEGs and 5 modules 
were from down-regulated DEGs. As a result, up-regulated 
DEGs were remarkably enriched in pathways such as “cell 
cycle” (e.g., ESPL1) and “phosphatidylinositol signaling sys-
tem” (  e.g., PIK3R1). Meanwhile, down-regulated DEGs were 
closely associated with pathway of “RNA degradation” (e.g., 
CNOT6L) (Table 3).

Th e integrated  TF-target-miRNA network. In the inte-
grated TF-target-miRNA network of the up-regulated DEGs, 

Figure 1. Th e hierarchical cluster map of DEGs. Th e horizontal axis shows 
names of each sample, and the right vertical axis shows clusters of DEGs. Th e 
color towards to red represents high expression values, and color towards 
to green represents lower expression values. Furthermore, the change of 
color from green to red stands for the change in expression values from 
low to high. DEGs: d  iff erentially expressed genes.

Figure 2. Result of pathway enrichment and top 5 categories of up-regulated DEGs. MF: molecular function; CC: cellular component; BP: biological 
process; DEGs: diff erentially expressed genes.
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Table 1. The remarkably enriched pathway of differentially expressed genes

  PathwayID PathwayName Count P Value Genes

Up-regulated 
genes

hsa04062 Chemokine signaling pathway 18 4.18E-12 CCR1, STAT1, CCR7, CCR5, PIK3R1…
hsa04060 Cytokine-cytokine receptor interaction 13 1.74E-05 CCR1, CXCL2, CXCL9, CX3CL1, CCR7…
hsa04914 Progesterone-mediated oocyte maturation 6 2.32E-03 CCNB1, CDK1, CCNB2, PIK3R3, PIK3R1…
hsa03010 Ribosome 6 2.57E-03 RPL31, RPL22, RPLP0, RPS24, RPL29…
hsa04115 p53 signaling pathway 5 6.78E-03 CCNB1, CDK1, CCNB2, CHEK1, PTEN
hsa04070 Phosphatidylinositol signaling system 5 9.12E-03 SYNJ1, PIK3R3, PTEN, PIK3R1, PIP4K2B
hsa04114 Oocyte meiosis 5 3.12E-02 CCNB1, CDK1, CCNB2, SLK, ESPL1
hsa04110 Cell cycle 5 4.70E-02 CCNB1, CDK1, CCNB2, CHEK1, ESPL1

Down-regulat-
ed genes

hsa03010 Ribosome 8 7.07E-06 RPL14, RPL27A, RPLP2, RPS27L, RPL37A…
hsa03018 RNA degradation 5 1.39E-03 CNOT8, CNOT6L, CNOT3, CNOT7, CNOT4
hsa03040 Spliceosome 6 4.05E-03 TRA2A, CDC40, CDC5L, HNRNPC, SNRNP70…
hsa04360 Axon guidance 5 2.47E-02 ABLIM1, CDC42, PLXNB2, RAC1, ARHGEF12 
hsa04810 Regulation of actin cytoskeleton 6 3.32E-02 CDC42, ARHGEF7, RAC1, ARHGEF12, FGD3…

Notes: Count stands for the number of differentially expressed genes which were enriched in the corresponding functional category.

Figure 3. Result of pathway enrichment and top 5 categories of down-regulated DEGs. MF: molecular function; CC: cellular component; BP: biological 
process; DEGs: differentially expressed genes.

only one TF, STAT1, was found to have relationships with 
miRNA-targeted DEGs, such as NUF2, CCR1 and DTX3L 
(Figure 5). PIK3R1 was another crucial node in this network 
with high degree. By contrast, no TF was searched for the 
down-regulated DEGs, and DEGs such as SMC1A, FOXK1 
and CNOT6L were highlighted with high connection degrees 
were integrated in the down-regulation network (Figure 6). 
Additionally, two miRNAs,hsa-miR-21-5p (degree = 10) and 
hsa-miR-17-5p (degree = 25), which related to DLBCL had 
high connection degrees in above two TF-target-miRNA 
networks. Moreover, ten DEGs (e.g., CCR1, PIK3R1 and 
SMC1A) were identified to be the targets of hsa-miR-21-5p, 
whilst twenty five DEGs such as FOXK1 and CNOT6L were 
targets of hsa-miR-17-5p.

Discussion

In the present study, a total of 114 up-regulated and 189 
down-regulated DEGs were identified. Eight modules of the 
FI network were constructed for the up-regulated DEGs, while 
12 were for the down-regulated DEGs. In addition, DEGs such 
as NUF2, CCR1, PIK3R1, SMC1A, FOXK1 and CNOT6L, the 
miRNAs of hsa-miR-21-5p, miR-155 and hsa-miR-17-5p, and 
the TF of STAT1 were highlighted in the TF-target-miRNA 
networks. Moreover, most DEGs were predicted to be related 
to the function of “DNA binding’’ (e.g., FOXK1) and pathways 
like “phosphatidylinositol signaling system” (e.g., PIK3R1), 
“chemokine signaling pathway” (e.g., CCR1) and pathway of 
“RNA degradation” (e.g., CNOT6L).
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Table 3. The pathway enrichment analysis of differentially expressed genes in modules

  Module in Network Pathway ID Pathway Name Count P Value Gene

Up-regulated 
DEGs

Module 0 hsa04114 Oocyte meiosis 5 3.61E-06 CCNB1, CDK1, CCNB2, SLK, ESPL1
hsa04110 Cell cycle 5 6.12E-06 CCNB1, CDK1, CCNB2, CHEK1, ESPL1
hsa04115 p53 signaling pathway 4 5.54E-05 CCNB1, CDK1, CCNB2, CHEK1
hsa04914 Progesterone-mediated oocyte maturation 3 4.48E-03 CCNB1, CDK1, CCNB2

Module 1 hsa04080 Neuroactive ligand-receptor interaction 6 8.73E-05 S1PR3, P2RY13, C5AR1, P2RY14, FPR3…
hsa04062 Chemokine signaling pathway 4 5.53E-03 GNAI3, CCL21, CXCL13, CXCL2

Module 3 hsa04070 Phosphatidylinositol signaling system 5 1.09E-05 SYNJ1, PIK3R3, PTEN, PIK3R1, PIP4K2B
hsa05213 Endometrial cancer 3 5.06E-03 PIK3R3, PTEN, PIK3R1
hsa00562 Inositol phosphate metabolism 3 5.45E-03 SYNJ1, PTEN, PIP4K2B
hsa05214 Glioma 3 7.36E-03 PIK3R3, PTEN, PIK3R1
hsa05218 Melanoma 3 9.28E-03 PIK3R3, PTEN, PIK3R1
hsa04370 VEGF signaling pathway 3 1.01E-02 SH2D2A, PIK3R3, PIK3R1
hsa05222 Small cell lung cancer 3 1.28E-02 PIK3R3, PTEN, PIK3R1
hsa05215 Prostate cancer 3 1.43E-02 PIK3R3, PTEN, PIK3R1
hsa04666 Fc gamma R-mediated phagocytosis 3 1.59E-02 PIK3R3, PIK3R1, PIP4K2B
hsa04660 T cell receptor signaling pathway 3 2.03E-02 ICOS, PIK3R3, PIK3R1
hsa04650 Natural killer cell mediated cytotoxicity 3 2.85E-02 PIK3R3, PIK3R1, HCST

Module 5 hsa04062 Chemokine signaling pathway 10 1.55E-13 CCR7, CCR5, CXCL14, CCR1, CCR2… 
hsa04060 Cytokine-cytokine receptor interaction 10 3.41E-12 CCR7, CCR5, CXCL14, CCR1, CCR2… 

Module 7 hsa03010 Ribosome 6 1.06E-08 RPL31, RPL22, RPLP0, RPS4Y1, RPS24…

Down-regulated 
DEGs

Module 1 hsa00565 Ether lipid metabolism 2 2.85E-02 PAFAH1B1, PAFAH1B2
Module 2 hsa04360 Axon guidance 4 3.75E-04 ABLIM1, PLXNB2, RAC1, ARHGEF12

hsa04810 Regulation of actin cytoskeleton 4 1.55E-03 ARHGEF7, RAC1, IQGAP3, ARHGEF12
Module 3 hsa03010 Ribosome 8 4.10E-12 RPL14, RPL27A, RPLP2, RPS27L, RPL37A…
Module 7 hsa03018 RNA degradation 5 9.46E-08 CNOT8, CNOT6L, CNOT3, CNOT7, CNOT4
Module 10 hsa04810 Regulation of actin cytoskeleton 2 4.43E-02 CDC42, FGD3

Notes: DEG represents differentially expressed genes; Count stands for the number of DEGs which were enriched in the corresponding functional category.

Table 2. The modules of differentially expressed genes

  Module Genes in Module Average Correlation Gene 

Modules for  
up-regulated genes

0 24 0.7801 CDK1, CEP41, NSL1, NUF2, SLK… 
1 18 0.7362 APLNR, C5AR1, CCL21, CXCL13, CXCL2… 
2 17 0.8412 CISH, IFI27, PTPN2, STAT1, WARS…
3 13 0.7503 PIK3R1, PIK3R3, PTEN, RCAN2, SYNJ1…
4 11 0.876 GFM1, MRPL12, MRPL23, MRPL3, MRPL32…
5 11 0.6575 CCR1, CCR2, CCR5, CCR7, CX3CL1…
6 10 0.7523 BATF3, BCL2A1, CEBPB, EMSY, ENPP2…
7 10 0.6683 ETF1, RPL22, RPL29, RPL31, RPLP0 …
0 39 0.8211 ZFP36L2, ZNF107, ZNF117, ZNF141, ZNF160… 

Modules for  
down-regulated genes

1 24 0.8532 AKAP9, BUB1, CENPJ, CEP135, CEP290…
2 17 0.8762 ABLIM1, ABR, AKAP13, ARHGAP30, ARHGAP33…
3 15 0.8881 EIF5B, GRSF1, RPL14, RPL27A, RPL37A…
4 15 0.8436 AURKAIP1, GADD45GIP1, GFM2, MRPL20, MRPL38…
5 14 0.731 CDC40, CDC5L, FUS, HNRNPC, HNRNPL… 
6 13 0.7959 BIRC5, CENPT, ESCO1, MAU2, NSL1…
7 12 0.8796 CNOT3, CNOT4, CNOT6L, CNOT7, CNOT8…
8 10 0.9093 ARFGEF2, IPO8, KPNA5, NEK9, NUP188… 
9 10 0.9001 ARID4B, FOXK1, ING2, KLF13, MNT…

10 10 0.855 ARHGAP23, CDC42, CDC42BPG, FGD2, FGD3…
11 10 0.837 AKIRIN2, EMSY, HMBOX1, PHF12, RNF141…
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Figure 4. Th e modules identifi ed from the functional interactions of DEGs. A. Th e modules identifi ed from functional interactions of up-regulated DEGs. B. 
Th e modules identifi ed from functional interactions of down-regulated DEGs. Th e circular-shaped nodes represent up-regulated DEGs, and the diamond-
shaped nodes represent down-regulated DEGs. Diff erent colors are used to distinguish diff erent clustering modules. DEGs: diff erentially expressed genes.

Signal transducer and activator of transcription 1 (STAT1) 
belongs to the STAT family, which is activated by tyrosine 
phosphorylation and crucial to develop human neoplasias via 
participating in the regulation of cell proliferation and survival 

[24]. Previous studies have showed that    STAT1 plays an impor-
tant role in promoting apoptosis [25]. In the present study, the 
STAT1 was the only TF in the TF-target-miRNA network for 
up-regulated DEGs, and was predicted to regulate   the expres-
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sion of   NUF2, suggesting it might have an inhibitory role in 
DLBCL development. In addition, it is indicated that NDC80 
kinetochore complex component (NUF2) was up-regulated in 
human glioma cells and pancreatic tissues, and NUF2 plays an 
important role in regulation cell apoptosis [26, 27]. Th erefore, 
it could be inferred that the overexpression of STAT1 might 
induce the up-regulation of NUF2. Th ese regulations might 
contribute to inhibit the progression of DLBCL via promoting 
cell apoptosis. However,   there are some diff erent views on the 
role of STAT1 in DLBCL. Bhatt et al have demonstrated that 
interleukin 21 can induce cell apoptosis in a subset of mantle 
cell lymphoma cells via activating the STAT3-cMyc pathway 
and not by activating the STAT1 signaling pathway [29]. In ad-
dition, Camicia et al have suggested that BAL1 as a oncogenic 
survival factor in DLBCL may induce the phosphorylation 
of STAT1, and STAT1 acts as an oncogene in DLBCL, not as 
tumor suppressor [30]. Th erefore, it is still needed further 
experimental data to verify the function of STAT1 in DLBCL.

Numerous studies have proved that  miR-21 has great 
function in the development of DLBCL and other cancers via 

regulating cell proliferation and apoptosis [31-33]. In our study, 
CCR1, PIK3R1 and SMC1A were   predicted as target genes of 
 miR-21-5p, and CCR1 and PIK3R1  had high degrees in the 
up-regulated network of TF-target-miRNA. Th e chemokine 
receptor 1 (CCR1) encodes a member of the beta chemokine 
receptor family, and it can bind to C-X-C motif chemokine to 
have function in the progression of tumors [34]. Interestingly, 
a previous study indicated that the expression of CCR1 was 
up-regulated in the non-germinal center subtype of DLBCL, 
and CCR1 may contribute to the progression of DLBCL via 
chemokine signaling pathway [35], which was consistent with 
our fi ndings. In addition, phosphoinositide-3-kinase regula-
tory subunit 1 (PIK3R1) is negatively regulated by miR-21-5p, 
and miR-21-5p targeted PIK3R1 inhibits cell growth and 
invasion via suppressing PI3K/AKT signaling activation in 
breast cancer [36]. Moreover, PI3K/AKT pathway is involved 
in the development of DLBCL [37]. Similarly, chemokine 
signaling pathway and PI3K/AKT signaling pathway were 
predicted to be signifi cant pathways in this study. Th erefore, it 
might be supposed that CCR1 and PIK3R1 might function as 

Figure 5. Integrative regulatory network of TF-target-miRNA for the up-regulated DEGs. Th e triangle-shaped nodes stand for m  iRNA, and all the re-
maining nodes in red circles stand for up-regulated DEGs. Th e hexagon-shaped nodes represent TF. Th e T-shaped lines represent interactions between 
genes and miRNAs, and the arrows represent interactions between TF and target genes. DEGs: diff erentially expressed genes; TF: transcription factor.
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important genes to participate the development of DLBLC via 
those two pathways. Structural maintenance of chromosomes 
1A (SMC1A) that encodes a  subunit of the cohesin protein 
complex is involved in chromosome cohesion during cell cycle 
and DNA repair [38]. On the other hand, in the present study, 
SMC1A showed high degree in the down-regulated network. 
The knockdown of SMC1A suppresses the growth of glioblas-
toma cells [38, 39]. Collectively, we supposed that miR-21, as 
well as its target genes like CCR1, PIK3R1 and SMC1A might 
control the growth of DLBCL cells. Additionally, it has been 
indicated that miR-155 overexpression plays important roles 
in the progression of DLBCL [40]. In our study, SMAD4 as the 
target gene of miR-155 was predicted to be down-regulated in 
the DLBCL cells. In consistent with our result, Go et al have 
found that the loss of SMAD4 expression may be related with 
the proliferation of DLBCL cells by enhancing transforming 
growth factor β  (TGF-β) pathway signaling pathway [41]. 
In addition, it has been reported that miR-155 may regulate 
SMAD4 in TGF-β1/SMAD signaling pathway in human breast 
cancer cells [42]. Therefore, we supposed that miR-155 and its 

target gene SMAD4 might play key role in the occurrence of 
lymphoma of DLBCL via TGF-β1 pathway.

Moreover, several studies have proved that miR-17-5p plays 
a role as a tumor suppressor in malignant cells such as breast 
cancer cell, lung cancer cell and gastric cancer cell [43-45]. In 
our study, FOXK1 and CNOT6L, which were two crucial genes 
with a high connection degree in the integrated network of 
down-regulated genes, were predicted as the targeted genes 
of miR-17-5p. Myocyte nuclear factor (FOXK1) contains 
a fork head DNA binding domain which is correlative with 
cell growth and metabolism, and FOXK1 suppression lead to 
apoptosis and promote cell susceptibility to 5-fluorouracil-
induced apoptosis in colorectal cancer cell [46]. In addition, 
CCR4-NOT transcription complex subunit 6 like (CNOT6L) is 
a deadenylase subunit of CCR4-NOT complex [47]. Moreover, 
CNOT6L is linked to cell death and survival by recognizing 
the RNA substrate and causing mRNA degradation [48]. Fur-
thermore, miR-17 can bind to CNOT6L to down-regulate the 
level of phosphatase and tensin homolog (PTEN), and thus 
to facilitate tumor growth [49]. In consistent with our results, 

Figure 6. Integrative regulatory network of miRNA-target for the down-regulated DEGs. The triangle-shaped nodes stand for miRNA, and the diamond-
shaped nodes represent down-regulated DEGs. The T-shaped lines represent interactions between genes and miRNAs. DEGs: differentially expressed genes.

file:///F:/dtp/Neoplasma/Neoplasma6_17/dodane/603_161207N622_Luo/javascript:void(0);


832 X. LUO, F. SHI, H. QIU, Y. TONG, X. GAO

FOXK1 and CNOT6L were enriched in the pathways of “DNA 
binding’’ and “RNA degradation”, respectively. Consequently, 
we inferred that FOXK1 and CNOT6L which participated in 
“DNA binding’’ and “RNA degradation” are most likely to play 
a major role in the progression of DLBCL via regulation of cell 
growth and apoptosis of DLBCL cells by targeting miR-17.

In summary, the DEGs like NUF2, CCR1, PIK3R1, SMC1A, 
SMAD4, FOXK1 and CNOT6L, the TF of STAT1, and the 
miRNAs such as miR-21-5p, miR-155 and miR-17-5p might 
be closely involved in the progression of DLBCL via regula-
tion the cell proliferation and apoptosis. Moreover, they might 
be used as potential therapeutic and diagnostic biomarkers 
for DLBCL. However, further studies should be designed to 
confirm these results.
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