Experimental Study

Improving the potency of DNA vaccine encoding HIV-1 Nef antigen using two endogenous adjuvants in mouse model

Jafarzade BS¹,², Sadat SM³, Yaghobi R⁴, Bolhassani A³

Department of Microbiology College of Science, Science and Research Branch Islamic Azad University, Fars, Iran. azam.bolhassani@yahoo.com

ABSTRACT

BACKGROUND: DNA immunization can induce long-term immune responses, which are required to design an effective HIV vaccine. It was shown that antigen-expressing plasmids can increase the protective immunity against infectious diseases such as: influenza and malaria. However, DNA-based immunizations have poor immunogenicity, thus the use of potent immunoadjuvants can enhance their potency.

METHODS: In the current study, preparation of the recombinant HIV-1 Nef, Gp96 and HMGB1 DNA constructs was performed in bacterial system. Then, the immunogenicity of DNA construct harboring HIV-1 Nef gene (pcDNA-Nef) was studied using two endogenous adjuvants (pcDNA-HMGB1 and pcDNA-Gp96) in BALB/c mouse model.

RESULTS: Our data showed that co-injection of pcDNA-Nef with pcDNA-HMGB1 effectively raised both humoral and cell-mediated immune responses in mice as compared to pcDNA-Nef adjuvanted with pcDNA-gp96. Indeed, co-immunization of HIV-1 Nef DNA with HMGB1 DNA significantly induced high levels of IgG2a and IFN-γ directed toward Th1 responses and also cytotoxic T lymphocytes (CTLs) activity in comparison with other immunized groups.

CONCLUSION: These findings suggest that the full length of HMGB1 gene could be a more efficient adjuvant for improvement of therapeutic HIV DNA-based immunization compared to the full length of gp96 gene (Tab. 1, Fig. 3, Ref. 58). Text in PDF www.elis.sk.

KEY WORDS: HIV-1 Nef, Gp96, HMGB1, adjuvant, therapeutic vaccine.

Introduction

Human immunodeficiency virus type 1 (HIV-1) infection is one of the most fatal infections worldwide; thus development of an effective vaccine is required to prevent or treat HIV-related acquired immune deficiency syndrome (AIDS) (1). Among the accessory proteins encoded by HIV genome (Vif, Vpr, Vpu and Nef), Nef protein (~ 27–32 kDa) was indicated to be necessary for high viral load and progression to AIDS (2–10). Some Nef activities include down-regulation of cell-surface viral receptors (CD4/CXCR4/CCR5), remodelling of the actin cytoskeleton, and stimulation of host cell signalling pathways in both macrophages and lymphocytes (11–16). This protein has multiple conserved and immunogenic epitopes, which are recognized by cytotoxic and T helper lymphocytes (17, 18). Therefore, Nef might be a good candidate for HIV vaccine design due to its expression during early viral replication, high immunogenicity and key role in HIV pathogenicity (17–19). The studies showed that DNA-based vaccines are among different approaches, which are capable to generate antigen-specific immune responses in vaccinated animals and humans (20, 21). However, despite several properties including ease of manufacturing, cost effectiveness and safety in DNA vaccines, they have poor immunogenicity. A main strategy to enhance the potency of DNA-based vaccines is the use of immunoadjuvants (22). In recent years, heat shock proteins (HSPs) have been recognized as potent adjuvants in immunotherapy of cancer and infectious disease (23). Gp96, a member of HSP90 family, has been reported to play an important role in innate and adaptive immune responses (24). Nicchitta et al. reported that Gp96 could potently stimulate maturation of antigen presenting cells and secretion of pro-inflammatory cytokines (25). The efficiency of Gp96 gene was studied in both conjugated and co-injected forms with DNA vaccines containing some viral and bacterial antigens (26, 27). On the other hand, high mobility group box 1 (HMGB1) protein, a chromatin-associated protein with high acidic and basic amino acid content (~ 25 kDa) has been shown to act as a mediator of inflammation (28–30). Indeed, HMGB1 acts as an extracellular signalling molecule during inflammation, cell differentiation, cell migration, and tumour metastasis (31, 32). HMGB1 has been identified as a damage-associated molecular pattern molecule (DAMP) and could interact with pattern recognition receptors such as RAGE and TLRs (33–35). It has been reported to be involved in host responses to infections, injuries, tumours, and inflammation by promoting cytokine production, recruiting immune cells, and modulating DC migration and maturation (36–38). These prop-
In vitro cytokine release

Three weeks after the last immunization, three mice from each group were sacrificed randomly and the spleens were removed. The red blood cell depleted pooled splenocytes (2 × 10^6 cells/ml) were cultured in U-bottomed, 96-well plates for 72 h in the presence of 10 μg/ml of rNef protein, RPMI 5% (negative control), and 5 μg/ml of concanavalin A (ConA, positive control) in complete culture medium. The presence of IFN-γ and IL-4 in supernatants was measured using a DuoSet sandwich-based ELISA system (R&D) according to the manufacturer’s instructions.

Granzyme B (GrB) ELISA assay

SP2/0 target cells (T) were seeded in triplicate into U-bottomed, 96-well plates (2 × 10^6 cells/well) incubated with Nef antigen (~ 30 μg/ml) for 24 h. The pooled splenocytes of mice in each group (Effector cells: E) were counted using trypan blue and added to the target cells at E: T ratio of 100:1, in which a maximal release of Granzyme B was observed. The target and effector cells were co-cultured in complete RPMI-1640 supplemented with 10% heat-inactivated FCS at 37°C and 5% CO2 under humidified conditions. The wells containing effector cells were considered for measurement of possible spontaneous release of Granzyme B. After 6 h incubation, microplates were centrifuged at 250 × g for 5 min at 4°C and the supernatants were harvested. The concentration of Granzyme B in these samples was measured by ELISA (eBioscience, USA) according to the manufacturer’s instruction.

Statistical analysis

The differences between the control and test groups were assessed using one-way ANOVA (GraphPad Software, USA). A p-value < 0.05 was statistically considered significant.

Results

Preparation of the recombinant DNA plasmids and Nef protein

DNA constructs encoding HIV-1 Nef, Gp96, and HMGB1 (pcDNA-Nef, pcDNA-Gp96, pcDNA-HMGB1) were prepared in large scale with a high purity. The presence of Nef, Gp96, and HMGB1 genes was confirmed using digestion and PCR analysis as clear bands of ~ 648 bp, ~2550 bp, and ~645 bp migrated in agarose gel, respectively and sequencing. Moreover, the purified GST-Nef (rNef) protein migrated as a clear band of ~ 50 kDa in both the Coomassie blue stained and dried gel, as well as in the silver stained gel. The purity and yield of the purified protein were also determined using a NanoDrop spectrophotometer.

Preparation of the recombinant Nef protein

The Nef protein was expressed in the E.coli BL21 using Isopropyl-β-D-thiogalactopyranoside (IPTG, 1 mM) and purified by reverse staining method as previously reported (41). Next, the recombinant protein was quantified using a NanoDrop spectrophotometer.

Mice immunization

Six to eight week old female BALB/c mice (n = 4 per group) were obtained from breeding stock, maintained at the Pasteur Institute of Iran. Mice were subcutaneously immunized on days 0, 14, and 28 in three groups with 100 μg of pcDNA-Nef in PBS (G1), and pcDNA-Nef adjuvanted with pcDNA-gp96 (G2) or pcDNA-HMGB1 (G3). Table 1 shows the regimens of DNA immunizations at different times.

Determination of antibody levels

Pooled sera were prepared after retro-orbital bleeding from the whole blood samples of each group, three weeks after the last immunization. The levels of Nef-specific antibodies (total IgG, IgG1, IgG2a conjugated to peroxidase, Southern biotechnology Association, USA) in the sera were determined using indirect ELISA as previously described (40).

In vitro cytokine release

Three weeks after the last immunization, three mice from each group were sacrificed randomly and the spleens were removed. The red blood cell depleted pooled splenocytes (2 × 10^6 cells/ml) were cultured in U-bottomed, 96-well plates for 72 h in the presence of 10 μg/ml of rNef protein, RPMI 5% (negative control), and 5 μg/ml of concanavalin A (ConA, positive control) in complete culture medium. The presence of IFN-γ and IL-4 in supernatants was measured using a DuoSet sandwich-based ELISA system (R&D) according to the manufacturer’s instructions.

Granzyme B (GrB) ELISA assay

SP2/0 target cells (T) were seeded in triplicate into U-bottomed, 96-well plates (2 × 10^6 cells/well) incubated with Nef antigen (~ 30 μg/ml) for 24 h. The pooled splenocytes of mice in each group (Effector cells: E) were counted using trypan blue and added to the target cells at E: T ratio of 100:1, in which a maximal release of Granzyme B was observed. The target and effector cells were co-cultured in complete RPMI-1640 supplemented with 10% heat-inactivated FCS at 37°C and 5% CO2 under humidified conditions. The wells containing effector cells were considered for measurement of possible spontaneous release of Granzyme B. After 6 h incubation, microplates were centrifuged at 250 × g for 5 min at 4°C and the supernatants were harvested. The concentration of Granzyme B in these samples was measured by ELISA (eBioscience, USA) according to the manufacturer’s instruction.

Statistical analysis

The differences between the control and test groups were assessed using one-way ANOVA (GraphPad Software, USA). A p-value < 0.05 was statistically considered significant.

Results

Preparation of the recombinant DNA plasmids and Nef protein

DNA constructs encoding HIV-1 Nef, Gp96, and HMGB1 (pcDNA-Nef, pcDNA-Gp96, pcDNA-HMGB1) were prepared in large scale with a high purity. The presence of Nef, Gp96, and HMGB1 genes was confirmed using digestion and PCR analysis as clear bands of ~ 648 bp, ~2550 bp, and ~645 bp migrated in agarose gel, respectively and sequencing. Moreover, the purified GST-Nef (rNef) protein migrated as a clear band of ~ 50 kDa in SDS-PAGE as previously reported (41). Figure 1 shows the PCR products of Nef, Gp96 and HMGB1 in agarose gel.

Evaluation of antibody responses in immunized mice

To compare humoral immune responses induced in various groups, the serum levels of total IgG and their subclasses (IgG1, IgG2a) against rNef protein were detected using indirect ELISA as previously described (40).
SA (Figure 2). Our data showed that the levels of total IgG and other isotypes in the sera of mice immunized with pcDNA-Nef + pcDNA-HMGB1 (G3) was significantly higher than those in the groups immunized with other DNA constructs (G1 & G2; \(p < 0.05 \)). On the other hand, the level of IgG2a in groups immunized with pcDNA-Nef + pcDNA-HMGB1 (G3) was significantly higher than the level of IgG1 in this group (\(p < 0.05 \)). Moreover, the levels of total IgG and also isotypes in the sera of mice immunized with pcDNA-Nef + pcDNA-gp96 (G2) were higher than in the group immunized with pcDNA-Nef, alone (G1), indicating the role of Gp96 as an adjuvant. In general, all test groups showed high antibody responses as compared to the control groups (\(p < 0.05 \), Figure 2).

Cytokine assay

The cytokine results showed that Nef + HMGB1 DNA construct (G3) was more effective than Nef + Gp96 DNA (G2) and Nef DNA (G1) in eliciting IFN-\(\gamma \) responses (\(p < 0.05 \), Figure 3A). Furthermore, both HMGB1 and Gp96 could increase the secretion of IFN-\(\gamma \) in group immunized with Nef DNA (G2 and G3) as compared to the group immunized with Nef DNA construct (G1, \(p < 0.05 \)). All DNA immunization effectively enhanced the levels of IFN-\(\gamma \) as compared to the control groups (\(p < 0.05 \)). The test groups did not show any significant IL-4 responses in comparison with the control groups (\(p > 0.05 \), data not shown).

Granzyme B secretion

Three weeks after the last immunization, splenocytes from each immunized group were co-cultured with SP2/0 target cells in E: T ratio of 100:1 for 6 h at 37\(^\circ\) C, and the supernatants were harvested. Granzyme B secretion in each sample was measured by ELISA (Figure 3B). Group immunized with pcDNA-Nef + pcDNA-HMGB1 (G3) produced a significantly higher concentration of Granzyme B than all other groups (\(p < 0.001 \)). Indeed, the Granzyme B secretion was significantly higher in the group immunized with Nef + HMGB1 DNA (G3) compared to the group immunized with Nef + Gp96 (G2, \(p < 0.05 \)), suggesting the effective role of HMGB1 as an adjuvant in DNA immunization. Control groups including mice injected with PBS or empty vector (pcDNA 3.1) had granzyme B concentrations below the minimum detectable range of ELISA (40–5000 pg/ml). All results showed a direct relationship between antibody responses, IFN-\(\gamma \) production, and Granzyme B secretion as a possible indicator of CTL activity.

Discussion

The studies showed that DNA-based vaccines emerged as a successful approach for generation of antigen-specific immune responses against viral diseases. Due to low immunogenicity of this strategy, some adjuvants were considered to increase its potency. Some studies have been focused on HIV-1 Nef as an important
component for development of HIV vaccines. For example, immunogenicity of Nef encoded by Modified Vaccinia virus Ankara (MVA) and by plasmid DNA was evaluated in BALB/c mice model. The results showed that DNA construct expressing Nef elicited long-lasting CD8+ T cell memory responses, while MVA expressing Nef induced CD4+ T cell memory responses. Indeed, the type of the expression vector could direct the responses towards CD4+ or CD8+ T cell responses (42). In this study, we evaluated immune responses induced by various DNA immunizations in BALB/c mice model. Two adjuvants such as HMGB1 and Gp96 were utilized to enhance the efficiency of Nef as a candidate antigen. Heat shock proteins have been proposed as important immunostimulatory molecules to increase antigen-specific immunity (43, 44). Our previous studies indicated the adjuvant activity of Gp96 along with HPV16 E7 in different immunization strategies (40). One study indicated that anti-Nef antibodies in mice immunized with pBN-Nef were detected within four weeks after the last immunization, whereas mice immunized with pCGE2-Nef had poor anti-Nef antibodies (45). Other data showed that HIV-1 Nef DNA vaccine (pcDNA-Nef) could induce anti-Nef antibodies and Nef-specific CTL activity, but stronger specific immune responses were stimulated in mice receiving pcDNA-Nef along with LIGHT expression plasmid (LIGHT, a member of TNF superfamily), suggesting that the LIGHT could be considered as a gene adjuvant for HIV-1 DNA vaccination (46). Herein, we also showed that Gp96 as an adjuvant could increase immune responses induced by pcDNA-Nef regimen. On the other hand, we indicated that DNA immunization with Nef + HMGB1 DNA induced potent humoral and cellular immune responses directed toward Th1 responses. Immunization with Nef + HMGB1 DNA could induce a significant increase in Granzyme B release (~ 600 pg/ml) as compared to other groups. Indeed, the presence of HMGB1 could stimulate Granzyme B secretion as a possible indicator of CTL activity against re-stimulation with Nef antigen. Our results showed that there was a similarity between IFN-γ production and Granzyme B secretion. Indeed, the group immunized with Nef + HMGB1 DNA demonstrated the highest levels of IFN-γ and Granzyme B as compared to the other groups. In general, production of IgG2a was significantly higher in groups immunized with Nef DNA adjuvanted with HMGB1 as compared to other regimens. All three DNA immunizations could significantly generate IgG isotypes and IFN-γ against Nef-coated antigens compared to the control groups. Our results showed that both HMGB1 and Gp96 as an adjuvant in DNA-immunized groups could elicit higher humoral and cellular responses than DNA regimen alone (i.e., pcDNA-Nef). In general, there is a great interest in developing adjuvant formulations for the design of therapeutic HIV vaccines based on nucleic acids. The use of novel and safe adjuvants stimulating the Th1-type immune response could improve therapeutic vaccines against pathogens and cancers. The studies showed that HMGB1 could increase the primary antibody responses to soluble antigens and alter poorly immunogenic apoptotic lymphoma cells into effective vaccines (47). Others have shown that HMGB1 induces the secretion of IL-2 and IFN-γ secretion from allogeneic T cells, suggesting the induction of the Th1-biased immune response (48). One report also showed that the fusion of HMGB1 with the VP1 antigen could enhance the immunogenicity of DNA vaccine (49). In this study, the mice were subcutaneously injected with HMGB1 DNA; thus, HMGB1 could not directly entry into the systemic circulation indicating the absence of autoantibodies or septic shock in vaccinated groups as observed in other studies (50). Other studies showed that an immunomodulatory protein (HMGB1) could act as a molecular adjuvant in DNA vaccination against HIV and influenza viruses in co-administration with antigens (51–53). Our data indicated that IL-4 did not show any considerable response in immunized mice. Indeed, the secretion of IFN-γ along with undetectable IL-4 suggested that HMGB1 induced the Th1 immune response in vivo.

DNA vaccines have the potential to be an ideal therapeutic approach against HIV-1. The potency of DNA vaccines has been greatly increased by new formulations and delivery methods (54–57). Intradermal injection of mice with plasmid DNA encoding HIV-1 Nef protein was shown to induce Nef-specific T and B cell
responses. Co-injection of mice with a plasmid DNA encoding HIV-1 Nef protein and the expression vector encoding murine granulocyte-macrophage colony-stimulating factor (GM-CSF cytokine) led to enhanced Nef-specific T cell responses and antibody levels. However, the immunostimulatory activity of GM-CSF DNA was locally limited and observed only if both plasmids were administrated at the same site (58). Altogether, our data demonstrated that mice immunization with Nef + HMGB1 DNA induced Th1 response and also strong Granzyme B secretion suggesting a higher activity of HMGB1 compared to Gp96 in DNA immunization.

Conclusion

In summary, this study indicated the effects of HMGB1 and Gp96 as two endogenous adjuvants to enhance the efficiency of DNA constructs expressing HIV-1 Nef antigen. The data showed that HMGB1 could significantly increase the potency of vaccine as compared to Gp96 adjuvant. However, further studies are needed to optimize this strategy in Future.

References

Received April 27, 2017. Accepted May 12, 2017.