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Calcium signaling involved in bovine herpesvirus 1 replication in MDBK cells
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Summary. – Calcium is one of the most prominent second messengers in eukaryotic cells. Th e involve-
ment of calcium signaling in bovine herpesvirus 1 (BoHV-1) replication was not yet reported. In this study, we 
revealed that the L-type Ca2+ calcium channel blocker, Verapamil and store-operated calcium channel blocker, 
2-aminoethyl diphenylborinate (2-APB) inhibited BoHV-1 replication in MDBK cells at the post-entry stages, 
and the Na+/Ca2+ exchanger inhibitor, N-arachidonoyl glycine exchanger (NAGly) interfered with the viral en-
try process. NAGly also eff ected the phosphorylation of PLCγ-1 at Ser1248, which corroborated our previous 
fi ndings, that PLCγ-1 is important for BoHV-1 entry. Collectively, these results suggest that diverse calcium 
channels are employed by BoHV-1 for effi  cient replication.
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Bovine herpesvirus 1 (BoHV-1), an enveloped virus belong-
ing to the Alphaherpesvirus subfamily, infects cattle of all ages 
and breeds worldwide and causes great economical losses to cat-
tle farms, due to the virus infection induced respiratory disease, 
abortions, and severe neonatal diseases (Muylkens et al., 2007; 
Tikoo et al., 1995). BoHV-1 together with the other pathogens, 
such as bovine viral diarrhea viruses, bovine respiratory syncy-
tial virus, parainfl uenza virus type 3 and bovine coronaviruses, 
as well as the bacteria including Mannheimia haemolytica, 
Pasteurella multocida, Histophilus somni and Mycoplasma spp 
are the causative agents of life-threatening pneumonia known 
as bovine respiratory disease complex (BRDC) (Fulton et al., 
2016; Jones, 2009; Jones and Chowdhury, 2007).

Ca2+ is one of the most important signaling molecules 
involved in vast majority of cellular processes via modulating 
the activity of a repertoire of signaling components, such as 

the ion channels, Ca2+ buff ers, Ca2+ eff ectors, Ca2+-sensitive 
enzymes and transcriptional factors (Berridge et al., 2003; 
Zhou et al., 2009). It is well known that the virus depends 
on the cellular machinery for effi  cient entry of the host cells 
and subsequent replication and survival. It is not surprising 
that the viruses could utilize Ca2+ signals to create a favo-
rable cellular environment benefi ting for their infection, 
e.g., the Ca2+ is strictly required for rubella virus liposome 
association, membrane fusion, and virus infection (Dube et 
al., 2014); the endosomal calcium channels called two pore 
channels (TPCs) are required for Ebola virus entry into host 
cells (Sakurai et al., 2015); stromal interaction molecule 1 
(STIM1)- and Orai-mediated Ca2+ entry is critical for Ebola 
virus, Marburg, Lassa and Junin virus infections (Han et al., 
2015); and calcium signaling is a key regulator of infl uenza 
virus internalization (Fujioka et al., 2013). Th e involvement 
of calcium signaling in herpes simplex virus (HSV) infection 
has also been reported (Cheshenko et al., 2003). BoHV-1 
and HSV are genetically closed, but little is known about the 
involvement of Ca2+ signaling in BoHV-1 infection.

Phospholipases C (PLC) with totally of 6 families (β, γ, δ, 
ε, η and ζ) are subdivided into 13 isoforms, which regulate 
numerous pathways, such as protein kinase C (PKC) and 
calcium spike (Vines, 2012). We have previously reported 
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channel (SOC) are responsible for feeding extracellular Ca2+ 
to the cytosol. Th ese channels are extensively studied due to 
the availability of specifi c channel blockers, e.g., Verapamil 
for VOC and 2-aminoethyl diphenylborinate (2-PAB) for 
SOC. Na+/Ca2+ exchanger (NCX) is considered as one of the 
most important cellular mechanisms for extruding Ca2+ to 
the extracellular space. In this study, VOC blocker Verapamil 
(#V4629; Sigma-Aldrich), SOC blocker 2-APB (#D9754; 
Sigma-Aldrich), and NCX inhibitor N-arachidonoyl glycine 
(NAGly) (#CAS 179113-91-8; Santa Cruz Biotechnology) 
were employed to investigate the role of the calcium channels 
in BoHV-1 infection. 

To identify proper concentrations for this study, the 
cytotoxicity of each chemical was assessed with WST-1 cell 
proliferation and cytotoxicity assay kit (Beyotime Biotech-
nology, China) following the manufacture's specifi cation. 
As a result, the treatment of MDBK cells with Verapamil at 
a concentration of 100 μmol/l, with 2-APB at a concentra-
tion of 15 μmol/l, and with NAGly at a concentration of 
50 μmol/l showed minor or no cytotoxicity to the cells, with 
reduced cell survival to a level less than 5% compared to 
the control (Fig. 1a). To test the eff ect of these chemicals on 
BoHV-1 infection, MDBK cells were treated with Verapamil 
(at a concentration of 50, 25, 10, 5 and 1 μmol/l), 2-APB (at 
a concentration of 15, 10, 5, 1 and 0.5 μmol/l) and NAGly 
(at a concentration of 25, 10, 5 and 1 μmol/l), respectively, 
during virus infection with a pretreatment for 1 h prior to 
viral infection. Th e infected cells treated with DMSO were 
used as a control. At 24 h post-infection the viral titer was 
determined and expressed as TCID50/ml. Compared to 
DMSO control, Verapamil reduced the virus titer by ~1 log at 
concentrations of 50 and 25 μmol/l, 2-APB reduced the virus 
yield by ~1.5 log at concentrations of 50 and 25 μmol/l, and 
NAGly at a concentration of 25 μmol completely blocked the 
virus replication (Fig. 2b). Th ese results indicate that VOC, 
SOC, and NCX exchanger mediated calcium signaling are 
important for BoHV-1 infection.

To test whether these inhibitors aff ected the viral entry 
stage of infection, confl uent MDBK cells in a 24-well plate 
were incubated with BoHV-1(MOI = 1) for 1 h at 4°C. Aft er 
extensive washing with ice-cold PBS, fresh medium with or 
without compounds were added, and the cells were cultivated 
in 37°C for 1 h. Fresh medium without inhibitor was replaced 
and continuously incubated for 24 h at 37°C. Th e virus yield 
was determined and expressed as TCID50/ml. Addition of 
NAGly (10 μmol/l) during virus entry signifi cantly reduced 
virus titer (~1 log) when compared to control. While, no 
eff ect on the virus replication was observed when either 
Verapamil (50 μmol/l) or 2-APB (10 μmol/l) was added 
(Fig. 1c). To test whether these inhibitors aff ect the post-
entry stage of BoHV-1 infection, confl uent MDBK cells in 
24-well plates were infected with BoHV-1 (MOI = 1) for 
1 h at 37°C. Aft er washing with PBS, fresh medium with 

Fig. 1

Th e eff ects of Verapamil, 2-APB, and NAGly on BoHV-1 replication 
in MDBK cells

(a) Th e cytotoxicity assay for Verapamil, 2-APB and NAGly at indicated 
concentrations in MDBK cells. (b) Antiviral eff ect of Verapamil, 2-APB 
and NAGly on BoHV-1 infection. (c) Th e identifi cation of virus entry 
stage(s) aff ected by these inhibitors. Th ese studies were repeated 3 times 
and asterisks denote signifi cant diff erences between the DMSO control 
and cultures treated with indicated chemical (*: P <0.05) as determined 
by the Student' t test.

(a)

(b)

(c)

that PLCγ-1 inhibitor U73122 and edelfosine possess strong 
antiviral activity against BoHV-1 infection, and are likely to 
interfere with viral early entry stages (Zhu et al., 2017). Th is 
result is reminiscent of the speculation that some calcium 
channels may be involved in BoHV-1 infection.

Various Ca2+ channels, such as voltage-operated channel 
(VOC), receptor-operated channel (ROC) or store-operated 
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or without inhibitors was replaced for further incubation. 
At 24 h post-infection, the virus yield was determined as 
TCID50/ml. As a result, the treatment of cells with both Ve-
rapamil (50 μmol/l) and 2-APB (10 μmol/l), but not NAGly 
(10 μmol/l) signifi cantly interfered with the virus production. 
Th ese results indicate that the VOC blocker Verapamil and 
SOC blocker 2-APB mainly aff ected the virus post-entry 
stages, while the NCX inhibitor NAGly mainly interfered 
with viral entry process. 

We have recently identified that BoHV-1 infection 
stimulated PLCγ-1 signaling to facilitate the viral entry 
(Zhu et al., 2017). However, the mechanism underlying virus 
infection-stimulated PLCγ-1 signaling is poorly understood. 
Here, serum- starved MDBK cells were treated with NA-
Gly at indicated concentrations for 1 h, then infected with 
BoHV-1 at MOI of 10 for 0.5 h, along with the treatment 
of NAGly. Th e cell lysates were prepared for western blot 
to detect phospho-PLCγ-1 (Ser1248) (Cell Signaling Tech-
nology), PLCγ-1 (Cell Signaling Technology) and GAPDH 
(Cell Signaling Technology). As a result, the activation of 
PLCγ-1 in response to BoHV-1 infection was reduced in 
a dose-dependent manner (Fig. 2). Th ese results suggest 
that the NCX-mediated calcium signaling may be involved 
in the activation of PLCγ-1 by BoHV-1 infection. It has been 
reported that the activation of PLCγ-1 by calcium is required 
for calcium-induced human keratinocyte diff erentiation (Xie 
et al., 2005), which corroborated our results that calcium 
signaling is involved in PLCγ-1activation in response to 
BoHV-1 infection.

2-APB is a reliable blocker of store-operated Ca2+entry 
(Bootman et al., 2002; Peppiatt et al., 2003). Th e inhibition 
of viral entry by 2-APB has been documented by several 
viruses, e.g., 2-APB inhibited HSV-1/2 penetration (Chesh-
enko et al., 2003), and pretreatment of cells with 2-APB 
led to a signifi cant reduction in coxsackie virus B infection 
(Bozym et al., 2010). No inhibitory eff ect on West Nile virus 
infection was observed at the viral entry stages (Scherbik 
and Brinton, 2010). Here, we found that 2-APB aff ected the 
BoHV-1 replication mainly at the post-entry stage, but not 
at the entry stages. Th ese data suggest that the store-operated 
Ca2+ entry may have diverse eff ect on virus replication in 
virus type-specifi c manner.

Th e voltage-operated channel antagonist Verapamil is 
a drug approved by the U.S. Food and Drug Administra-
tion (FDA) to treat cardiovascular diseases. Th is drug has 
also diverse eff ects on various virus infections. Verapamil 
enhanced some virus infections, e.g., like HIV-1 expression 
in acute infection of lymphoid CEM cells (Harbison et al., 
1991), and promotes oncolytic adenovirus release from the 
infected A549 cells (Gros et al., 2010). Whilst, the antiviral 
eff ect of Verapamil targeting various process of viral repli-
cation has also been documented, e. g., it inhibits fi lovirus 
entry to host cells (Gehring et al., 2014), inhibits budding 

of Sindbis and vesicular stomatitis viruses from infected 
chicken embryo fi broblasts (Schlesinger and Cahill, 1989), 
and blocks human rhinovirus 2 infection and release (Gazina 
et al., 2005; Schlesinger and Cahill, 1989). Here, we revealed 
that Verapamil interferes with BoHV-1 infection at the post-
entry stage(s).

Th ere is a complicated interaction between phospholipase 
C and calcium signaling. Upon activation PLC activates 
protein kinase C (PKC) and Ca2+ release from the endo-
plasmic reticulum to the cytoplasm, and in turn activates 
downstream eff ectors to mediate various cellular changes 
and activities (Bagley et al., 2004; Vines, 2012). Th e NCX is 
responsible for extrusion of Ca2+ to the extracellular space 
and import of sodium ions. Th ere is evidence of the activa-
tion of PLC by a Na+-dependent mechanism in MIN6 cells 
(Li et al., 2016). Here we showed that NCX also aff ects 
PLCγ-1 signaling stimulated by BoHV-1 infection. Maybe 
the activation of PLCγ-1 by the virus infection is orchestrated 
by NCX mediated calcium signaling, which needs further 
investigation.

In conclusion, we provide the fi rst evidence that BoHV-1 
infection in MDBK cells could be inhibited by diverse cal-
cium channel blockers, suggesting that host Ca2+ signaling 
is involved in the virus infection. Moreover, we have showed 
that NCX-mediated calcium signaling mediated BoHV-1 
entry is regulated with a PLCγ-1-dependent mechanism.
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Fig. 2

NAGly interferes with PLCγ-1 phosphorylation (at Ser1248) 
in BoHV-1-infected MDBK cells 
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