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How viruses infi ltrate the central nervous system
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Summary. – Central nervous system is protected by the blood-brain barrier, which represents a physical, 
metabolic and transport barrier and is considered to be a part of a highly dynamic system termed neurovas-
cular unit. Several pathogens, among them viruses, are able to invade the brain. Traversal of viruses across the 
blood-brain barrier is an essential step for the invasion of the central nervous system and can occur by diff erent 
mechanisms – by paracellular, transcellular and/or by “Trojan horse” pathway. Penetration of viruses to brain 
can lead to the blood-brain barrier dysfunction, including increased permeability, pleocytosis and encepha-
lopathy. Viruses causing the central nervous system infections include human immunodefi ciency virus type 1, 
rhabdovirus, diff erent fl aviviruses, mouse adenovirus type 1, herpes simplex virus, infl uenza virus, parainfl uenza 
virus, reovirus, lymphocytic choriomeningitis virus, arbovirus, cytomegalovirus, mumps virus, parvovirus B19, 
measles virus, human T-cell leukemia virus, enterovirus, morbillivirus, bunyaviruses, togaviruses and others. 
In this review we summarized what is known about the routes of how some viruses enter the brain and how 
neurons and glial cells react to infection.
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1. Blood-brain barrier and its role in pathogen 
infections

Infections of central nervous system (CNS) are important 
cause of morbidity and mortality all over the world (Kim, 
2008). Although, CNS is protected by physiological barriers 
separating the bloodstream and the brain, several pathogens 
are able to invade the brain (Nassif et al., 2002). Th e blood-
brain barrier (BBB) is a physical, metabolic and transport 
barrier and it is considered to be a part of a highly dynamic 
system called neurovascular unit (Kousik et al., 2012; Spin-
dler and Hsu, 2012; Wong et al., 2013). Th e BBB is formed 
by brain endothelial cells that line cerebral microvessels 
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(Abbott et al., 2006). Adjacent endothelial cells are strongly 
attached to each other by various types of adhesive structures 
or cell-to-cell junctions, called tight junctions (TJs), which 
ensure the integrity of the BBB (Michiels, 2003). Th e proper 
functioning of the brain depends on functional interactions 
of endothelial cells with the other cells of the CNS, including 
neurons, pericytes, mast cells and glia. 

Traversal of pathogen across the BBB is an essential step for 
the invasion of the CNS (Bencurova et al., 2011). Penetration 
of pathogens to the brain can lead to the BBB dysfunction, 
including increased permeability, pleocytosis and encepha-
lopathy. Pathogens can cross the BBB by paracellular, tran-
scellular, and/or by “Trojan horse” mechanism (Kim, 2008). 
Transcellular pathway refers to the penetration of pathogen 
through the barrier cells without any evidence of microorgan-
isms between the cells or of intracellular damage of TJs. Para-
cellular pathway is characterized by the microbial penetration 
between barrier cells with or without TJs damage, while the 
“Trojan horse” mechanism involves microbial penetration in 
infected phagocytes. However, most pathogens penetrating 
the BBB paracellularly or by the “Trojan horse” mechanism 
are able to cross it also transcellularly (Kim, 2008; Pulzova et 
al., 2009). Mechanisms of the BBB disruption mediated by 
paracellular entry of viruses involve alterations in expression 
or phosphorylation of TJs proteins, disruption of the basal 
lamina, and disruption of the actin cytoskeleton. Th e direct 
implication of viral gene products in BBB disruption is very 
rare (e.g. human immunodefi ciency virus 1).

Among notorious viral agents that cause CNS infections are 
human immunodefi ciency virus type 1, rhabdovirus (rabies), 
diff erent fl aviviruses (West Nile virus, Japanese encephalitis 
virus, tick-borne encephalitis virus, St. Luis encephalitis virus 
or Murray Valley encephalitis virus), mouse adenovirus type 
1, herpes simplex virus, infl uenza virus, parainfl uenza virus, 
reovirus, lymphocytic choriomeningitis virus, arbovirus, cy-
tomegalovirus, mumps virus, parvovirus B19, measles virus, 
human T-cell leukemia virus, enterovirus, morbillivirus (Ni-
pah and Hendra virus), bunyaviruses, togaviruses and others 
(Pulzova et al., 2009; Spindler and Hsu, 2012).

Transcellular and paracellular permeability of the BBB 
can be modulated by various factors, such as vasogenic 
factors, growth factors, cytokines and chemokines, matrix 
metalloproteinases, free radicals, and lipid mediators. Th e 
mechanisms employed by infectious agents to compromise 
the BBB depend on these factors, and thus the mode of BBB 
crossing and severity of damage varies a lot. In some cases, 
the BBB damage can be caused by microbial products only, 
while in the majority of cases, multiple factors are responsible 
for the disruption (Spindler and Hsu, 2012). Among this 
multifactorial interplay, protein-protein interactions between 
pathogen ligands and host receptors are crucial to trigger the 
translocation processes, especially through the paracellular 
and transcellular ways (Bencurova et al., 2011).

2. Human immunodefi ciency virus 1 

Th e human immunodefi ciency virus (HIV) is a lentivirus 
belonging to the family of retroviruses (Vigorito et al., 2015). 
HIV-1 infection aff ects around 39 million individuals world-
wide, of these more than 3 million are children under the 
age of 15 (Sheets et al., 2016). Th e clinical signs of acute HIV 
infection are similar to those in non-HIV infected patients: 
headache, fever, night sweating, purulent nasal discharge, 
nasal block, and posterior dripping (Piot and Colebunders, 
1987; Sanjar et al., 2011). In later stages, HIV symptoms 
include weight loss, malaise, fatigue and lethargy, anorexia, 
abdominal discomfort, diarrhoea, itching, amenorrhea, 
lymphadenopathy and splenomegaly. Acquired immune 
defi ciency syndrome (AIDS) represents the most severe 
stage of HIV infection and is characterized by the presence 
of neurologic abnormalities, opportunistic infections and 
tumors resulting from a profound cellular immunodefi ciency 
(Piot and Colebunders, 1987). 

As far as the molecular processes involved in encepha-
litis and BBB disruption are concerned, HIV-1 is one of 
the best-studied viruses (Spindler and Hsu, 2012). HIV 
replicates by infecting and destroying primarily CD4+ T 
cells, which are essential for the normal function of the hu-
man immune system. The decline of CD4+ T cells causes 
a progressive immune suppression, resulting in extreme 
vulnerability to disease and opportunistic infections, like 
pneumocystis pneumonia and toxoplasmic encephalitis. 
The terminal stage of HIV viral progression, AIDS, is char-
acterized by the fall of CD4+ cell count below 200/mm3, 
and complications with secondary infections (Vigorito 
et al., 2015). HIV-1 invades the CNS by a “Trojan horse” 
mechanism, via infected blood cells that cross the BBB 
either paracellularly or transcellularly (Mishra and Singh, 
2014; Spindler and Hsu, 2012). Infected monocytes pass 
through the BBB during normal turnover of perivascular 
macrophages or as a result of the production of proinflam-
matory mediators, like CCL2, which compromise the 
BBB. Another sources of the BBB infection can be by the 
penetration of infected CD4+ T cells, direct entrance of 
the virus or entrance of the virus by transcytosis of brain 
microvascular endothelium (Ghafouri et al., 2006). After 
the virus invasion, microglia might become infected and 
contribute to the production of virus. The HIV-envelope 
glycoproteins, expressed on the surface of infected cells 
mediate cell-to-cell fusion with cells that express both 
CD4+ and HIV co-receptor, resulting in the formation 
of large multinucleotid giant cells, which also produce 
virus before they eventually die (Gonzalez-Scarano and 
Martin-Garcia, 2005) (Fig. 1). The disruption of the BBB is 
followed by a series of processes caused by the neurotoxic 
activity of different HIV-1 proteins, such as Tat, gp120, 
Nef, Vpr and others (Maubert et al., 2015). 
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Fig. 1

Routes of viral entry into CNS
HIV-1 utilises a „Trojan horse“ mechanism of entry by travelling in infected monocytes (1). Th ese monocytes pass through the BBB during normal turnover 
of perivascular macrophages or as a result of the production of pro-infl ammatory mediators, like CCL2, which compromise the BBB. Th e penetration of 
infected CD4+ T cells can be another source of HIV infection in the brain (2). Other probable cause of brain infection might be the direct entrance of the 
virus (3) or entrance of the virus by transcytosis of brain microvascular endothelial cells (4). Aft er the virus penetration across the BBB, microglia might 
become infected and contribute to the production of virus. Th e HIV-envelope glycoproteins, expressed at the surface of infected cells mediate cell-to-cell 
fusion with cells that express both CD4+ and HIV co-receptor, resulting in the formation of large multinucleated giant cells, which also produce virus 
before they eventually die. Astrocyte infection is known to be restricted. Th e mechanism of rabies penetration across the BBB is unknown. Aft er the 
CNS infection, rabies virions are released at the synapse and use retrograde trans-synaptic pathway to infect neighbouring neurons. CNS infection by 
fl aviviruses occurs either through the adherence of the virus to brain microvascular endothelial cells (1) or infi ltration of infected monocytes across the 
BBB (2). Viral infi ltration causes the infection of BBB and CNS cells. Infection of astrocytes leads to chemokine production facilitating further recruitment 
of monocytes and macrophages (3). Infected neurons undergo apoptosis and activate the resident microglia which produces an infl ammatory response 
(4). Production of infl ammatory cytokines, chemokines, enzymes and matrix-metalloproteinases (5) leads the degradation of endothelial barrier and the 
release of infl ammatory factors recruiting CD4+ and CD8+ T lymphocytes into the CNS parenchyma, what can subsequently lead to further infl ammation 
and damage of the CNS. Encephalitis caused by MAV-1 is characterized by recruitment of infl ammatory cells, secretion of cytokines and chemokines, 
alteration of tight junctions protein levels and localization in brain endothelial cells. Th ese processes lead to neuroinfl ammation, neuronal damage and 
the BBB disruption. Th e mechanisms used by MAV-1 to penetrate the BBB remain unclear.

3. Rabies virus

Th e rabies virus (RV) belongs to the genus Lyssavirus of 
the Rhabdoviridae family (Paweska et al., 2006). It infects 
practically all warm-blooded organisms and it spreads to the 

human through infected saliva by animal bites or scratches. 
RV remains an important worldwide health problem caus-
ing more than 70,000 human deaths annually (Wang et al., 
2013). It is endemic in most African and Asian countries 
(Nel, 2013).
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Clinical manifestations of rabies in humans have two 
forms. Th e furious form (80 % of infections) is characterized 
by hydrophobia, excitation with spasm of inspiratory mus-
cles, larynx and pharynx precipitated by attempts to drink 
and episodes of hallucinations. Animals are oft en extremely 
aggressive and they randomly attack objects, other animals 
or humans. Th e numb form of rabies (20% of infections) 
is characterized by weakness and fl accid paralysis, which 
sometimes causes misdiagnosis at the onset of this clinical 
form. In both forms, survival aft er the onset of symptoms is 
rarely more than 7 days (Schnell et al., 2010).

RV is mainly transmitted via saliva following a bite from 
an infected animal, most oft en by dogs and cats or through 
mucous membranes, but not through intact skin (Finnegan 
et al., 2002). Another reservoirs and transmitters of rabies 
are coyotes, foxes, jackals, mongooses, raccoons, skunks, 
wolves and bats (Arai, 2005). It has long been suggested that 
a rabies infection is lethal in humans once the virus reaches 
the CNS. However, this concept was challenged by an analysis 
of a small number of rabies patients, revealing that the BBB 
played a major role in protection against this virus. It has 
been shown that the main reason for the survival of rabies 
patients (animals) was enhanced BBB permeability, which 
allowed immune cells to enter the tissues of the CNS and fi ght 
the infection (Roy and Hooper, 2008; Wang et al., 2013). 

RV pathogenesis is a multigenic trait (Dietzschold et al., 
2005). RV glycoprotein plays a crucial role in the pathogen-
esis of RV infection by controlling the rate of virus uptake 
and trans-synaptic virus spread, and by regulating the rate 
of virus replication (Dietzschold et al., 2008). Moreover, it 
is suggested that viral elements, regulating gene expression, 
especially expression of the L gene, are also likely to play 
a role in RV pathogenesis (Dietzschold et al., 2005).

Th e RV binds to the nicotinic acetylcholine receptors at 
the neuromuscular junction and travels within motor and 
sensory axons to the CNS. Th ere is also the spread of the 
virus from the CNS along neuronal pathways, particularly 
involving parasympathetic nervous system responsible for 
the infection of salivary glands, skin, heart and other organs. 
RV is then secreted into the saliva and can be transmitted to 
other hosts (Jackson, 2000) (Fig. 1). 

4. Flaviviruses (West Nile virus, tick-borne encephalitis 
virus, Japanese encephalitis virus)

Th e genus Flavivirus of the family Flaviviridae consists 
of more than 70 RNA viruses, involving multiple long 
known human, animal, and zoonotic pathogens (Ashraf et 
al., 2015; Blazquez et al., 2014; Huhtamo et al., 2014). Th ey 
are transmitted by either mosquitoes or ticks and they are 
the cause of either encephalitis or systemic haemorrhagic 
septicemia in animals and/or humans (McVey et al., 2013). 

Nowadays, fl aviviruses are found on all continents except 
Antarctica (Ashhurst et al., 2013). As a result of diff erent 
factors, such as globalization of travel and trade, climate 
warming, or changes in land use and vector behaviour, 
diff erent fl aviviruses are currently becoming global health 
problem (Blazquez et al., 2014).

Mechanism of passing of fl avivirus to the CNS remains 
incompletely understood, but it is suggested that protein-
protein interactions at the BBB may be crucial (Turtle et 
al., 2012). Flaviviruses disrupt the BBB indirectly through 
the eff ects of systemic infl ammatory cytokines or directly 
by binding to diff erent structural proteins, like claudins 
(Neal, 2014). Viral infi ltration causes the infection of BBB 
and CNS cells. Infection of astrocytes leads to chemokine 
production facilitating further recruitment of monocytes 
and macrophages. Infected neurons undergo apoptosis and 
activate the resident microglia, which produce an infl am-
matory response. Production of infl ammatory cytokines 
(e.g. TNF-α, IL1β, INF-γ and IL-4), chemokines (e.g. CCL2, 
CCL5, CXCL9, CXCL10), enzymes (COX2) and matrix-
metalloproteinases leads the degradation of endothelial bar-
rier and the release of infl ammatory factors recruiting CD4+ 
and CD8+ T lymphocytes into the CNS parenchyma, what 
can subsequently lead to further infl ammation and damage 
of the CNS (Daep et al., 2014) (Fig. 1).

4.1 West Nile virus (WNV)

WNV is a mosquito-borne fl avivirus and its transmission 
cycle occurs between mosquito vectors and reservoir hosts, 
like aquatic birds. WNV infection in accidental hosts, such 
as humans or horses, usually results in low level viremia 
and plays only a little role in this cycle (Suen et al., 2014). 
Human-to-human transmission is possible only through the 
transfusion of blood or organ transplantation (Di Sabatino 
et al., 2014). 

WNV is endemic to numerous parts of Africa, Asia and 
the Middle East and is now the leading cause of arboviral 
encephalitis in North America (Ashhurst et al., 2013). It is 
the most widespread member of the Japanese encephalitis 
virus complex (Di Sabatino et al., 2014). WNV infection 
in humans is in the most cases asymptomatic, but mild 
infl uenza-like symptoms may occur. In the most vulner-
able categories including elderly, chronically ill, and im-
munocompromised persons, WNV infection can lead to 
severe encephalitis and even death. In horses, the course of 
disease is usually subclinical, but some animals may show 
neurological symptoms and develop fatal encephalitis (Di 
Sabatino et al., 2014).

Th e mechanism by which the virus invades the brain is 
still poorly understood (Suen et al., 2014). WNV-associated 
encephalitis is characterized by the BBB disruption, in-
creased infi ltration of cells of immune system into the CNS, 
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activation of microglia, infl ammation and possible loss of 
neurons. It is also suggested, that WNV may enter into the 
CNS via transcellular pathway without compromising the 
BBB. WNV does not induce the cytopathic eff ect, however 
induces an expression of claudin-1 and upregulation of 
VCAM-1 and E-selectin (Pulzova et al., 2009). 

Pattern recognition receptor detects the viral RNA 
(pathogen-associated molecular pattern) and evokes innate 
immune responses against WNV. Daniels et al. demon-
strated that WNV pathogen-associated molecular patterns 
orchestrate endothelial responses to WNV via competing 
with innate immune cytokine signals at the BBB, which nor-
mally prevent the entry of pathogens. While Th 1 cytokines 
increases the BBB permeability, type I interferon induced 
by WNV promotes and stabilizes its function. Induction of 
innate cytokines by pattern recognition pathways directly 
regulates the permeability of the BBB and the formation of 
TJs via balanced activation of the small GTPases Rac1 and 
RhoA, which in turn regulated the transendothelial traffi  ck-
ing of the virus. In vivo experiments on mice with attenuated 
type I interferon signalling or interferon induction (Ifnar(-/-) 
Irf7(-/-)) showed enhanced BBB permeability and TJs dys-
regulation aft er WNV infection (Daniels et al., 2014).

4.2 Tick-borne encephalitis virus (TBEV)

TBEV causes severe encephalitis with serious sequel in 
humans. Unlike other fl aviviruses this virus can be transmit-
ted through non-pasteurized milk of infected cows and goats. 
However, tick remains major vehicle for virus transmission. 
Th e Ixodes ticks (I. scapularis, I. ricinus and I. persulcatus), 
most prevalent in Central and Eastern Europe, are the pri-
mary vectors of TBEV. 

Th e mechanisms underlying how TBEV gains access to 
the CNS are not completely elucidated. Th ere are several 
hypothetical routes for TBEV traversal across BBB. Th ese 
include cytokine-mediated BBB breakdown, “Trojan horse” 
theory, and viral entry into the brain microvascular endothe-
lial cells, transcytosis, and the release of virus into the brain 
parenchyma (Ruzek et al., 2011). 

Tick borne encephalitis is commonly recognized by 
a neurological disorder; however other symptoms like mild 
fever and itching can also occur. Th e probability of develop-
ing the chronic or permanent neuropsychiatic sequelae is 
nearly 20% of infected patients (Kaiser, 2008). Th e virus can 
infect both meninges and brain. Although, the knowledge 
on TBEV translocation across the BBB is fragmented, recent 
research using electron tomography of TBEV infecting neu-
rons has revealed many molecular events that may also take 
place in brain microvascular endothelial cells infection. Th e 
electron tomography revealed direct connections between 
the tubule-like structures of neurons and viral particles in 
endoplasmatic reticulum. In the same study, viral particles 

were also found in cellular microtubules and vacuoles (Bily 
et al., 2015). 

Apart from neurons TBEV infects astrocytes, which are 
located between synapses and endothelial cells (Potokar et 
al., 2014). Astrocytes have several functions in the brain, 
including neuronal support and the most importantly 
maintenance of TJs in normal and pathologic conditions 
(Tao-Cheng et al., 1987). It has been shown previously that 
TBEV infection alters the permeability of the BBB (Ruzek et 
al., 2011), and astrocytes may be implicated in this process, 
since these cells regulate blood fl ow in the brain (Potokar 
et al., 2014). 

4.3 Japanese encephalitis virus (JEV)

JEV belongs to a complex containing three other viruses 
– Saint Luis encephalitis virus, Murray Valley encephalitis 
virus and West Nile virus (Murphy, 1999). It is an etiologic 
agent causing the Japanese encephalitis. JEV infection is 
typically inapparent but can cause clinical disease in humans, 
horses, and swine (McVey et al., 2013).

JEV is endemic throughout Southeastern and Central 
Asia and results in approximately 30,000–50,000 cases per 
year (Ashhurst et al., 2013). In humans, the symptoms can 
range from a mild febrile illness to severe encephalitis, in-
cluding seizures, a polio-like illness, and diff erent movement 
disorders. In fatal cases, pathological changes, such as severe 
degree of vascular congestion, cerebral oedema, neuronal 
death, astrocyte activation, and microglial proliferation can 
be observed in various parts of the nervous system.

JEV can be transmitted between animal and human hosts 
by Culex species of mosquitoes. Despite the importance of 
Japanese encephalitis, only little is known about the patho-
genesis of human JEV infection, involving the mechanism 
of its spread to the CNS and viral tropism within the brain. 
Since in vitro studies have shown that peripheral blood 
mononuclear cells, including monocytes and macrophages, 
can be infected and invade the CNS via the antipodal trans-
port of virions or through vascular endothelial cells, it is 
suggested that JEV may have a peripheral replication cycle. 
Many fl aviviruses have been observed to induce neuronal 
apoptosis in neurons in vitro and in in vivo rodent models. 
Neuronal apoptosis is considered to be one of the hallmarks 
of neurodegenerative infections. JEV has also been shown 
to cause loss of neurons due to the rough endoplasmic re-
ticulum stress pathway. Viral tropism in neural progenitor 
stem cells and immature neurons has also been observed 
in experimental models of JEV infection. However, mature 
neurons become resistant to JEV-induced apoptosis because 
of the increased neuronal expression of cellular inhibitors of 
apoptosis, like Bcl-2 and Bcl-x.

Additionally to neurons, astrocytes and microglial cells 
can also be infected. Recent studies of human and mouse 



398 MICHALICOVÁ, A. et al.: MINIREVIEW

models revealed prominent astrocyte activation, particu-
larly in areas of neuronal damage. Ghoshal et al. (2007) 
reported signifi cant increase of various proinfl ammatory 
mediators, such as inducible nitric oxide synthase, cycloox-
ygenase 2, interleukin 6, interleukin 1b, tumour necrosis 
factor alpha, and monocyte chemoattractant protein 1, in 
microglial cells following JEV infection, which may play 
an important role in inducing neuronal cell death (Zhang 
et al., 2014). 

5. Mouse adenovirus type 1

Mouse adenovirus type 1 (MAV-1) is a non-human-
infecting adenovirus belonging to the Adenoviridae family 
of viruses (Hartley and Rowe, 1960; Hsu et al., 2012). MAV-1 
infection of immunodefi cient mice can result in pneumonia, 
hepatitis, encephalitis, gastroenteritis, and disseminated 
disease involving multiple organs (Ashley et al., 2009).

Clinical signs of disease caused by MAV-1 infection in 
new borne and suckling mice include ruffl  ed coat, lethargy, 
and terminal burrowing into the cage bedding. Adult mice 
carrying the severe combined immune defi ciency mutation 
and infected with MAV-1 display also hunching, unsteady 
gait and poor feeding (Kring et al., 1995).

MAV-1 is similar to human adenovirus in genome and 
structure, and both viruses cause persistent infections. Th ese 
properties make MAV-1 a good animal model system for 
studying adenovirus pathogenesis (Gralinski et al., 2009; 
Weinberg et al., 2007). 

MAV-1 causes both acute and persistent infection in mice 
and it infects cells of the monocyte/macrophage lineage and 
brain endothelial cells of the BBB (Guida et al., 1995; Kajon 
et al., 1998). Infection of endothelial cells is thought to lead 
to encephalitis. In encephalitis, endothelial cells of the small 
veins of the meninges and brain are the targets for MAV-1 
replication (Charles et al., 1998). 

Encephalitis caused by MAV-1 is characterized by recruit-
ment of infl ammatory cells, secretion of cytokines and chem-
okines, and alteration of TJs protein levels and localization 
in brain endothelial cells (Dallasta et al., 1999; Getts et al., 
2008; Gralinski et al., 2009; Chaturvedi et al., 1991; Ivey et 
al., 2009; Spindler and Hsu, 2012; Verma et al., 2009). Th ese 
processes lead to neuroinfl ammation, neuronal damage and 
the BBB disruption (Gralinski et al., 2009; Charles et al., 
1998) (Fig. 1). 

6. Conclusions

Th e above review sums up known information about 
how diff erent viruses invade the central nervous system. 
It shows that viruses can cross the blood-brain barrier in 

a wide variety of infectious diseases. In future research the 
mechanisms of penetration of the viruses across the blood-
brain barrier should be explored as a therapeutic strategy 
against viral infections of CNS.
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